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Fortunately, on 20 April 1977, all of this kludgery was rendered obsolete
when I found a decision procedure for this problem.
(A discrete analog to the Risch algorithm for indefinite integrati

—R. William Gosper, Jr., Indefinite Hypergeometric Sums in MACSYMA
1977)

1. INTRODUCTION. The problem of finding simple evaluations of major classes
of sums that involve factorials, binomial coefficients, and their g-analogues, has
been completely solved. Sums that have the rather general form specified in
Section 3 can all be done algorithmically, that is to say, you can do them on your
own PC. Your computer evaluates the sum as a simple formula, if that’s possible,
and gives you a proof that you can check, or gives you a proof that your sum
cannot be “done” in simple closed form, if that is the case.

We first briefly describe the algorithms and the theory that have achieved this
goal. Second, to illustrate both the scope of the method and the fact that in some
interesting cases human intervention still helps, we show how these computer
methods would have fared in attacking 27 problems that have appeared over the
years in the Problems section of this MONTHLY.
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Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(n)unr + -+ po(n)un = 0.

> Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

> Better strategy [Abramov, 1995]:
@ find a multiple of denominators of all rational solutions — singularity analysis

@ reduce to polynomial solutions for numerators — change of unknowns
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Task: Given py, ..., pr € K[n], compute a basis of solutions in K(#) of

(LRE): pr(n)unr + -+ + po(n)un = 0.

Assume u, = P(n)/Q(n) solution of (LRE) with gcd(P, Q) = 1. Multiplying

P(n+r) P(n)
Pr(”)m +oet Po(")w =
by
M(n) =lem(Q(n+1),...,Q(n+r))
yields

Q(n) [ po(n)M(n).

> Idea in simplest case: Assume Q has no two roots with integer difference.
Then ged(Q, M) = 1. Thus Q divides po(n). Similarly, Q divides p,(n —r).
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Rational solutions of LREs: s

Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(m)upgr + -+ po(n)u, = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with gcd(P,Q) = 1.
Let a, 8 be roots in K of Q s.t. « — fp = H € IN maximal (H = dispersion of Q).
Then po(x) =0 and p,(B—r) = 0.

Proof: « +1,& +2,..., are not roots of Q, i.e., « not pole of 1 1,..., Unr.
So « is not a pole of py(n)uy. Since « is a pole of uy,, necessarily po(«) = 0.

B—1,—2,...,are not roots of Q, i.e., B not pole of 1,_1,...,uy—s. So B is
not a pole of p,(n — r)u,. Since B is a pole of u,, necessarily p,(—r) =0. O

Corollary. The dispersion H is a root of Res,, (po(n+ h), pr(n —r)) € Kh].

Proof: (n,h) = (B, H) is solution of system pg(n+h) =0,p,(n—r) =0. O




Rational solutions of

Task: Given py, ..., pr € K[n], compute a basis of solutions in K(n) of

(LRE):  pr(m)itus + -+ po(n)iun = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with ged(P, Q) = 1.
Let H be the dispersion of Q. Then

Q(n) | ged (po(n) -~ po(n+H), pr(n—7r) - pr(n—r—H))

Proof: We’ve already proved that Q(n) | po(n)lem(Q(n+1),...,Q(n+7r)).
Substituting n <— n + 1 and repeating yields:
Q1) [ po(n)lem(po(n +1)lem(Q(n +2),...,Q(n+r+1)),Q(n +2),...,Q(n+71))
| po(m)po(n+1)lem(Q(n +2),...,Q(n+r+1))
~lpo(n) - po(n+7)lem(Q(n +j+1),...,Q(n +j+71)).

As ged(Q(n),Q(n+j)) =1for j > H, we get Q(n) | po(n) - - - po(n+ H). O
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Rational soluti

Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(m)upsr + -+ po(n)u, = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with ged(P, Q) = 1.
Let H be the dispersion of Q. Then

Q(n) | ged (po(n) - - po(n + H), pr(n—r) - pr(n —r—H))
> A refinement: Q divides the (generally smaller) polynomial
m_ hi
HH d(po(n —j+ i), pr(n—j—r)),
i=1;j=0

where iy > hy > - -+ > hy, > 0 are the roots in IN of

R(h) = Resy (po(n+h), pr(n—r)).
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Rational solution

Abramov(LRE)

In: A LRE p,(n)utpqr + -+ po(n)u, = 0 with p; € K[n|
Out: A multiple of the denominator of all its rational solutions.

@ Compute the polynomial
R(h) = Resy (po(n +h), pr(n—r)).

@ If R has no roots in IN, then return 1; else, let iy > hp > -+ > hy, >0
be its roots in IN. Initialize Q to 1, A to py(n), B to pr(n —r).
@ Fori=1,...,mdo
g(n) :=ged(A(n + h;), B(n));

Q(n) :=g(n)g(n —1) ---g(n = h;i)Q(n);
A(n) := A(n)/g(n — hy);
B(n) := B(n)/g(n).

@ Return Q. /1 T T ged (po(n = j + hy), pr(n — j = 1))
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Task: Given py, ..., pr € K[n], compute a basis of hypergeometric solutions

(LRE): pr(m)tpgr + -+ po(n)u, = 0.

> Assume iy, 1 = g(%un, with (u,) solution of (LRE) with ged(P, Q) = 1.
> Injecting into (LRE) yields:
pr(m)P(n+r—1)P(n+r—2)---P(n) +
pr—1(mM)Qm+r—1)Pmn+r—2)---Pn)+---

p1(m)Q(n+r—1)---Q(n —1)P(n) +
po(m)Q(n+r—1)---Q(n) =0. (1)

> Easy case: If ged(P(n), Q(n+1i)) =1fori=0,...,r — 1, then P(n) divides
po(n) and Q(n +r — 1) divides p,(n).
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Hypergeometric

Task: Given py, ..., pr € K[n], compute a basis of hypergeometric solutions

(LRE): pr(m)unyr + - -+ po(n)u, = 0.

> Assume iy, 1 = %un, with (u,,) solution of (LRE) with ged(P, Q) = 1.

> Injecting into (LRE) yields:
pr(n)P(n+r—1)P(n+r—2)---P(n)+
Pra(m)QUn+ 7~ 1)P(n 7 —2) - P(n) 4 -
pr(m)Q(n+r—1)---Q(n—-1)P(n) +
po(m)Q(n+r—1)---Q(n) =0. (2)

> General case: use Gosper-Petkovsek decomposition

Unsl _ P(n) ZA(n) Cn+1)
un  Q(n) T B(m) C(n) '

where Z € K, and A, B, C monic polynomials with (i) gcd(A(n),C(n)) =1,
(ii) ged (B(n),C(n +1)) = 1 and (iii) ged (A(n), B(n+i)) =1 foralli € N.
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Hypergeometric solutions of

Task: Given py, ..., pr € K[n], compute a basis of hypergeometric solutions

(LRE): pr(m)upsr + -+ po(n)u, = 0.

> Assume iy, 1 = %un, with (u,) solution of (LRE) with ged(P, Q) = 1.
> Using Gosper—Petkovsek decomposition yields new (LRE):

Z'py(m)A(n+r—1)---An)C(n+r) +
2, 1(n)B(n+r—1)A(n+r—2)---An)Cn+r—1)+---+
Zpi(n)B(n+r—1)---B(n+1)A(n)C(n+1)+
po(n)B(n+r—1)---B(n)C(n) =0. (3)
> Properties of Gosper—Petkovsek decomposition imply:

A(n) [ po(n),  B(n+r—=1) | pr(n).

> Petkovsek’s algorithm (1992): for each pair (A, B) of factors of py and p,
the Ic of (LHS) of (3) gives a polynomial constraint on Z. For each Z, search
for polynomial solutions C(n).
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Hypergeometric

Petkovsek(LRE)

In: ALRE pr(n)uptr+ -+ po(n)uy = 0 with p; € K[n]
Out: The set of its hypergeometric solutions.
@ Initialize S to @; factor py(n) and p,(n).

@ For all monic divisors A(n) of pg(n) and B(n) of p,(n —r+1):
@ extract the leading coefficient d(Z) of

Zr:Zipi(n)B(n +r—1)---Bn+i+1)A(n+i)---An)C(n+i); (4)
i=0

@ for each ¢ such that d({) =0

@ compute the polynomial solutions C (1) of (4);

@ for each solution C, define a hypergeometric sequence t, by
A(n) C(n+1)
B(n) C(n)

En1 [ty = g
and add it to S;
@ Return S.
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n 2 2
[Apéry 1978]: A, = E (Z) (n _l: k) satisfies the recurrence
k=0

(m+1)%A,1 +13A, 1= 2n+1)(170% +17n+5)Ay.
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n 2 2
[Apéry 1978]: A, = E (Z) (n : k) satisfies the recurrence
k=0

(m+1)%A,1 +13A, 1= 2n+1)(170% +17n+5)Ay.

> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.
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n 2 2
[Apéry 1978]: A, = E (Z) (n : k) satisfies the recurrence
k=0

(m+1)%A,1 +13A, 1= 2n+1)(170% +17n+5)Ay.

> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.

> A(n) and B(n) are both monic factors of (1 + 1)3, so they must be equal.
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n 2 2
[Apéry 1978]: A, = ) (Z) (n 2— k) satisfies the recurrence
k=0

(m+1)%A,1 +13A, 1= 2n+1)(170% +17n+5)Ay.

> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.
> A(n) and B(n) are both monic factors of (1 + 1)3, so they must be equal.

> The equation for Z is 7?2 347 + 1 = 0, with solutions Z = 17 + 12v/2.
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Apéry’s seque

n 2 2
[Apéry 1978]: A, = ) (Z) (n 2— k) satisfies the recurrence
k=0

(n+1)3 A1 +13A,_1 = 2n+1) (171> +17n+5)A,.
> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.
> A(n) and B(n) are both monic factors of (1 + 1)3, so they must be equal.
> The equation for Z is 7?2 347 + 1 = 0, with solutions Z = 17 + 12v/2.
> In either case, there is no nonzero polynomial solution C(n).
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Apéry’s sequence

n 2 2
[Apéry 1978]: A, = ) (Z) (n : k) satisfies the recurrence
k=0

(n+1)3 A1 +13A,_1 = 2n+1) (171> +17n+5)A,.
> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.
> A(n) and B(n) are both monic factors of (1 + 1)3, so they must be equal.
> The equation for Z is 7?2 347 + 1 = 0, with solutions Z = 17 + 12v/2.
> In either case, there is no nonzero polynomial solution C(n).

> Hence, A, is not hypergeometric.
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Apéry’s sequence 1,5,73,1445,330

n 2 2
[Apéry 1978]: A, = ) (Z) (n : k) satisfies the recurrence
k=0

(n+1)3 A1 +13A,_1 = 2n+1) (171> +17n+5)A,.
> All coefficients have same degree, so equation for Z will have no nonzero
solution unless A(n) and B(n) are of the same degree as well.
> A(n) and B(n) are both monic factors of (1 + 1)3, so they must be equal.
> The equation for Z is 72 — 347 4+ 1 = 0, with solutions Z = 17 &+ 12+/2.
> In either case, there is no nonzero polynomial solution C(n).

> Hence, A, is not hypergeometric.

> with(LREtools):
> recA:=(n+1) "3*xu(n+1)-(2*n+1)*(17*n"2 +17*n+5)*u(n)+n~3*u(n-1):
> hypergeomsols(recA, u(n), {});

(0]
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> From the Putnam competition (1990, A-1)

2,3,6,14,40,152,784,5168, . ..

> with(LREtools):

> recP := u(n) = (n + 4)*u(n-1) - 4*n*xu(n-2) + (4*%n - 8)*u(n-3):
> polysols(recP, u(n), {});

> ratpolysols(recP, u(n), {});

> hypergeomsols(recP, u(n), {}, output=basis);

[n!, 27]

> From a Monthly problem (AMM-10375, 1994)

> recM:=u(n+2) = 2*(2*n+3) "2*u(n+1)-4*(n+1) "2*(2*n+1)* (2*n+3) *u(n) :
> hypergeomsols(recM, u(n), {}, output=basis);

[ (2n)!]




Show that the sequence

is not hypergeometric:
@ by using Gosper’s algorithm;
@ by using Petkovsek’s algorithm (applied to a second-order recurrence
equation satisfied by u,, to be determined).
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Onhe previousomework

Compute a telescoper for the diagonal of the rational power series

1 _y (“T’) xiyl
l—-x—y =0\
in three different ways:
@ using the 2G (Almkvist-Zeilberger) creative telescoping algorithm;
@ using the 4G (Hermite reduction-based) creative telescoping algorithm;

@ using the 4G (Griffiths-Dwork reduction-based) creative telescoping
algorithm.

15 /20
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Compute a telescoper for the diagonal of the rational power series
1-x—-y L < i >xy

=0

using the Almkvist-Zeilberger (2G) creative telescoping algorithm;
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Compute a telescoper for the diagonal of the rational power series
1 N
g ()
—x-y S\ i
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1

Itz Ht, d, h H:—
(1) ?g(x)x where po -
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Compute a telescoper for the diagonal of the rational power series
1 N
-y <’ +]> Xyl
l—-x—y 1720 i
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1

It= Ht, d, h H:—
(1) ?g(x)x where po -

> We will use the AZ algorithm to solve the felescoping equation
L(t,0¢)(H) = 9x(G - H)

16 /20
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B

Compute a telescoper for the diagonal of the rational power series

1y <"Jff> sy
l—-x—y 1720 i
using the Almkvist-Zeilberger (2G) creative telescoping algorithm;

> We need to compute a linear differential equation for the integral

1
It = Ht, d, h H:—
(1) 515 (t,x)dx, where o

> We will use the AZ algorithm to solve the felescoping equation
L(t,0¢)(H) = 9x(G - H)

2x —1

> Conclusion: (1 —4t)-H;—2-H = 9y ( 2 t>' where H; := o;H

16 / 20
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> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)
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> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1
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> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1

> Le., we search for ¢o(t) € C(t) and G(t,x) € C(t,x), such that

Hi+co(t)-H=Gy -H+G-Hy
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> We use the AZ algorithm to solve the telescoping equation
L(t,9;)(H) = 0x(G - H)

> No solution for L of order 0; we look at order 1

> Le., we search for ¢o(t) € C(t) and G(t,x) € C(t,x), such that

Hi+co(t)-H=Gy -H+G-Hy

> Dividing by H and switching LHS and RHS yields the equivalent equation

Hx_Ht
Gy +G - H+C0(t)/

ie.
2x—1 1

. Ry R

Gx+G-x +co(t)
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2x—1 1

Gx+G.x—x2—t:x—x2—t

+co(t) 5)
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2x—1 1
= t 5
x—x2—t x—x2—t+c0() ®)

> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)

Gy +G-
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2x—1 1
x—xz—t:x—xZ—t+C0(t) ®)
> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:

G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (5) writes

1—2x
. -_— v_l P . -_— v_l ...
(o (x—Xa) '+ )+<x—x¢ (x—Xa)" 1+ )

It has valuation v — 1, while RHS of (5) has valuation —1; thus v =0

Gy +G-
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Ex 1.

Gy +G-

2x—1 1
= t 5
x—x2—t x—x2—t+C0() ®)

> Possible poles of G at X4 = % . (1 + 1 - 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (5) writes
1—2x

. _— v_l oo . _ v_l . e

(v (x—X4)"7 '+ )+<x—X¢ (x—X4)"" + )

It has valuation v — 1, while RHS of (5) has valuation —1; thus v =0

& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2

18 /20
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Ex 1.

2x—1 1
= t 5
x—x2—t x—x2—t+C0() ®)

> Possible poles of G at X1 = % - (14 /1 — 4t), with local behavior:
G=(x—X+)’+(hot), Gy=0v (x—X4)° '+ (hot)
> Around x = X4, LHS of (5) writes
1—2x

. _— v_l oo . _ v_l . e

(v (x—X4)"7 '+ )+(x—X:F (x—X4)"7" + )

It has valuation v — 1, while RHS of (5) has valuation —1; thus v =0

& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N <2, and G = gx% 4 g1x + o, so (5) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

Gy +G-

18 /20
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Ex 1.

2x—1 1
Gx+G-x_ 7 = +alt) 5)
> Possible poles of Gat Xy = 2 (1+V1—4t), w1th local behavior:
= (x—X£)’ 4 (hot), Gy=0-(x—X£)* '+ (hot)

> Around x = X4, LHS of (5) writes
(v'(x—Xi)v_l-I-'“)-l-( '(X—X:t)v_l+"')
It has valuation v — 1, while RHS of (5) has valuation —1; thus v =0
& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N <2, and G = gx% 4 g1x + o, so (5) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

4grt? —gpt+1 —4grt+gr—2
Doy = A 0= S, 1= =5 G= (P +t-x0)0+ FH

1—2x
x— X+

18 /20
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Ex 1.

2x—1 1
= t 5
x—x2—t x—x2—t+C0() ®)

> Possible poles of G at X1 = % - (14 /1 — 4t), with local behavior:
G=(x—X4)’+ (hot), Gy=0v-(x—X)" 1+ (hot)
> Around x = X4, LHS of (5) writes
(v'(x—Xi)”_l-l----)-l-( (X—X:t)v_l+"')
It has valuation v — 1, while RHS of (5) has valuation —1; thus v =0
& Look for polynomial G = gn(t) - xN + (Lo.t.) with g5y # 0. Then
Gy =N-gn()-xN"1 4 (Lot)

so numer(LHS): (—x2 - N-gn(t) - xN "1+ )+ (2x —1) - gn() - 2N +--)
has degree N + 1 if N # 2, while numer(RHS) has degree < 2
> Thus N <2, and G = gx% 4 g1x + o, so (5) yields a linear system / C(t)

co+g1+8 =0 2tgp+co—280 =0, t-(co—g1)—1—g =0

4ot —got+1 —4got+gr—2 B
beo = gy, go = WLl o o2 o (2 4y e, 4 L2
1-—2x
> Conclusion: (4t — 1)H; + 2H = 0y (—2 )
X —xc—t
Pol ial, rational and hyp

Gy +G-

1—2x
x— X+
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Compute a telescoper for the diagonal of the rational power series
Ty ( i )xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.

19/20



Compute a telescoper for the diagonal of the rational power series
1—-x—y L ( i >xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

0=9
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Compute a telescoper for the diagonal of the rational power series

1—-x—y Z( i >xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

I(t)zygx—fci—t

> H has only simple roots, so it is its own Hermite reduction:

1

He —
x—x2—t

+9x(0).
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Compute a telescoper for the diagonal of the rational power series

1—-x—y Z( i >x}/

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

0=9

> H has only simple roots, so it is its own Hermite reduction:

1
H = — a .
x—x2—t +9x(0)
> The derivative w.r.t. t of H has double poles, and Hermite reduction
1 2/(1—-4 2x—1)/(1—-4
- R (s )

C(x—x2—1t)2  x—a2—t x—x2—t

19 /20
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Ex 2.

Compute a telescoper for the diagonal of the rational power series

1—-x—y Z( i >xy

i,j=0

using the Hermite reduction-based (4G) creative telescoping algorithm.
> We need to compute a linear differential equation for the integral

0=9

> H has only simple roots, so it is its own Hermite reduction:

1
H = — a .
Py iy x(0)
> The derivative w.r.t. t of H has double poles, and Hermite reduction
1 2/(1—-4 2x—1)/(1—-4
= R (s )

C(x—x2—1t)2  x—a2—t x—x2—t

> Therefore, (1 —4t)H; —2H = 90y < 2 ; : )
X —xc—t
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> Hermite reduction computation: extended ged of ¢ = x — x2 — t and gy :

Y (LU R P
g 4 2 gx_ '_4 .
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> Hermite reduction computation: extended ged of ¢ = x — x2 — t and gy :

Y (LU R P
g 4 2 gx_ '_4 .

> Asa consequence

11 gt e 11 11, 21 (1
g2 6 g2 i g 46 g2 5 g 46 g/

> Integrating by parts yields:
111, (%1
g2 20 g \45-g )
12 1, (2x-1
g2 1—4t g T\(1-4t)g)’

ie.,
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