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of linear differential/recurrence equations
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Polynomial and rational solutions



Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence
(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.
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The exercise fro

Let (a4)n>0 be a sequence with ay = a7 = 1 satisfying the recurrence

(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that a4, is an integer for all n.

Follow the next steps:

@ Compute the first 5 terms of the sequence, ay, ..., a4;

@ Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f2),
where f =Y, a,x";

@® Deduce that P(x, f(x)) = 0 mod x° for P(x,y) := 14 (x — 1)y + x%y>;

@ Show that the equation P(x,y) = 0 admits a root y = g(x) € Q[[x]]
whose coefficients satisfy the same linear recurrence as (a,),>0;

@ Deduce that a,42 = a,41 + Y}_ a - a,_ for all n, and conclude.
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> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

(1,1,2,4,9]



> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1) : ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

1,1,2,4,9]

> 2. Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f?):

> f:=listtoseries(pro(4),x):
> numapprox [hermite_pade] ([1, £, £72], x, [0, 1, 2]);

[-1,—x+1,—x2]
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> 1. Let’s compute the first 5 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1) : ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(4);

1,1,2,4,9]

> 2. Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f?):

> f:=listtoseries(pro(4),x):
> numapprox [hermite_pade] ([1, £, £72], x, [0, 1, 2]);

[-1,—x+1,—x2]

> 3. We guessed P(x, f(x)) = 0 mod x° for P(x,y) = 1+ (x — 1)y + x%y%. o
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

n
8n+2 = 8nt+1 T Z 8k §n—k-
k=0
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
$nt+2 = 8nt1+ ) 8k 8nk-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let
h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = —1, hyyp = —2 gy for n > 0, and

W(x) — 3x+1
h(x)  3x24+2x—1




> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
8nt+2 = &n+1 + 2 8k - 8n—k-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let
h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = =1, hy4p = —2g, for n > 0, and
W(x) — 3x+1
h(x)  3x24+2x—1
> Hence, (hy), and (gx)n satisfy the recurrences
Bn—=3)h,+2n+1)hy41 — (M +2) by =0,
(Bn—3)gn—2+2n+1)gy—1— (n+2)gn=0.
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥,;>0 gnx" in Q[[x]]:

(x) = 1—x—+v1—-2x—3x2
W)= 2x2

=14+x+2x2+4x3+9x*+---

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies
n
8n+2 = 8nt+1 T 2 8k - 8n—k-
k=0
> We show that (g ),>0 satisfies the same linear recurrence as (a,),>0. Let

h(x):=V1-2x—3x2=1—x-2x%g(x).
Clearly, hg =1, hy = =1, hy4p = —2g, for n > 0, and
W(x) — 3x+1
h(x)  3x24+2x—1
> Hence, (hy), and (gx)n satisfy the recurrences
Bn—=3)h,+2n+1)hy41 — (M +2) by =0,
(31— 3) gua+ @n+1)gu 1 — (1+2)gn = 0.

> Conclusion: 4, = gy is an integer for all n. O
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n

8n+2 = 8nt+1 T 2 8k §n—k-
k=0



> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n
Snt2 = &n+1+ Y 8k Sn—k-
k=0

> We show that (g),>0 satisfies the same linear recurrence as (a,),>0.

> pol:=x"2%y"2 + (x-1)*y + 1;
> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recg:=gfun:-diffeqtorec(deq,y(x),g(n));

{Bn+3)gn+(2n+5)gu1—(n+4)8ni2=0,80 =18 =1}
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> 4. The equation P(x,y) = 0 admits a root y = g(x) = ¥, gnx" in Q[[x]]:

(x) = 1—-x—+v1—-2x—3x2
W)= 2x2

> (gn)n>0 is an integer sequence, as (by coefficient extraction) it satisfies

=1+x+2x2+4x3+9x*+---

n
Snt2 = &n+1+ Y 8k Sn—k-
k=0

> We show that (g),>0 satisfies the same linear recurrence as (a,),>0.

> pol:=x"2xy~2 + (x-1)*y + 1;
> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recg:=gfun:-diffeqtorec(deq,y(x),g(n));

{Bn+3)gn+(2n+5)gu1—(n+4)8ni2=0,80 =18 =1}

> Conclusion: a, = gy is an integer for all . O
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Resolution of Linear Differential Equations (LDEs):

© homogeneous LDE
en(x)y ™ (x) + -+ ax)y(x) =0, €Kl
@ inhomogeneous LDE
en(x)y™ () 4+ -+ co(x)y(x) =b(x),  c;b € Klx]

© inhomogeneous parametrized LDE

em(X)y™ () + - - + co(x)y(x) = Ajbi(x) A €K, ¢, by € K[x]

M-

0

]

> Input in blue, output in red
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Resolution of Linear Recurrence Equations (LREs):

© homogeneous LRE
pr(n)unir+ -+ +po(n)un =0,  p; € Kn]
© inhomogeneous LRE
pr(n)unsr + -+ po(n)un = b(n), pi,b € Kin]
© inhomogeneous parametrized LRE

S
pr(n)insy + -+ po(m)un = ) Ajbj(n)  A; €K, pj, by € Kn]
jn)

> Input in blue, output in red

7/33



comee

> Tasks: solve all these equations for

©® power series solutions of LDEs, finite-support solutions of LREs
© polynomial and rational solutions — central tool in }_ and | algos

> Sub-tasks:
® structure of space of solutions
© complexity issues

© inhomogeneous parametrized: existence and values of parameters A;
for which there exist polynomial / rational solutions

> Main focus: homogeneous case (the other cases reduce to it)
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> Basic, but important, observation: polynomial/rational solutions may have
exponentially large degree with respect to the bit-size of the input equation

© Eg,uy=n(n+1) - (n+10" — 1) is a degree-10'° solution of LRE

Nty — (n+10)u, =0

10 /4010
©Eg,y(x)=) ( % )xk is a degree-101? solution of LDE
k=0

(x+ 1)y (x) —10¥(x) =0

> In both cases, when written in the monomial basis of K[n], resp. of K[x],
outputs have degree O(N) and bit-size O(N?), for inputs of bit-size log N.
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Theorem. The set of sequences (1), > solutions of the LRE
(LRE): pr(M)upir + -+ po(n)uy =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:={he N |p,(h) =0}.
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Solution space

Theorem. The set of sequences (1), solutions of the LRE

(LRE): pr(m)uyyr + -+ po(n)uy, =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:= {he N|p,(h) = 0}.

Remarks:
> When p, € K\ {0} (e.g., for r.L.s.c.c.), this dimension is exactly .
> Same is true for all regular recurrences, that is when H = @.
> A singular example: n(n — 1)uyi3 — (n — Do + (n 4+ Duyaq + 2nu, =0
® forn =0 = up+u; =0and us is free
® forn=1 = 2up+2u; =0 and uy is free
® for n > 2 = recurrence forces value of 1,3 in terms of previous ones
So dim = 4: ug, uy, us, uy are free, all other are linear combinations of them.

10/ 33
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Theorem. The set of sequences (1), solutions of the LRE

(LRE): pr(m)uyyr + -+ po(n)uy, =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:= {he N|p,(h) = 0}.

Remarks:
> When p, € K\ {0} (e.g., for r.L.s.c.c.), this dimension is exactly .
> Same is true for all regular recurrences, that is when H = @.
> A singular example: n(n — 1)uyi3 — (n — Do + (n 4+ 1)uyoq + 3nu, =0
® forn =0 = up+u; =0and us is free
® forn=1 = 2up+3u; =0 and uy is free
® for n > 2 = recurrence forces value of 1,3 in terms of previous ones
So dim = 3: ug, us, uy are free, all other are linear combinations of them.

10 /33
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Solution space

Theorem. The set of sequences (1 ),>0 solutions of the LRE

(LRE): pr(m)upgr + -+ po(n)uy =0
is a K-vector space of finite dimension, lying between r and r + |H|, where

H:={heN|p(h) =0}

Proof:

elet]:={0,...,r—1}U{h+r|h € H}. Note: |J]| =7+ |H|.

e For n € N\ ], value of uy, is uniquely determined from previous ones.
e dim Ay =dim A,y for £ ¢ ], and dim A; < 1+dim A, for j € ], where

Api= {(uo,...,ug) e K1 ’ (LRE) true for n € {0,...,6—1’}}.
e dimAg =1,...,dimA, 1 =r and dim Sols(LRE) = dim Ap() O

> Linear algebra in dimension max(J) — basis of solution space Sols(LRE).

10/ 33
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_

Theorem. If y(x) = Y50 unx" € K[[x]] is a solution of the LDE

(LDE): cm(x)y(m)(x) +-Fco(x)y(x) =0,

with ¢;(x) = ] 0 Ci ]xi in K|[x], then the sequence (uy),>( satisfies the LRE

1](”"’1_]) (n+1_j)un+i—j=O/

™=
-

0j

for all n € Z, with uy = 0 for £ < 0. This writes for some 0 < r < m +d:

pr(m)upyr + -+ -+ po(n)uy, =0,

together with the equations (translating the constraints u, = 0 for £ < 0):

pr(=Dup—g +-+p1(=Dug =0, p(—2upp+---=0,..., pr(—=7r)ug=0.

Proof: Extract coefficient of x” in LDE(y(x)) = 0.
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Let, as before, the linear differential equation
(LDE): e (x)y™ (x) + -+ co(x)y(x) =0,
with associated linear recurrence equation

(LRE): pr(n)itpgr + -+ po(n)u, = 0.

Def. Polynomial p,(n — r) in K[x] is called indicial polynomial at 0 of (LDE)
Def. Polynomial pg(n) in K][x] is called indicial polynomial at infinity of (LDE)

Let (LDEy): cm(x+ lx)y(m)(x) +--+eo(x +a)y(x) =0 forany a € K.
Def. Indicial polynomial at x = « of (LDE) is indicial poly. at x = 0 of (LDE,).

> Indicial polynomials at infinity of LDE and of (LDE,) coincide.
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(LDE): ¢ (x)y"™ (x) 4 - +co(x)y(x) =0, (LRE): pr(n)tnyr+-- -+ po(n)uy = 0.

Theorem.
(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of

the indicial polynomial at 0 of (LDE).
(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],

with valuations 0,1,...,m — 1.
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Series solutions of LD

(LDE): e (x)y™ (x) +- - +co(x)y(x) =0, (LRE): py(n)ttusr+ -+ po(n)un = 0.

Theorem.

(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).

(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0,1, ...,m — 1.

Proof:
(1) Evaluate (LRE) at n = val(F) —r.
(2) Assume ¢, (0) # 0. Then (LRE) reads

0=rcu(0)- (n+m) - (n+1)uprm + (terms in <y ym)

> Thus, (LRE) has order at least m, and it is regular,

so there exist y; = x* + O(x™) solutions of (LDE) for i = 0,1,...,m — 1.

> The indicial polynomial at 0 equals py(n —r) = ¢ (0) -n--- (n—m+1),
so by (1) these y; form a basis of solutions of (LDE).
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Series solutions of

(LDE): cn(x)y"™ (x) + -~ +co(x)y(x) =0, (LRE): pr(n)ymsr +---+po(n)yn = 0.

Theorem.

(1) If F € K[[x]] is a solution of (LDE) then its valuation val(F) is a root of
the indicial polynomial at 0 of (LDE).

(2) (Cauchy) If ¢, (0) # 0 then (LDE) admits a basis of m solutions in K[[x]],
with valuations 0,1,...,m — 1.

> Ex: The converse of (2) is also true: if (LDE) admits a basis of m solutions
in K[[x]] with valuations 0,1, ...,m — 1, then ¢,,(0) # 0.

> When ¢y, (0) # 0, one says that x = 0 is an ordinary point for (LDE).

Corollary: If x = 0 is an ordinary point for (LDE), then one can compute a
full basis of power series solutions mod xV in O(N) operations in K.

Y .11l zational solutions



 Series solutionsof LDFs anexample

(LDE) of order m = 3
(=1 (x+ D)y (1) +y (1) + (2 =1)y (x) =0
> Corresponding (LRE) of order r =5
— (43 (n+2) (n+1) gz + (n+1) (n2— n+1) U1 — tin + tiy_p =0

> Indicial equation at 0 equals —n(n —1)(n —2).
> Basis of solutions of (LDE):

1—|—0-x+0-x2—%-x3+0-x4—i-x5+0<x6),

120
1 1 1
. W2 -3 4, 205 6
O+1x+0x+6x 24x+40x+0(x),
1 1
. . x2 P BT S .} 6
0+0 x+1x+0x+12x 6Ox+O(x).
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Def: A sequence (u),>0 has finite support if 3N > 0s.t. u;, =0 for n > N.
We call N the degree of (u,),>0 if uy # 0.

Task: Find solutions with finite support of

(LRE):  pr(m)itus + -+ po(n)iin = 0.

> The degree of such a solution must be a root of py(n).
> Solution space: vector space of dim < number of roots in IN of pg(n).

> Algorithm:
® Compute S := {h € N | po(h) - p,(h) = 0}
© If S = &, return no solution; if not, let N := maxS.
© Solve a linear system:
© equations: eval. (LRE)atn =0,1,...,N;add uyy; =0fori=1,...,r
© unknowns: ug, U, ..., UN+r
&> Complexity: O(N?)
> One can do better: O(N + |K|?)
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Polynomial solutio

Task: Given c, ..., cn € K[x], compute a basis of solutions in K[x] of

(LDE): Cm(X)y"™ (x) + -+ o (x)y(x) = 0.

> If a bound N on the degree of a solution y(x) € K[x] is known, then the
coefficients of y(x) can be computed by linear algebra

> Such a bound on the degree is the largest root N in IN of the indicial
polynomial of (LDE) at infinity

> One can compute a basis of polynomial solutions:
© in O(N?) by dense linear algebra
© in O(N) by exploiting the structure (banded matrix)

&> One can decide existence of nonzero polynomial solutions faster!  O(v/N)
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Existence of polynomial so

Task: Given ¢y, ..., ¢y € K[x], decide if there exist solutions in K[x] \ {0} of

(LDE):  en(x)y™ (x) + -+ co(x)y(x) = 0.

> Up to a shift, one may assume c,,(0) # 0, i.e. x = 0 is an ordinary point

> Let {y1,...,ym} C K[[x]] be a basis of power series solutions of (LDE)
(and N the largest root in IN of the indicial polynomial of (LDE) at infinity).

> Any solution in K[x] <y of (LDE) is a K-linear combination of the y;’s
> With d = max(degc;), one can choose

Yi=x U™ 4N 4N T

& One can compute coefficients in blue in O(1/N) by baby-steps/giant-steps
py=YAyiisin Kxl<y <= T Ay j=0forall 1 <j<m+d

> Computing the kernel does not depend on N
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Polynomial solu

Task: Given py, ..., pr € K[n], compute a basis of solutions in K[n] of

(LRE): pr(n)unir + -+ + po(n)un = 0.

> Same principle as for LDEs: “degree bound + linear algebra”
Main sub-task: Degree bound

> With (A-u)(n) = u(n+ 1) — u(n), rewrite recurrence equation (LRE) as

S
(LRE):  L-u=Y_ b(n)A*u=0.
k=0

> Advantage: A decreases degrees by 1, thus deg(AFP) < max(deg P — k,0).
> Corollary: deg(L - P) < B + deg P, with B := max,{deg(by) — k}
> If P =nP + ... € K[n] is a solution of (LRE), then

© either D + B < 0, thus D is upper bounded by —(B + 1);

o or [nPBJ(L-P)= Y le(by)D(D—1)--- (D —k+1) is zero
deg by—k=B
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Bound on Degree f

Task: Given py, ..., pr € K[n], bound the degree of polynomial solutions of

(LRE): pr(n)itpgr + -+ po(n)u, = 0.

> With (A-u)(n) = u(n+ 1) — u(n), rewrite recurrence equation (LRE) as
S
(LRE):  L-u=Y_ b(n)A*u=0.
k=0

> Theorem. A bound on the degree of polynomial solutions of (LRE) is

max | —(B+1), largest root D € Nof Y le(b)D(D—1)--- (D —k+1)
keE

=:indicial polynomial of (LRE)

where
© B := max;{deg(by) — k}, weighted (1, A)-degree of L, for deg(A) = —1;
© E:={k|deg(bx) — k = B}, indices where weighted degree is reached.
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_ Polynomial slutions of LREs: anexample .

Question: Find all polynomial solutions of
(n—3)upyo — (2n —3)uyq +nuy =0
> The recurrence can be rewritten:
(n —3)(A%uy + 281y + uy) — (20 — 3) (Auy + uy) 4 nuy, =0,

that is
L(u) = ((n—S)Az—SA) (ty) = 0

> Bis —1 and the set E is {1,2}.

> Indicial polynomialis D(D —1) —3D = D(D —4)

> Degree bound is 4; solution P(n) = n* +an® +bn® + cn +d

> L(P)=(-3a—30)n2+(—21a—70—4b)n—2la—45—9b—3c =0,
with solution 2 = —10, b = 35, ¢ = —50, and d is free.

> Basis of solutions given by

{(n—l)(n—Z) (n—3)(n—4), n(n—5) (n2—5n+1o)}
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Polynomial solution:

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.
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Polynomial solutions of L

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.

Proof:

T 41 " d "
Un =) cx (k) = nuy = )  k(cx+cx-1) (k) U1 = ), (Ck+ i) (k)
k=0

k=0 k=0
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Polynomial solutions of LREs:

Remark: Degree bound can be exponentially large in the bit size of (LRE)!

> E.g., nuy 1 — (n+100)u, = 0 has solution u, = n(n+1)---(n+99).

> For LDEs, we exploited the fact that coefficients sequence of a series
solution satisfies a LRE. This is false for LREs in the monomial basis. Still:

Theorem. If (u,) is a polynomial solution of a LRE of order r with
coefficients of degree at most d, then its coefficient sequence (ci) in the
binomial basis {(}),k € N} is a solution with finite support of another LRE,
of order at most d + r, degree at most d, with no additional singularities.

Proof:

T 41 " d "
Un =) cx (k) = nuy = )  k(cx+cx-1) (k) U1 = ), (Ck+ i) (k)
k=0

k=0 k=0

> Example: for nu, 1 — (n+100)u, = 0, we have

k(cx + cpy1 +cx1 +cx) — k(e + k1) — 100¢k = ke 1 + (k —100)c; = 0.
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Find all polynomial solutions of the recurrence equation

By yo — g1 + (n—1)uy, = 0.
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Rational solutions of LD

Task: Given cy, ..., cm € K[x], compute a basis of solutions in K(x) of

(LDE):  em(x)y"™ (x) + -+ + co(x)y(x) = 0.

> Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

> Better strategy [Liouville, 1833]:

@ find a multiple of denominators of all rational solutions — singularity analysis

@ reduce to polynomial solutions for numerators — change of unknowns

> Singularity analysis based on:

@ any solution y(x) € K(x) of (LDE) has an expansion, around any of its
poles a € K, as generalized series (x — ) Y, u;(x —a)!, withv € Z\IN

@ order —v of the pole at x = « is bounded by the opposite of the smallest
root in Z_ of the indicial polynomial at «
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Rational soluti

Liouville(LDE)

In: A LDE ¢ (x)y"™ (x) + - - - + co(x)y(x) = 0 with ¢; € K[x]
Out: A basis of its rational solutions in K(x).

@ At each root a of ¢y;:
e compute the indicial polynomial p,(n);
e compute the smallest root N, in Z_ of p,; if none, set N, := 0.
@ Form the polynomial P = [ (x—a) M.
Cm(a)=0
@ Make the change of unknowns y = Y/P in (LDE)
@ Find a basis B of polynomial solutions Y(x) of the new LDE.

® Return {b/P | b € B}.
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Question: Find (a bound on the degree of) all polynomial solutions of
(n—=3)uyyo — (2n —3)uysq +nupy =0
> If u,, polynomial solution of degree D, then y(x) = )_, u,x" is a rational
solution of the form N(x)/(1 — x)P+! of the corresponding LDE:
x(x— 1)2 ((5ug —4uy)x —5up)y” (%)

+2 (x—1) ((Suo —4u1)x* + (5up — 10up)x — 10“0) ¥ (%)
20wy (x) =0

> Indicial equation at x =1is (n+1)(n+5),s0D+1<5
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A seco

Consider the differential equation
(x =1)(¥* = 2)y" (x) +2x(x*> —x — 1)y (x) + 4(x — 2)y(x) = 0.

@ Prove that this equation has no nonzero polynomial solution.

@ Show that any rational solution y(x) € Q(x) of this equation has at
most a pole of order 1 at x = 1, and cannot have any other pole.

@ Find all rational solutions y(x) € Q(x) of this equation.
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Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(n)unr + -+ po(n)un = 0.

> Even assuming numerator/denominator bounds, a naive approach by
undetermined coefficients would lead to a non-linear polynomial system.

> Better strategy [Abramov, 1995]:
@ find a multiple of denominators of all rational solutions — singularity analysis

@ reduce to polynomial solutions for numerators — change of unknowns
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Task: Given py, ..., pr € K[n], compute a basis of solutions in K(#) of

(LRE): pr(n)unr + -+ + po(n)un = 0.

Assume u, = P(n)/Q(n) solution of (LRE) with gcd(P, Q) = 1. Multiplying

P(n+r) P(n)
Pr(”)m +oet Po(")w =
by
M(n) =lem(Q(n+1),...,Q(n+r))
yields

Q(n) [ po(n)M(n).

> Idea in simplest case: Assume Q has no two roots with integer difference.
Then ged(Q, M) = 1. Thus Q divides po(n). Similarly, Q divides p,(n —r).
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Rational solutions of LREs: s

Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(m)upgr + -+ po(n)u, = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with gcd(P,Q) = 1.
Let a, 8 be roots in K of Q s.t. « — fp = H € IN maximal (H = dispersion of Q).
Then po(x) =0 and p,(B—r) = 0.

Proof: « +1,& +2,..., are not roots of Q, i.e., « not pole of 1 1,..., Unr.
So « is not a pole of py(n)uy. Since « is a pole of uy,, necessarily po(«) = 0.

B—1,—2,...,are not roots of Q, i.e., B not pole of 1,_1,...,uy—s. So B is
not a pole of p,(n — r)u,. Since B is a pole of u,, necessarily p,(—r) =0. O

Corollary. The dispersion H is a root of Res,, (po(n+ h), pr(n —r)) € Kh].

Proof: (n,h) = (B, H) is solution of system pg(n+h) =0,p,(n—r) =0. O
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Rational solutions of

Task: Given py, ..., pr € K[n], compute a basis of solutions in K(n) of

(LRE):  pr(m)itus + -+ po(n)iun = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with ged(P, Q) = 1.
Let H be the dispersion of Q. Then

Q(n) | ged (po(n) -~ po(n+H), pr(n—7r) - pr(n—r—H))

Proof: We’ve already proved that Q(n) | po(n)lem(Q(n+1),...,Q(n+7r)).
Substituting n <— n + 1 and repeating yields:
Q1) [ po(n)lem(po(n +1)lem(Q(n +2),...,Q(n+r+1)),Q(n +2),...,Q(n+71))
| po(m)po(n+1)lem(Q(n +2),...,Q(n+r+1))
~lpo(n) - po(n+7)lem(Q(n +j+1),...,Q(n +j+71)).

As ged(Q(n),Q(n+j)) =1for j > H, we get Q(n) | po(n) - - - po(n+ H). O
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Rational soluti

Task: Given py, ..., pr € K[n], compute a basis of solutions in K () of

(LRE): pr(m)upsr + -+ po(n)u, = 0.

Theorem. Assume u, = P(n)/Q(n) solution of (LRE) with ged(P, Q) = 1.
Let H be the dispersion of Q. Then

Q(n) | ged (po(n) - - po(n + H), pr(n—r) - pr(n —r—H))
> A refinement: Q divides the (generally smaller) polynomial
m_ hi
HH d(po(n —j+ i), pr(n—j—r)),
i=1;j=0

where iy > hy > - -+ > hy, > 0 are the roots in IN of

R(h) = Resy (po(n+h), pr(n—r)).
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Rational solution

Abramov(LRE)

In: A LRE p,(n)utpqr + -+ po(n)u, = 0 with p; € K[n|
Out: A multiple of the denominator of all its rational solutions.

@ Compute the polynomial
R(h) = Resy (po(n +h), pr(n—r)).

@ If R has no roots in IN, then return 1; else, let iy > hp > -+ > hy, >0
be its roots in IN. Initialize Q to 1, A to py(n), B to pr(n —r).
@ Fori=1,...,mdo
g(n) :=ged(A(n + h;), B(n));

Q(n) :=g(n)g(n —1) ---g(n = h;i)Q(n);
A(n) := A(n)/g(n — hy);
B(n) := B(n)/g(n).

@ Return Q. /1 T T ged (po(n = j + hy), pr(n — j = 1))
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 Athind,and last, exrcie fornext time (5/11/2019)

The aim of this exercise is to show that the sum
L |
Sn = Z F
k=1""
cannot be simplified under the form

Sy =r(n)/n!

where 7(n) is a rational function in 7.
@ Give a linear recurrence with polynomial coefficients satisfied by r(n);

@ Find all rational solutions of the recurrence equation:
Uy — (m+Duy, = 1.

@ Conclude.
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