
Matrix polynomials Minimal bases New elimination

September 28th, updates

The final score should be based on three evaluations:

→ Exercise score: one exercise per week will be identified during one of the two
lessons, with a precise deadline for sending your script

→ Mid-term exam, Wednesday Oct. 7th: modalities to be communicated (pending
ENS instructions)

→ Final exam, expected Monday Nov. 11th
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Alternative to Gaussian elimination - ctd

September 28th, 2020
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Overview

Matrix polynomials

Minimal bases

New elimination
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A ∈ K[x]n×n of degree d

det A(x) =
∑
σ

n∏
i=1

Aσ(i),i

deg det A ≤ nd
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A ∈ Z[x]n×n with entries of absolute values less than b

det A =
n∏

j=1

‖A∗
j ‖ ≤

n∏
j=1

‖Aj‖ ≤ bnnn/2

For input size β:

log det A ≤ nβ + O(n log n)
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I Hadamard’s conjecture

ai,j ∈ {1,−1} and the rows of A are mutually orthogonal

A Hadamard matrix of dimension n exists for every n multiple of 4
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A =


54 −79 −5 −79

47 9 47 75

90 45 −54 −85

−41 −10 −72 −19



→



54 −79 −5 −79

0 4199
54

2773
54

7763
54

0 0 − 681651
4199 − 1175510

4199

0 0 0 69126727
681651



det A = −69126727
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a(k)
ij =

∣∣∣∣ A1..k,1..k A1..k,j
Ai,1..k aij

∣∣∣∣
Li ← Li − αLk

a[k]ij = a[k−1]
ij − a[k−1]

ik

a[k−1]
kk

a[k−1]
kj

=
a(k)

ij

a(k−1)
kk
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Gauss-Bareiss elimination (Sylvester’s identities)
Élimination de Gauss/Bareiss (identités de Sylvester)

2
666664

a11 a12 . . . . . . a1n

a22 a22
...

... ...

... ...

an1 . . . . . . . . . ann

3
777775

!

2
66666664

a11 a12 . . . . . . a1n

0
�22
�11

...

... . . .
�i,j

�i�1,i�1

...
... 0 . . . ...

0 . . . . . . 0 �nn
�n�1,n�1

3
77777775

où �i,j =

��������

a11 . . . a1,i�1 a1,j

a21 . . . a2,i�1 a2,j
... ... ...

ai1 . . . ai,i�1 ai,j

��������
donc |�i,j| = O(ii/2 log kAki), et,

Taille(�i,j) = (n log kAk)1+o(1) bits.

Modèle binaire sur Z

Size of output entries ≈ size of the determinant
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Change of representation

Input
algorithm 1

result
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Change of representation

Input
algorithm 1

result

new representation

conversion to 

result 2

conversion from

algorithm 2
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Polynomial (or rational function) problem

Input polynomials
polynomial arithmetic

result

13



Matrix polynomials Minimal bases New elimination

Polynomial (or rational function) problem

Input polynomials
polynomial arithmetic

result

values

evaluations at enough points,  
say N

N solutions 
N results

interpolations

14
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Example : DFT based polynomial multiplication

Input polynomials
polynomial arithmetic

convolution

values N results

DFTevaluations at powers  
of a root of unity

pointwise multiplication

-1
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Chinese Remainder Theorem

R a Euclidean domain

m1,m2, . . . ,ml ∈ R pairwise coprime, m = m1m2 . . .ml

R/〈m〉 ∼= R/〈m1〉 × R/〈m2〉 × . . .× R/〈ml〉

Cost: O(M(log m) log log m)
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Integer (or rational) problem

Input integers
Integer arithmetic

result

“Interpolating an integer from its values at several primes” 

17



Matrix polynomials Minimal bases New elimination

Integer (or rational) problem

Input integers
integer arithmetic

result

mod values

modulo enough primes,  
say N

N solutions 
N results

Chinese remainder  
algorithm

“Interpolating an integer from its values at several primes” 
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K[x] or Bit complexity

Inputs and outputs have a size or a precision.

Impact on the problem’s complexity ?

Known reductions between problems — 10
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K[x] or Bit complexity

Inputs and outputs have a size or a precision.
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� A 2 K[x]n⇥n : deg det A = O(n d)
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K[x] or Bit complexity

Inputs and outputs have a size or a precision.

Impact on the problem’s complexity ?

� A 2 K[x]n⇥n : deg det A = O(n d)

� A 2 Zn⇥n : size(det A) = O (̃n log kAk)

Known reductions between problems — 10
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Matrix polynomials Minimal bases New elimination

K[x] or Bit complexity

Inputs and outputs have a size or a precision.

Impact on the problem’s complexity ?

� A 2 K[x]n⇥n : deg det A = O(n d)

� A 2 Zn⇥n : size(det A) = O (̃n log kAk)

� A 2 Zn⇥n : O(log cond(A))) = O (̃n log kAk)

Known reductions between problems — 10
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Impact of data size ?

Ex. Determinant computation/Output size : nd or O (̃nlog kAk),
Evaluation/interpolation or homomorphic scheme

or O (̃nlog kAk) bits a priori :

"
n!

#

Known reductions between problems — 11
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Impact of data size ?

Ex. Determinant computation/Output size : nd or O (̃nlog kAk),
Evaluation/interpolation or homomorphic scheme

or O (̃nlog kAk) bits a priori :

 nd points or O (̃nlog kAk) bits !

"
n!

#

Known reductions between problems — 11
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Impact of data size ?

Ex. Determinant computation/Output size : nd or O (̃nlog kAk),
Evaluation/interpolation or homomorphic scheme

or O (̃nlog kAk) bits a priori :

 nd points or O (̃nlog kAk) bits !

"
n!

#

Complexity estimates:

O (̃n! ⇥ nd) = O (̃n!+1d)

O (̃n!+1 log kAk)

Known reductions between problems — 11
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Impact of data size ?

Ex. Determinant computation/Output size : nd or O (̃nlog kAk),
Evaluation/interpolation or homomorphic scheme

or O (̃nlog kAk) bits a priori :

 nd points or O (̃nlog kAk) bits !

"
n!

#

Complexity estimates:

O (̃n! ⇥ nd) = O (̃n!+1d)
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Matrix polynomials Minimal bases New eliminationLinearly recurring sequences Padé-Hermite approximation

Related problem - 2

Rational reconstruction

f (x) 2 K[x], degree n

h(x)

Find p(x) and q(x) such that for k given 1  k  n:

h(x) =
p(x)
q(x)

mod f (x)

with gcd(q, f ) = 1, deg p < k, deg q  n� k

2327
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Linear system solution

A(x) ∈ K[x]n×n, b(x) ∈ K[x]n Au = b ?

1. det A(0) 6= 0 ∈ K or solve the shifted problem A(x + α)u(x + α) = b(x + α)

2. Compute the truncated power series such that A(x)û(x) = b(x) mod x2nd+1

3. Reconstruct u(x) from û(x) (rational reconstruction)

Cost: Õ(nω × nd)
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Matrix polynomials Minimal bases New elimination

. MM(n,d) = O (̃n!d) : cost for multiplying n⇥ n matrices of degree d

. MM(n, log kAk) = O (̃n! log kAk) : cost for multiplying n⇥n integer matrices

Previous analysis shows that the determinant may be computed

in O(n · MM(n, d)) or O(n · MM(n, log kAk)) operations,

i.e. in n corresponding matrix products

Known reductions between problems — 12

The determinant can be computed in 
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. MM(n, log kAk) = O (̃n! log kAk) : cost for multiplying n⇥n integer matrices

Previous analysis shows that the determinant may be computed

in O(n · MM(n, d)) or O(n · MM(n, log kAk)) operations,

i.e. in n corresponding matrix products

Known reductions between problems — 12

The determinant can be computed in 

i.e. in say    corresponding matrix products n
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Fundamentals of dense linear algebra over K[x] or Z (1967! 2000) :

Monte Carlo rank O(n! + n2 log kAk)

System solution (Hensel lifting) O (̃n3 log kAk)
[Moenck & Carter 79, Dixon 82]

Determinant, inversion, nullspace, rank, . . . O (̃n · MM(n, log kAk))
[Edmonds 67, Bareiss 69, Moenck & Carter 79] Deterministic

Frobenius form (minimum, characteristic polynomial) O (̃n · MM(n, log kAk))
[Giesbrecht 93, Giesbrecht & Storjohann 02] Las Vegas

Hermite and Smith forms, (diophantine systems) O (̃n · MM(n, log kAk))
[Kannan & Bachem 79, Domich 85, Giesbrecht 95, Storjohann 96-00] Deterministic

Known reductions between problems — 13
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Bit complexity � algebraic complexity ⇥ output size

Known reductions between problems — 14
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Bit complexity � algebraic complexity ⇥ output size

Is this bound pessimistic ?

Known reductions between problems — 14
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A ∈ K[x]m×2m

A(x)G(x) =
[

P(x) Q(x)
] [ −P(x)−1Q(x)

−I

]
=
[

0
]

A(x)N(x) =
[

P(x) Q(x)
] [ M1(x)

M2(x)

]
=
[

0 0
]

(mod xσ)
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Degree = 1, m = 6
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6× 6 minors of degree md = 6
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“Small” nullspace basis computed via approximants at “sufficiently large” order
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Theorem: Generically, A ∈ K[x]m×2m of degree d has a nullspace basis of degree d

Generically: unless the entries of A form a zero of a multivariate polynomial
in K[a11, . . . , aij, . . . , ann]

Hint: true for A(x) = [Ā(x) I]
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A ∈ K[x]m×2m

Assumption: there exists a nullspace basis of degree d

→ B ∈ K[x](2m)×(2m) a minimal approximant basis at order 2d + 1:

A(x)B(x) = 0 mod x2d+1

I If A(x)u(x) = 0 then u(x) is in the module of the columns of B(x)

I By minimality B(x) has at least m columns of degree bounded by d

I If deg u(x) ≤ d then A(x)u(x) = 0 mod x2d+1 =⇒ B(x)u(x) = 0

I B(x) has exactly m columns of degree d (others are of larger degree)
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A ∈ K[x]m×2m

Assumption: there exists a nullspace basis of degree d

→ B ∈ K[x](2m)×(2m) a minimal approximant basis at order 2d + 1:

A(x)B(x) = 0 mod x2d+1

A(x)B(x) = 0

Corollary: A nullspace basis can be computed in Õ(nωd) operations in K.
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Divide and conquer
[Strassen 1969, Schönhage 1973, Bunch & Hopcroft 1974]


I 0

�BA�1 I

�
·


A C

B D

�
=


A C

0 D �BA�1C

�

At next step :

,! Dimension: divided by two

Divide-double and conquer — 17
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Divide and conquer
[Strassen 1969, Schönhage 1973, Bunch & Hopcroft 1974]


I 0

�BA�1 I

�
·


A C

B D

�
=


A C

0 D �BA�1C

�

At next step :

,! Dimension: divided by two

,! Entry size : multiplied by n/2

Divide-double and conquer — 17
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Divide-double and conquer
[Jeannerod & Villard 2002, Storjohann 2002]

The dimension is divided by two while the entry size is at most doubled

) Cost:

log nX

i=1

(
n

2i
)! 2id = O(n!d)

Divide-double and conquer — 18
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Bases minimales d’espaces nuls sur K[x] [Forney 75]

A =

2
66664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

3
77775
! BA =

2
66664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3
77775


B
B

� ⇥
AL AR

⇤
=


A0

L 0
0 A0

R

�

où B (et B) est une base minimale de kerAL vu comme K[x]-module.

Inversion sur K[x]

Degree d Degree 2d
degree d                                       degree 2ddegree d                                        degree 2d  
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Diagonalisation en log2(n) étapes

A =

2
66666666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤

3
77777777775

Inversion sur K[x]

Minimal bases diagonalization
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Diagonalisation en log2(n) étapes

BA =

2
66666666664

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤
⇤ ⇤ ⇤ ⇤

3
77777777775

Inversion sur K[x]
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Diagonalisation en log2(n) étapes

B0BA =

2
66666666664

⇤ ⇤
⇤ ⇤

⇤ ⇤
⇤ ⇤

⇤ ⇤
⇤ ⇤

⇤ ⇤
⇤ ⇤

3
77777777775

Inversion sur K[x]
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Diagonalisation en log2(n) étapes

B00B0BA =

2
66666666664

⇤
⇤
⇤
⇤
⇤
⇤
⇤
⇤

3
77777777775

= D

Inversion sur K[x]
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[Jeannerod & Villard 2005] [Zhou, Labahn & Storjohann 2015]

Theorem: The inverse of a polynomial matrix of degree d can be computed in
essentially optimal time Õ(n3d)

Hint:
I Generically: show that minimal bases with appropriate degrees exist recursively
I General case: manage unbalanced degrees in nullspace basis
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A,A2, . . . ,An ?

1. Inverse (I − x A)

2. Expand the entries modulo xn+1

(I − x A)−1 = I + x A + x2 A2 + . . .+ xn An mod xn+1

Cost: Õ(n3) operations in K, essentially optimal
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Exercise: For A ∈ K[x]m×2m of degree d we are given an algorithm
ApproximantBasis(A,δ) thats returns a minimal approximant basis at order δ ≥ d

in time Õ(mωδ). For M ∈ Kn×n, give an algorithm for computing M,M2, . . . ,Mn

in Õ(n3) operations in K. You will assume (property of genericity) that for any
A ∈ K[x]m×2m encountered for some m and d during the algorithm, there exists a
nullspace basis of degree d; also assume that n is a power of 2.
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Theorem of matrix polynomials A(x) ∈ K[x]n×n of degree d

In Õ(nωd) (sometimes say Õ(MM(n, d)) arithmetic operations one can compute:

I The determinant

I A linear system solution, right hand side of degree O(nd)

I A minimal basis of the module

I The Hermite and the Smith normal forms

Rectangular case
I m× n, m ≤ n, minimal basis in Õ(mω−1nd)

I Nullspace basis in Õ(mnrω−2d)
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[~~~~~~~~~]
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[~~~~~~~~~]
Divide-double & conquer : slight increase in size
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[~~~~~~~~~]
Size versus dimension
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[~~~~~~~~~]
Odd slicing 
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[~~~~~~~~~]
Slicing + overlapping

59



Matrix polynomials Minimal bases New elimination

[~~~~~~~~~][~~~~~~~~~] [~~~~~~~~~]
Linearization
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Theorem of integer matrices A(x) ∈ Zn×n, entries of size β

In Õ(nωβ) (sometimes say Õ(MM(n, β)) arithmetic operations one can compute:

I The determinant

I A linear system solution, right hand side of size O(nβ)

I The (certified) rank

I The Smith normal forms (non singular case)

I Matrix inverse in Õ(n3(β + log κ(A)))
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Open problems

Understanding the link with corresponding matrix multiplication?

 K[x] and Z: Characteristic polynomial

 Z: LLL lattice basis reduction
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