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The exercise from last lecture

Let (an)n≥0 be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1, for all n > 0.

Show that an is an integer for all n.

Follow the next steps:

1 Compute the first 5 terms of the sequence, a0, . . . , a4;
2 Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2),

where f = ∑n anxn;
3 Deduce that P(x, f (x)) = 0 mod x5 for P(x, y) := 1 + (x− 1)y + x2y2;
4 Show that the equation P(x, y) = 0 admits a root y = g(x) ∈ Q[[x]]

whose coefficients satisfy the same linear recurrence as (an)n≥0;
5 Deduce that an+2 = an+1 + ∑n

k=0 ak · an−k for all n, and conclude.
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Solution

. 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

[1, 1, 2, 4, 9]

. 2. Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2):

> f:=listtoseries(pro(4),x):
> numapprox[hermite_pade]([1, f, f^2], x, [0, 1, 2]);

[−1,−x + 1,−x2]

. 3. We guessed P(x, f (x)) = 0 mod x5 for P(x, y) = 1 + (x− 1)y + x2y2.
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Solution

. 4. The equation P(x, y) = 0 admits a root y = g(x) = ∑n≥0 gnxn in Q[[x]]:

g(x) =
1− x−

√
1− 2 x− 3 x2

2 x2 = 1 + x + 2 x2 + 4 x3 + 9 x4 + · · ·

. (gn)n≥0 is an integer sequence, as (by coefficient extraction) it satisfies

gn+2 = gn+1 +
n

∑
k=0

gk · gn−k.

. We show that (gn)n≥0 satisfies the same linear recurrence as (an)n≥0. Let

h(x) :=
√

1− 2 x− 3 x2 = 1− x− 2 x2 g(x).

Clearly, h0 = 1, h1 = −1, hn+2 = −2 gn for n ≥ 0, and

h′(x)
h(x)

=
3 x + 1

3 x2 + 2 x− 1
. Hence, (hn)n and (gn)n satisfy the recurrences

(3 n− 3) hn + (2 n + 1) hn+1 − (n + 2) hn+2 = 0,

(3 n− 3) gn−2 + (2 n + 1) gn−1 − (n + 2) gn = 0.
. Conclusion: an = gn is an integer for all n. �
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Context

Resolution of Linear Differential Equations (LDEs):

homogeneous LDE

cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0, ci ∈ K[x]

inhomogeneous LDE

cm(x)y(m)(x) + · · ·+ c0(x)y(x) = b(x), ci, b ∈ K[x]

inhomogeneous parametrized LDE

cm(x)y(m)(x) + · · ·+ c0(x)y(x) =
S

∑
j=0

λjbj(x) λj ∈ K, ci, bj ∈ K[x]

. Input in blue, output in red
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Context

Resolution of Linear Recurrence Equations (LREs):

homogeneous LRE

pr(n)un+r + · · ·+ p0(n)un = 0, pi ∈ K[n]

inhomogeneous LRE

pr(n)un+r + · · ·+ p0(n)un = b(n), pi, b ∈ K[n]

inhomogeneous parametrized LRE

pr(n)un+r + · · ·+ p0(n)un =
S

∑
j=0

λjbj(n) λj ∈ K, pi, bj ∈ K[n]

. Input in blue, output in red
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Context

. Tasks: solve all these equations for

power series solutions of LDEs, finite-support solutions of LREs

polynomial and rational solutions −→ central tool in ∑ and
´

algos

. Sub-tasks:

structure of space of solutions

complexity issues

inhomogeneous parametrized: existence and values of parameters λi
for which there exist polynomial / rational solutions

. Main focus: homogeneous case (the other cases reduce to it)
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Context

. Basic, but important, observation: polynomial/rational solutions may have
exponentially large degree with respect to the bit-size of the input equation

E.g., un = n(n + 1) · · · (n + 1010 − 1) is a degree-1010 solution of LRE

nun+1 − (n + 1010)un = 0

E.g., y(x) =
1010

∑
k=0

(
1010

k

)
xk is a degree-1010 solution of LDE

(x + 1)y′(x)− 1010y(x) = 0

. In both cases, when written in the monomial basis of K[n], resp. of K[x],
outputs have degree Õ(N) and bit-size Õ(N2), for inputs of bit-size log N.
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Solution space of LREs

Theorem. The set of sequences (un)n≥0 solutions of the LRE

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0

is a K-vector space of finite dimension, lying between r and r + |H|, where

H := {h ∈N | pr(h) = 0}.
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is a K-vector space of finite dimension, lying between r and r + |H|, where

H := {h ∈N | pr(h) = 0}.

Remarks:

. When pr ∈ K \ {0} (e.g., for r.l.s.c.c.), this dimension is exactly r.

. Same is true for all regular recurrences, that is when H = ∅.

. A singular example: n(n− 1)un+3 − (n− 1)un+2 + (n + 1)un+1 + 2nun = 0

for n = 0 ⇒ u2 + u1 = 0 and u3 is free

for n = 1 ⇒ 2u2 + 2u1 = 0 and u4 is free

for n ≥ 2 ⇒ recurrence forces value of un+3 in terms of previous ones

So dim = 4: u0, u1, u3, u4 are free, all other are linear combinations of them.
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Solution space of LREs

Theorem. The set of sequences (un)n≥0 solutions of the LRE

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0

is a K-vector space of finite dimension, lying between r and r + |H|, where

H := {h ∈N | pr(h) = 0}.

Proof:
• Let J := {0, . . . , r− 1} ∪ {h + r | h ∈ H}. Note: |J| = r + |H|.
• For n ∈N \ J, value of un+r is uniquely determined from previous ones.
• dim Λ` = dim Λ`−1 for ` 6∈ J, and dim Λj ≤ 1 + dim Λj−1 for j ∈ J, where

Λ` :=
{
(u0, . . . , u`) ∈ K`+1

∣∣∣ (LRE) true for n ∈ {0, . . . , `− r}
}

.

• dim Λ0 = 1, . . . , dim Λr−1 = r and dimSols(LRE) = dim Λmax(J) �

. Linear algebra in dimension max(J) −→ basis of solution space Sols(LRE).
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Recall: from LDEs to LREs

Theorem. If y(x) = ∑n≥0 unxn ∈ K[[x]] is a solution of the LDE

(LDE): cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0,

with ci(x) = ∑d
j=0 ci,jxj in K[x], then the sequence (un)n≥0 satisfies the LRE

m

∑
i=0

d

∑
j=0

ci,j(n + i− j) · · · (n + 1− j)un+i−j = 0,

for all n ∈ Z, with u` = 0 for ` < 0. This writes for some 0 ≤ r ≤ m + d:

pr(n)un+r + · · ·+ p0(n)un = 0,

together with the equations (translating the constraints u` = 0 for ` < 0):

pr(−1)ur−1 + · · ·+ p1(−1)u0 = 0, pr(−2)ur−2 + · · · = 0, . . . , pr(−r)u0 = 0.

Proof: Extract coefficient of xn in LDE(y(x)) = 0.
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Indicial equations of LDEs

Let, as before, the linear differential equation

(LDE): cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0,

with associated linear recurrence equation

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

Def. Polynomial pr(n− r) in K[x] is called indicial polynomial at 0 of (LDE)
Def. Polynomial p0(n) in K[x] is called indicial polynomial at infinity of (LDE)

Let (LDEα): cm(x + α)y(m)(x) + · · ·+ c0(x + α)y(x) = 0 for any α ∈ K.

Def. Indicial polynomial at x = α of (LDE) is indicial poly. at x = 0 of (LDEα).

. Indicial polynomials at infinity of LDE and of (LDEα) coincide.
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Series solutions of LDEs

(LDE): cm(x)y(m)(x)+ · · ·+ c0(x)y(x) = 0, (LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

Theorem.
(1) If F ∈ K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).
(2) (Cauchy) If cm(0) 6= 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0, 1, . . . , m− 1.

Proof:
(1) Evaluate (LRE) at n = val(F)− r.
(2) Assume cm(0) 6= 0. Then (LRE) reads

0 = cm(0) · (n + m) · · · (n + 1)un+m +
(
terms in u<n+m

)
. Thus, (LRE) has order at least m, and it is regular,
so there exist yi = xi + O(xm) solutions of (LDE) for i = 0, 1, . . . , m− 1.
. The indicial polynomial at 0 equals pr(n− r) = cm(0) · n · · · (n−m + 1),
so by (1) these yi form a basis of solutions of (LDE).
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Series solutions of LDEs

(LDE): cm(x)y(m)(x)+ · · ·+ c0(x)y(x) = 0, (LRE): pr(n)yn+r + · · ·+ p0(n)yn = 0.

Theorem.
(1) If F ∈ K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).
(2) (Cauchy) If cm(0) 6= 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0, 1, . . . , m− 1.

. Ex: The converse of (2) is also true: if (LDE) admits a basis of m solutions
in K[[x]] with valuations 0, 1, . . . , m− 1, then cm(0) 6= 0.

. When cm(0) 6= 0, one says that x = 0 is an ordinary point for (LDE).

Corollary: If x = 0 is an ordinary point for (LDE), then one can compute a
full basis of power series solutions mod xN in O(N) operations in K.
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Series solutions of LDEs: an example

(LDE) of order m = 3

(x− 1) (x + 1) y′′′ (x) + y′ (x) +
(

x2 − 1
)

y (x) = 0

. Corresponding (LRE) of order r = 5

− (n + 3) (n + 2) (n + 1) un+3 + (n + 1)
(

n2 − n + 1
)

un+1 − un + un−2 = 0

. Indicial equation at 0 equals −n(n− 1)(n− 2).

. Basis of solutions of (LDE):

1 + 0 · x + 0 · x2 − 1
6
· x3 + 0 · x4 − 1

120
· x5 + O

(
x6
)

,

0 + 1 · x + 0 · x2 +
1
6
· x3 − 1

24
· x4 +

1
40
· x5 + O

(
x6
)

,

0 + 0 · x + 1 · x2 + 0 · x3 +
1

12
· x4 − 1

60
· x5 + O

(
x6
)

.
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Solutions with finite support of LRE

Def: A sequence (un)n≥0 has finite support if ∃N ≥ 0 s.t. un = 0 for n > N.
We call N the degree of (un)n≥0 if uN 6= 0.

Task: Find solutions with finite support of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

. The degree of such a solution must be a root of p0(n).

. Solution space: vector space of dim ≤ number of roots in N of p0(n).

. Algorithm:

Compute S := {h ∈N | p0(h) · pr(h) = 0}
If S = ∅, return no solution; if not, let N := max S.
Solve a linear system:

equations: eval. (LRE) at n = 0, 1, . . . , N; add uN+i = 0 for i = 1, . . . , r
unknowns: u0, u1, . . . , uN+r

. Complexity: O(Nθ)

. One can do better: O(N + |K|θ)
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Polynomial solutions of LDEs

Task: Given c0, . . . , cm ∈ K[x], compute a basis of solutions in K[x] of

(LDE): cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0.

. If a bound N on the degree of a solution y(x) ∈ K[x] is known, then the
coefficients of y(x) can be computed by linear algebra

. Such a bound on the degree is the largest root N in N of the indicial
polynomial of (LDE) at infinity

. One can compute a basis of polynomial solutions:

in O(Nθ) by dense linear algebra

in O(N) by exploiting the structure (banded matrix)

. One can decide existence of nonzero polynomial solutions faster! Õ(
√

N)
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Existence of polynomial solutions of LDEs

Task: Given c0, . . . , cm ∈ K[x], decide if there exist solutions in K[x] \ {0} of

(LDE): cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0.

. Up to a shift, one may assume cm(0) 6= 0, i.e. x = 0 is an ordinary point

. Let {y1, . . . , ym} ⊂ K[[x]] be a basis of power series solutions of (LDE)
(and N the largest root in N of the indicial polynomial of (LDE) at infinity).

. Any solution in K[x]≤N of (LDE) is a K-linear combination of the yi’s

. With d = max(deg ci), one can choose

yi = xi + ui,mxm + · · ·+ ui,N xN + · · ·+ ui,N+m+dxN+m+d + · · ·

. One can compute coefficients in blue in Õ(
√

N) by baby-steps/giant-steps

. y = ∑i λiyi is in K[x]≤N ⇐⇒ ∑m
i=1 λiui,N+j = 0 for all 1 ≤ j ≤ m + d

. Computing the kernel does not depend on N
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Polynomial solutions of LREs

Task: Given p0, . . . , pr ∈ K[n], compute a basis of solutions in K[n] of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

. Same principle as for LDEs: “degree bound + linear algebra”

Main sub-task: Degree bound
. With (∆ · u)(n) = u(n + 1)− u(n), rewrite recurrence equation (LRE) as

(LRE): L · u =
s

∑
k=0

bk(n)∆
ku = 0.

. Advantage: ∆ decreases degrees by 1, thus deg(∆kP) ≤ max(deg P− k, 0).

. Corollary: deg(L · P) ≤ B + deg P, with B := maxk{deg(bk)− k}

. If P = nD + · · · ∈ K[n] is a solution of (LRE), then

either D + B < 0, thus D is upper bounded by −(B + 1);

or [nD+B] (L · P) = ∑
deg bk−k=B

lc(bk)D(D− 1) · · · (D− k + 1) is zero
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Bound on Degree for Polynomial solutions of LREs

Task: Given p0, . . . , pr ∈ K[n], bound the degree of polynomial solutions of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

. With (∆ · u)(n) = u(n + 1)− u(n), rewrite recurrence equation (LRE) as

(LRE): L · u =
s

∑
k=0

bk(n)∆
ku = 0.

. Theorem. A bound on the degree of polynomial solutions of (LRE) is

max

−(B + 1), largest root D ∈N of ∑
k∈E

lc(bk)D(D− 1) · · · (D− k + 1)︸ ︷︷ ︸
=:indicial polynomial of (LRE)


where

B := maxk{deg(bk)− k}, weighted (n, ∆)-degree of L, for deg(∆) = −1;

E := { k | deg(bk)− k = B }, indices where weighted degree is reached.
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Polynomial solutions of LREs: an example

Question: Find all polynomial solutions of

(n− 3)un+2 − (2n− 3)un+1 + nun = 0

. The recurrence can be rewritten:

(n− 3)(∆2un + 2∆un + un)− (2n− 3)(∆un + un) + nun = 0,

that is
L(u) =

(
(n− 3)∆2 − 3∆

)
(un) = 0

. B is −1 and the set E is {1, 2}.

. Indicial polynomial is D(D− 1)− 3D = D(D− 4)

. Degree bound is 4; solution P(n) = n4 + an3 + bn2 + cn + d

. L(P) = (−3 a− 30) n2 + (−21 a− 70− 4 b) n− 21 a− 45− 9 b− 3 c = 0,
with solution a = −10, b = 35, c = −50, and d is free.

. Basis of solutions given by{
(n− 1) (n− 2) (n− 3) (n− 4) , n (n− 5)

(
n2 − 5 n + 10

)}
Alin Bostan Polynomial and rational solutions



22 / 33

Polynomial solutions of LREs: binomial basis

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

. E.g., nun+1 − (n + 100)un = 0 has solution un = n(n + 1) · · · (n + 99).

. For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (un) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ck) in the
binomial basis {(n

k), k ∈N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.

Proof:

un =
d

∑
k=0

ck

(
n
k

)
=⇒ nun =

d+1

∑
k=0

k(ck + ck−1)

(
n
k

)
, un+1 =

d

∑
k=0

(ck + ck+1)

(
n
k

)
.

. Example: for nun+1 − (n + 100)un = 0, we have

k(ck + ck+1 + ck−1 + ck)− k(ck + ck−1)− 100ck = kck+1 + (k− 100)ck = 0.
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A first exercise for next time (25/11/2019)

Find all polynomial solutions of the recurrence equation

3un+2 − nun+1 + (n− 1)un = 0.
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Rational solutions of LDEs

Task: Given c0, . . . , cm ∈ K[x], compute a basis of solutions in K(x) of

(LDE): cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0.

. Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

. Better strategy [Liouville, 1833]:
1 find a multiple of denominators of all rational solutions −→ singularity analysis

2 reduce to polynomial solutions for numerators −→ change of unknowns

. Singularity analysis based on:

1 any solution y(x) ∈ K(x) of (LDE) has an expansion, around any of its
poles α ∈ K, as generalized series (x− α)v ∑i ui(x− α)i, with v ∈ Z \N

2 order −v of the pole at x = α is bounded by the opposite of the smallest
root in Z− of the indicial polynomial at α
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Rational solutions of LDEs: Liouville’s algorithm

Liouville(LDE)

In: A LDE cm(x)y(m)(x) + · · ·+ c0(x)y(x) = 0 with ci ∈ K[x]
Out: A basis of its rational solutions in K(x).

1 At each root α of cm:
• compute the indicial polynomial pα(n);
• compute the smallest root Nα in Z− of pα; if none, set Nα := 0.

2 Form the polynomial P = ∏
cm(α)=0

(x− α)−Nα .

3 Make the change of unknowns y = Y/P in (LDE)
4 Find a basis B of polynomial solutions Y(x) of the new LDE.
5 Return {b/P | b ∈ B}.
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Rational solutions of LDEs: an example

Question: Find (a bound on the degree of) all polynomial solutions of

(n− 3)un+2 − (2n− 3)un+1 + nun = 0

. If un polynomial solution of degree D, then y(x) = ∑n unxn is a rational
solution of the form N(x)/(1− x)D+1 of the corresponding LDE:

x (x− 1)2 ((5 u0 − 4 u1)x− 5 u0) y′′ (x)

+2 (x− 1)
(
(5 u0 − 4 u1)x2 + (5 u0 − 10 u1)x− 10 u0

)
y′ (x)

−20 u1y (x) = 0

. Indicial equation at x = 1 is (n + 1)(n + 5), so D + 1 ≤ 5
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A second exercise for next time (25/11/2019)

Consider the differential equation

(x− 1)(x2 − 2)y′′(x) + 2x(x2 − x− 1)y′(x) + 4(x− 2)y(x) = 0.

1 Prove that this equation has no nonzero polynomial solution.
2 Show that any rational solution y(x) ∈ Q(x) of this equation has at

most a pole of order 1 at x = 1, and cannot have any other pole.
3 Find all rational solutions y(x) ∈ Q(x) of this equation.
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Rational solutions of LREs

Task: Given p0, . . . , pr ∈ K[n], compute a basis of solutions in K(n) of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

. Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

. Better strategy [Abramov, 1995]:
1 find a multiple of denominators of all rational solutions −→ singularity analysis

2 reduce to polynomial solutions for numerators −→ change of unknowns
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Rational solutions of LREs: singularity analysis

Task: Given p0, . . . , pr ∈ K[n], compute a basis of solutions in K(n) of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

Assume un = P(n)/Q(n) solution of (LRE) with gcd(P, Q) = 1. Multiplying

pr(n)
P(n + r)
Q(n + r)

+ · · ·+ p0(n)
P(n)
Q(n)

= 0

by
M(n) = lcm(Q(n + 1), . . . , Q(n + r))

yields
Q(n) | p0(n)M(n).

. Idea in simplest case: Assume Q has no two roots with integer difference.
Then gcd(Q, M) = 1. Thus Q divides p0(n). Similarly, Q divides pr(n− r).
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Rational solutions of LREs: singularity analysis –general case

Task: Given p0, . . . , pr ∈ K[n], compute a basis of solutions in K(n) of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

Theorem. Assume un = P(n)/Q(n) solution of (LRE) with gcd(P, Q) = 1.
Let α, β be roots in K of Q s.t. α− β = H ∈N maximal (H = dispersion of Q).
Then p0(α) = 0 and pr(β− r) = 0.

Proof: α + 1, α + 2, . . . , are not roots of Q, i.e., α not pole of un+1, . . . , un+r.
So α is not a pole of p0(n)un. Since α is a pole of un, necessarily p0(α) = 0.

β− 1, β− 2, . . . , are not roots of Q, i.e., β not pole of un−1, . . . , un−r. So β is
not a pole of pr(n− r)un. Since β is a pole of un, necessarily pr(β− r) = 0. �

Corollary. The dispersion H is a root of Resn(p0(n + h), pr(n− r)) ∈ K[h].

Proof: (n, h) = (β, H) is solution of system p0(n + h) = 0, pr(n− r) = 0. �
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Rational solutions of LREs: singularity analysis –general case

Task: Given p0, . . . , pr ∈ K[n], compute a basis of solutions in K(n) of

(LRE): pr(n)un+r + · · ·+ p0(n)un = 0.

Theorem. Assume un = P(n)/Q(n) solution of (LRE) with gcd(P, Q) = 1.
Let H be the dispersion of Q. Then

Q(n) | gcd
(

p0(n) · · · p0(n + H), pr(n− r) · · · pr(n− r− H)
)

Proof: We’ve already proved that Q(n) | p0(n) lcm(Q(n + 1), . . . , Q(n + r)).
Substituting n← n + 1 and repeating yields:

Q(n) | p0(n) lcm(p0(n + 1) lcm(Q(n + 2), . . . , Q(n + r + 1)), Q(n + 2), . . . , Q(n + r))
| p0(n)p0(n + 1) lcm(Q(n + 2), . . . , Q(n + r + 1))

· · · | p0(n) · · · p0(n + j) lcm(Q(n + j + 1), . . . , Q(n + j + r)).

As gcd(Q(n), Q(n + j)) = 1 for j > H, we get Q(n) | p0(n) · · · p0(n + H). �
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Rational solutions of LREs: singularity analysis –general case
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Let H be the dispersion of Q. Then

Q(n) | gcd
(

p0(n) · · · p0(n + H), pr(n− r) · · · pr(n− r− H)
)

. A refinement: Q divides the (generally smaller) polynomial

m

∏
i=1

hi

∏
j=0

gcd(p0(n− j + hi), pr(n− j− r)),

where h1 > h2 > · · · > hm ≥ 0 are the roots in N of

R(h) = Resn
(

p0(n + h), pr(n− r)
)
.
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Rational solutions of LREs: Abramov’s algorithm

Abramov(LRE)

In: A LRE pr(n)un+r + · · ·+ p0(n)un = 0 with pi ∈ K[n]
Out: A multiple of the denominator of all its rational solutions.

1 Compute the polynomial

R(h) = Resn
(

p0(n + h), pr(n− r)
)
.

2 If R has no roots in N, then return 1; else, let h1 > h2 > · · · > hm ≥ 0
be its roots in N. Initialize Q to 1, A to p0(n), B to pr(n− r).

3 For i = 1, . . . , m do
g(n) := gcd

(
A(n + hi), B(n)

)
;

Q(n) := g(n)g(n− 1) · · · g(n− hi)Q(n);
A(n) := A(n)/g(n− hi);
B(n) := B(n)/g(n).

4 Return Q. // ∏m
i=1 ∏hi

j=0 gcd(p0(n− j + hi), pr(n− j− r))
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A third, and last, exercise for next time (25/11/2019)

The aim of this exercise is to show that the sum

Sn :=
n

∑
k=1

1
k!

cannot be simplified under the form

Sn = r(n)/n!

where r(n) is a rational function in n.
1 Give a linear recurrence with polynomial coefficients satisfied by r(n);
2 Find all rational solutions of the recurrence equation:

un+1 − (n + 1)un = 1.

3 Conclude.
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