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The exercise from last week

Prove the identity

arcsin(x)2 = ∑
k≥0

k!(
1
2

)
· · ·
(

k + 1
2

) x2k+2

2k + 2
,

by performing the following steps:
1 Show that y = arcsin(x) can be represented by the differential equation

(1− x2)y′′ − xy′ = 0 and the initial conditions y(0) = 0, y′(0) = 1.
2 Compute a linear differential equation satisfied by z(x) = y(x)2.
3 Deduce a linear recurrence relation satisfied by the coefficients of z(x).
4 Conclude.
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Solution, Part 1

The starting point is the identity

(arcsin(x))′ =
1√

1− x2
,

which allows to represent arcsin(x) by the differential equation

(1− x2)y′′ − xy′ = 0

together with the initial conditions

y(0) = arcsin(0) = 0, y′(0) =
1√

1− 02
= 1.
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Solution, Part 2

Let z = y2, with y′′ = x
1−x2 y′.

By successive differentiations, we get

z′ = 2yy′,

z′′ = 2y′2 + 2yy′′ = 2y′2 +
2x

1− x2 yy′,

z′′′ = 4y′y′′ +
2x

1− x2 (y
′2 + yy′′) +

(
2

1− x2 +
4x2

(1− x2)2

)
yy′

=

(
2

1− x2 +
6x2

(1− x2)2

)
yy′ +

6x
1− x2 y′2.

. z, z′, z′′, z′′′ are Q(x)-linear comb. of y2, yy′, y′2, thus Q(x)-dependent

. A dependence relation is determined by computing the kernel of

M =

 1 0 0 0
0 2 2x

1−x2
2

1−x2 +
6x2

(1−x2)2

0 0 2 6x
1−x2


. The kernel of M is generated by [0, 1, 3x, x2 − 1]T

. The corresponding differential equation is

(x2 − 1)z′′′ + 3xz′′ + z′ = 0.
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Solution, Part 2, a variant

Let z = y2, with y′′ = x
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By successive differentiations, we get

z′ = 2yy′,

z′′ = 2y′2 + 2yy′′ = 2y′2 +
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x

1− x2 z′,
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x

1− x2 z′′ +

(
1

1− x2 +
2 x2

(1− x2)
2

)
z′

=
4x

1− x2 y′2 +
x

1− x2 z′′ +
x2 + 1

(x2 − 1)2 z′

=
2x

1− x2

(
z′′ − x

1− x2 z′
)
+

x
1− x2 z′′ +

x2 + 1

(x2 − 1)2 z′.
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Solution, Part 3

. Write z(x) = ∑n anxn. Then:

z′ = ∑
n
(n + 1)an+1xn,

z′′ = ∑
n
(n + 1)(n + 2)an+2xn,

z′′′ = ∑
n
(n + 1)(n + 2)(n + 3)an+3xn.

. The coefficient of xn in (x2 − 1)z′′′ + 3xz′′ + z′ is

(n− 1)n(n + 1)an+1 − (n + 1)(n + 2)(n + 3)an+3 + 3n(n + 1)an+1 +(n+ 1)an+1

. Thus, the recurrence corresponding to (x2 − 1)z′′′ + 3xz′′ + z′ = 0 is

(n + 1)(n + 2)(n + 3)an+3 = (n + 1)3an+1.

. Since (n + 1) has no roots in N, it further simplifies to

(n + 2)(n + 3)an+3 − (n + 1)2an+1 = 0.
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Solution, Part 4

. z = ∑n anxn satisfies

(n + 2)(n + 3)an+3 − (n + 1)2an+1 = 0.

. Initial conditions:

a0 = z(0) = y(0)2 = 0, a1 = z′(0) = 2y(0)y′(0) = 0, a2 =
1
2

z′′(0) = y′(0)2 = 1.

. Recurrence and a1 = 0 imply a2k+1 = 0, so the series is even.

. Let bk = a2k+2. Then z(x) = ∑k bkx2k+2 and

(2k + 1)(2k + 2)bk = 4k2bk−1, b0 = 1

. Thus, the sequence (bk)k is hypergeometric and

bk = 2
k2

(k + 1)(2k + 1)
bk−1 = · · · = 2k k!2

(k + 1)!(2k + 1)(2k− 1) · · · 3
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k!

(k + 1) · (k + 1
2 )(k−

1
2 ) · · ·

3
2
=

k!
(k + 1

2 )(k−
1
2 ) · · ·

1
2

1
2k + 2

�
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Solution in Maple

1. Compute D-finite representation for y(x) = arcsin(x):

> gfun:-holexprtodiffeq(arcsin(x),y(x));

{(
x2 − 1

) d2

dx2 y (x) + x
d

dx
y (x) , y (0) = 0, D (y) (0) = 1

}

2. Compute D-finite representation for z(x) = arcsin(x)2:

> deqz:=gfun:-‘diffeq*diffeq‘(deq1,deq1, y(x));

{
d

dx
y (x) + 3 x

d2

dx2 y (x) +
(

x2 − 1
) d3

dx3 y (x) , y (0) = 0, D (y) (0) = 0,
(

D(2)
)
(y) (0) = 2

}

Alin Bostan Fast skew arithmetic



8 / 40

Solution in Maple

1. Compute D-finite representation for y(x) = arcsin(x):

> gfun:-holexprtodiffeq(arcsin(x),y(x));

{(
x2 − 1

) d2

dx2 y (x) + x
d

dx
y (x) , y (0) = 0, D (y) (0) = 1

}

2. Compute D-finite representation for z(x) = arcsin(x)2:

> deqz:=gfun:-‘diffeq*diffeq‘(deq1,deq1, y(x));

{
d

dx
y (x) + 3 x

d2

dx2 y (x) +
(

x2 − 1
) d3

dx3 y (x) , y (0) = 0, D (y) (0) = 0,
(

D(2)
)
(y) (0) = 2

}

Alin Bostan Fast skew arithmetic



9 / 40

Solution in Maple

3. Compute linear recurrence satisfied by the coefficients an of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

{(
n2 + 2 n + 1

)
a (n + 1) +

(
−n2 − 5 n− 6

)
a (n + 3) , a (0) = 0, a (1) = 0, a (2) = 1

}

4. Compute a closed form for an and conclude:

> rsolve({recz[1], a(1) = 0, a(2) = 1}, a(n)):
> a2k:=simplify(subs(n=2*k,%)) assuming k::posint;
> subs(GAMMA(k+1/2)=GAMMA(2*k)*sqrt(Pi)/2^(2*k-1)/GAMMA(k),a2k);

√
πΓ (k)
2 k

(
Γ
(

k +
1
2

))−1

,
22 k−1 ((k− 1)!)2

2 (2 k− 1)! k

5. Check

> sum(a2k*x^(2*k), k=1..infinity) assuming x>0 and x<1;

(arcsin (x))2
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LINEAR DIFFERENTIAL OPERATORS
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Context and Aim

• K = an effective field (e.g., K = Q, or K = Fp)

• K[x]〈∂〉 = the Weyl algebra of linear differential operators with
polynomial coefficients in K[x]; commutation rule ∂x = x∂ + 1

Algebraic formalization of the notion of linear differential equation

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0

⇐⇒
L(y) = 0, where L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x)

Commutation rule formalizes Leibniz’s rule ( f g)′ = f ′g + f g′
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Skew (differential) polynomials

• K[x]〈∂〉 = the polynomial Weyl algebra of linear differential operators

. Elements: L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x) with ai(x) ∈ K[x]

. Degree r = deg∂(L) is called the order of L, denoted ord(L)

. Degree degx(L) := max(degx(ai(x)) is the degree of L, denoted deg(L)

. Usual +; skew multiplication ? defined by ∂ ? P(x) = P(x) ? ∂ + P′(x)

• K(x)〈∂〉 = the rational Weyl algebra of linear differential operators

. Elements: L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x) with ai(x) ∈ K(x)

. r = deg∂(L) is called the order of L, denoted ord(L)

. deg(L) := max(deg(c), deg(bi)), where ai = bi/c with c of minimal degree

. Usual +; skew multiplication ? defined by ∂ ? R(x) = R(x) ? ∂ + R′(x)

. Mathematically, the rational Weyl algebra K(x)〈∂〉 is nicer

. Algorithmically, the polynomial Weyl algebra K[x]〈∂〉 is nicer
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Rational Weyl algebra is Euclidean

Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)〈∂〉 is a non-commutative (left and right) Euclidean domain: for
A, B ∈ K(x)〈∂〉, there exist unique Q, R ∈ K(x)〈∂〉 such that

A = QB + R, and ord(R) < ord(B).

(This is called the Euclidean right division of A by B.)

. As a consequence, any A, B ∈ K(x)〈∂〉 admit a greatest common right
divisor (GCRD) and a least common left multiple (LCLM).

. Moreover, GCRD(A, B) and LCLM(A, B) can be computed by a
non-commutative version of the extended Euclidean algorithm.
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Implementation in Maple’s DEtools package

. diffop2de, de2diffop, mult

> with(DEtools):
> mult(Dx,x,[Dx,x]);

x∂ + 1

implements the basic skew multiplication rule.

. rightdivision, GCRD, LCLM

> rightdivision(Dx^10,Dx^2-x,[Dx,x])[2];

(
20 x3 + 80

)
∂ + x5 + 100 x2

proves that Ai(10)(x) = (20x3 + 80)Ai
′
(x) + (x5 + 100x2)Ai(x).
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Solution spaces

Any element of K(x)〈∂〉

L = ar(x)∂r + · · ·+ a1(x)∂ + a0(x)

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

V(L) = {y ∈ R | L(y) = 0}
which contains “all” solutions of L, in the sense that dimC V(L) = r, where

C = {y ∈ R | ∂(y) = 0}

. Such an R is an analogue of the notion of “splitting field” for polynomials

. V(L): algebraic counterpart of the notion of “fundamental set of solutions”

. If char(K) = 0 and if x = α is an ordinary point (not pole of any aj/ar),
then one may choose R = K[[x− α]] (by the Cauchy-Lipschitz theorem)

Exercise 1: Prove that L admits at most r = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.
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C = {y ∈ R | ∂(y) = 0}

. Such an R is an analogue of the notion of “splitting field” for polynomials

. V(L): algebraic counterpart of the notion of “fundamental set of solutions”

. If char(K) = 0 and if x = α is an ordinary point (not pole of any aj/ar),
then one may choose R = K[[x− α]] (by the Cauchy-Lipschitz theorem)

Exercise 1: Prove that L admits at most r = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.
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Definition of LCLM and GCRD

The least common left multiple (LCLM) of A, B ∈ K(x)〈∂〉 is the least order
monic operator L ∈ K(x)〈∂〉 such that

L = Q1 ? A = Q2 ? B for some cofactors Q1, Q2 ∈ K(x)〈∂〉

. In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of A, B ∈ K(x)〈∂〉 is the highest
order monic operator G ∈ K(x)〈∂〉 such that

A = U1 ? G and B = U2 ? G for some cofactors U1, U2 ∈ K(x)〈∂〉

. In terms of solution spaces: V(GCRD(A, B)) = V(A) ∩V(B)

. Contrary to the commutative case: A ? B 6= LCLM(A, B) ? GCRD(A, B)
but ord(A ? B) = ord(A) + ord(B) = ord(LCLM(A, B)) + ord(GCRD(A, B))
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Example

> A:=(x-1)*Dx^3+(x-x^2)*Dx^2+(3-2*x)*Dx-x:
> B:=3*Dx^2+(x^3-3*x)*Dx-x^4-3:
> G:=rightdivision(A,B,[Dx,x]);

[(
x
3
− 1

3

)
∂− x4

9
+

x3

9
,
(

1− x3 + x2 +
x7

9
− x6

9

)
∂− x + x4 − x3 − x8

9
+

x7

9

]

> rightdivision(B,G,[Dx,x]);

[
27

x7 − x6 − 9 x3 + 9 x2 + 9
∂ + 9

x
(

x9 − x8 − 30 x5 + 27 x4 + 9 x2 + 81 x− 54
)

(x7 − x6 − 9 x3 + 9 x2 + 9)2 , 0

]

> GCRD(A,B,[Dx,x]);

∂− x

Alin Bostan Fast skew arithmetic



17 / 40

Example

> A:=(x-1)*Dx^3+(x-x^2)*Dx^2+(3-2*x)*Dx-x:
> B:=3*Dx^2+(x^3-3*x)*Dx-x^4-3:
> G:=rightdivision(A,B,[Dx,x]);

[(
x
3
− 1

3

)
∂− x4

9
+

x3

9
,
(

1− x3 + x2 +
x7

9
− x6

9

)
∂− x + x4 − x3 − x8

9
+

x7

9

]

> rightdivision(B,G,[Dx,x]);

[
27

x7 − x6 − 9 x3 + 9 x2 + 9
∂ + 9

x
(

x9 − x8 − 30 x5 + 27 x4 + 9 x2 + 81 x− 54
)

(x7 − x6 − 9 x3 + 9 x2 + 9)2 , 0

]

> GCRD(A,B,[Dx,x]);

∂− x

Alin Bostan Fast skew arithmetic



17 / 40

Example

> A:=(x-1)*Dx^3+(x-x^2)*Dx^2+(3-2*x)*Dx-x:
> B:=3*Dx^2+(x^3-3*x)*Dx-x^4-3:
> G:=rightdivision(A,B,[Dx,x]);

[(
x
3
− 1

3

)
∂− x4

9
+

x3

9
,
(

1− x3 + x2 +
x7

9
− x6

9

)
∂− x + x4 − x3 − x8

9
+

x7

9

]

> rightdivision(B,G,[Dx,x]);

[
27

x7 − x6 − 9 x3 + 9 x2 + 9
∂ + 9

x
(

x9 − x8 − 30 x5 + 27 x4 + 9 x2 + 81 x− 54
)

(x7 − x6 − 9 x3 + 9 x2 + 9)2 , 0

]

> GCRD(A,B,[Dx,x]);

∂− x

Alin Bostan Fast skew arithmetic



18 / 40

Euclidean algorithm in K[x]

Euclid(A, B)

In: A and B in K[x].
Out: A gcd G of A and B.

1 R0 := A; R1 := B; i := 1.
2 While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri
i := i + 1.

3 Return Ri−1.

. Termination: deg(B) > deg(R2) > deg(R1) > · · ·

. Correctness: gcd(A, B) = gcd(B, A mod B)

. Quadratic complexity: O
(

deg(A)deg(B)
)

operations in K

Alin Bostan Fast skew arithmetic
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Skew Euclidean algorithm in K(x)〈∂〉

SkewEuclid(A, B)

In: A and B in K(x)〈∂〉.
Out: A GCRD G of A and B.

1 R0 := A; R1 := B; i := 1.
2 While Ri is non-zero, do:

Ri+1 := Ri−1 rmod Ri
i := i + 1.

3 Return Ri−1.

. Termination: ord(B) > ord(R2) > ord(R1) > · · ·

. Correctness: GCRD(A, B) = GCRD(B, A rmod B)

. “Complexity”: O
(

ord(A) ord(B)
)

operations in K(x)

Alin Bostan Fast skew arithmetic



20 / 40

Extended Euclidean algorithm in K[x]

ExtendedEuclid(A, B)

In: A and B in K[x].
Out: A gcd G of A and B, and cofactors U and V.

1 R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.
2 While Ri is non-zero, do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Ui+1 := Ui−1 −QiUi ; Vi+1 := Vi−1 −QiVi .
3 i := i + 1.

3 Return
(

Ri−1, Ui−1, Vi−1
)
.

. Termination: deg(B) > deg(R2) > deg(R1) > · · ·

. Correctness: Ri = Ui A + ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1 A + Vi−1B−Qi(Ui A + ViB) = Ui+1 A + Vi+1B

. Quadratic complexity: O
(

deg(A)deg(B)
)

operations in K
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Skew Extended Euclidean algorithm in K(x)〈∂〉

SkewExtendedEuclid(A, B)

In: A and B in K(x)〈∂〉.
Out: A GCRD G of A and B, and cofactors U and V.

1 R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.
2 While Ri is non-zero, do:

1 (Qi , Ri+1) := RightDivision(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Ui+1 := Ui−1 −QiUi ; Vi+1 := Vi−1 −QiVi .
3 i := i + 1.

3 Return
(
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)
.
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. “Complexity”: O
(

ord(A) ord(B)
)

operations in K(x)
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Half-Extended Euclidean algorithm in K[x]

HalfExtendedEuclid(A, B)

In: A and B in K[x].
Out: A gcd G and an lcm L of A and B.

1 R0 := A; U0 := 1; R1 := B; U1 := 0; i := 1.
2 While Ri is non-zero, do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Ui+1 := Ui−1 −QiUi .
3 i := i + 1.

3 Return
(

Ri−1, Ui A
)
.

. Quadratic complexity: O
(

deg(A)deg(B)
)

operations in K
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Skew Half-Extended Euclidean algorithm in K(x)〈∂〉

SkewHalfExtendedEuclid(A, B)

In: A and B in K(x)〈∂〉.
Out: A GCRD G and an LCLM L of A and B.

1 R0 := A; U0 := 1; R1 := B; U1 := 0; i := 1.
2 While Ri is non-zero, do:

1 (Qi , Ri+1) := RightDivision(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Ui+1 := Ui−1 −QiUi .
3 i := i + 1.

3 Return
(
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)
.
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ord(A) ord(B)
)

operations in K(x)
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Definition of SYM

Def. The symmetric product (SYM) of L1, L2 ∈ K(x)〈∂〉, denoted Sym(L1, L2),
or L1 ⊗ L2, is the least order monic operator S ∈ K(x)〈∂〉 such that

S(y1y2) = 0 for all y1 ∈ V(L1), y2 ∈ V(L2)

. In terms of solution spaces: V(A⊗ B) = V(A)⊗V(B)

> symmetric_product(Dx^3, Dx^2, [Dx,x]);

∂4

Def. The m-th symmetric power (SYMP) of L ∈ K(x)〈∂〉, denoted Symm(L),
is the least order monic operator S ∈ K(x)〈∂〉 such that

S(ym) = 0 for all y ∈ V(L).

> symmetric_power(Dx^3, 2, [Dx,x]);

∂5
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Example – back to the exercise

> deqin:=(1-x^2)*diff(diff(y(x),x),x)-x*diff(y(x),x):
> de:={deqin, y(0)=rand(100)(), D(y)(0)=rand(100)()};

{
−x

d
dx

y (x) +
(

1− x2
) d2

dx2 y (x) , y (0) = 82, D (y) (0) = 31
}

> with(numapprox): Order:=30; p:=%: r:=3:
> Z:=series(op(2, dsolve(de, y(x), series))^2,x,p):
> hermite_pade([Z,seq(series(diff(Z,x$k),x,p),k=1..r)],x,p):
> deqout:=add(HP[k+1]*diff(z(x),x$k), k=1..r);

d
dx

z (x) + 3 x
d2

dx2 z (x) +
(

x2 − 1
) d3

dx3 z (x)
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The case of constant coefficients

. Linear differential operators L = pr∂r + · · ·+ p0 with coefficients pi ∈ K

. Characteristic polynomial: P(x) = prxr + · · ·+ p0 splits over K

P(x) = pr(x− α1)
m1 · · · (x− αk)

mk , αi ∈ K, mi ∈N?,

. V(L) is generated (over K) by{
eα1x, xeα1x, . . . , xm1−1eα1x, . . . , eαk x, xeαk x, . . . , xmk−1eαk x

}
,

where for α ∈ K, we denote by eαx the power series ∑n≥0 αnxn/n! of K[[x]].

. GCRD and LCLM can be computed by the usual Euclidean algorithm

. SYM can be computed by resultants: SYM(L1, L2)= P1 ⊕ P2 if all mi = 1

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.
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Exercise 2: Estimate the cost of SYM in the case of constant coefficients.
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Example

> L1:=225*Dx^3-1375*Dx^2-2054*Dx+2088: L2:=245*Dx^2-1759*Dx-36:
> GCRD(L1,L2,[Dx,x]), LCLM(L1,L2,[Dx,x]);

∂− 36
5

, ∂4 − 2686 ∂3

441
− 34007 ∂2

3675
+

100258 ∂

11025
+

232
1225

> gcd(L1,L2): expand(%/lcoeff(%,Dx));
> lcm(L1,L2): expand(%/lcoeff(%,Dx));

∂− 36
5

, ∂4 − 2686 ∂3

441
− 34007 ∂2

3675
+

100258 ∂

11025
+

232
1225

> symmetric_product(L1,L2,[Dx,x]);
> subs(t=Dx, resultant(subs(Dx=x,L1), subs(Dx=t-x,L2),x)):
> expand(%/lcoeff(%,Dx));

∂6 − 74443 ∂5

2205
+

1909137901 ∂4

4862025
− 700478668231 ∂3

397065375
+

7570609408322 ∂2

5955980625
+

2240061794008 ∂

283618125
− 1233423295936

220591875
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Rational Weyl algebra is a factorization domain

Theorem [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903]
Elements of K(x)〈∂〉 can be expressed as products of irreducible factors.

More precisely, any L ∈ K(x)〈∂〉 can be written L = r(x) ? L1 ? · · · ? Lm,
where r ∈ K(x) and the Li’s are monic and irreducible in K(x)〈∂〉.
Moreover, if L̃ = r̃(x) ? L̃1 ? · · · ? L̃s for monic irreducible L̃j and r̃ ∈ K(x),
then r = r̃, m = s and there exists σ ∈ Sm such that ord(L̃j) = ord(L̃σ(j)).

. Right-factors of order 1 of L correspond to hyperexponential solutions of
L(y) = 0, that is y′(x)/y(x) ∈ K(x), or y(x) = exp(

´
r(x)) for r ∈ K(x)

. Caution: infinitely many factorizations may exist. E.g., for any c ∈ K,

∂ ? ∂ =
(

∂ + 1
x+c

)
?
(

∂− 1
x+c

)
6=
(

∂− 1
x+c

)
?
(

∂ + 1
x+c

)
= ∂2 − 2

(x+c)2 .
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Example

> with(DEtools):
> A:=(x-1)*Dx^3+(x-x^2)*Dx^2+(3-2*x)*Dx-x:
> B:=3*Dx^2+(x^3-3*x)*Dx-x^4-3:
> DFactor(A,[Dx,x]);

[
(x− 1)

(
∂2 + (x− 1)−1

)
, ∂− x

]

> DFactor(B,[Dx,x]);

[
3 ∂ + x3, ∂− x

]

> GCRD(A,B,[Dx,x]);

∂− x
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Bounds on right factors

Theorem [B., Rivoal, Salvy, 2020]
Let L have order m, degree q, height H. Let M be a monic right factor of L.
Then:

degx(M) ≤ r2(S + 1)E + r(N + 1)S + rN +
1
2

r2(r− 1)
(
(S + 1)(N + 1)− 2

)
,

where

• r = the order of M;

• E = the largest modulus of the local generalized exponents of L at ∞
and at its finite non-apparent singularities;

• N = the largest slope of L at its finite singularities and at ∞;

• S = the number of finite non-apparent singularities of L.

. Previous bound [Grigoriev, 1990] was asymptotic e2m·o(2m )
as m→ +∞
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r2(r− 1)
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)
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where

• r ≤ m;

• N ≤ m + q;

• S ≤ q;

• E ≤ 2(36(q+1)m)9(q+1)2m3m
H(5(q+1)m)9(q+1)2m3m

.
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Not just bounds: Factors can really be big

The second-order operator

L := x∂2 + (2− x)∂ + N

admits the right factor of order 1 and degree N

M = ∂− H′(x)
H(x)

, where H(x) = 1F1(−N; 2; x) =
N

∑
`=0

(
N
`

)
(−x)`

(`+ 1)!
.

. Here, m = 2, q = 1, r = 1 and E = N, N = 1 and S = 0.

. The bound of [B., Rivoal, Salvy, 2020] writes degx(M) ≤ N (optimal).
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Polynomials and skew polynomials: analogies and differences

K(x)[y] versus K(x)〈∂〉

Analogies
Both are (effective) algebras: addition, multiplication
Both are Euclidean: (effective) division with quotient and remainder
In both cases, there are polynomial time algorithms for algebra and
Euclidean operations
Both are (effective) factorization domains, e.g. when K = Q
In both cases, irreducibility and factoring are decidable

Differences
K(x)〈∂〉 is (slightly) non-commutative
Only right-factors in K(x)〈∂〉 correspond to “solutions”
Minimal-order annihilating skew polynomials for a D-finite function need

not be irreducible Lmin
ln(1−x) =

(
∂ + 1

x−1

)
∂

GCRDs and LCLMs in K(x)〈∂〉 not always visible on factorizations
Factorization in K(x)〈∂〉 is not unique
Worse, degrees on factors of L ∈ K(x)〈∂〉 depend on the bit-size of L, not
only on its order/degree
Worse, degrees on factors are not polynomially bounded (!)
Factoring in K(x)〈∂〉 is much more difficult than in K(x)[y].
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Main results (balanced case)

Wn,n = set of operators in K[x]〈∂〉 with ord < n, deg < n

Theorem [Hoeven’02; B.’03; B.-Chyzak-Li-Salvy’12; Hoeven’16]
One can compute output (ord, deg)

MUL in Wn,n in O(nω) ops. in K (O(n), O(n))
GCRD in Wn,n in Õ(nω+1) ops. in K (O(n), O(n2))

LCLM in Wn,n in Õ(nω+1) ops. in K (O(n), O(n2))

REM in Wn,n in Õ(nω+1) ops. in K (O(n), O(n2))

SYM in Wn,n in Õ(n2 ω+3) ops. in K (O(n2), O(n4))

. Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:

reduction to (polynomial) linear algebra

reduction to fast skew multiplication

. FACTOR: (NL)O(n4), with L = bitsize(L) and N ≤ e(L·2
n)2n

[Grigoriev’90]
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Degree bounds are (generically) reached

> for n from 1 to 8 do
> A1:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> A2:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> L:=LCLM(A1,A2,[Dx,x]);
> LL:=mult(denom(L), L, [Dx,x]):
> print(n, [degree(LL,Dx),degree(LL,x)]);
> od:

1, [2, 4]
2, [4, 12]
3, [6, 24]
4, [8, 40]
5, [10, 60]
6, [12, 84]
7, [14, 112]
8, [16, 144]

. Bounds for LCLM in Wn,n can be read off: (2n, 2n(n + 1))
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Main results (unbalanced case)

Wr,d = set of operators in K[x]〈∂〉 with ord < r, deg < d,

Theorem [B.’03; B.-Chyzak-Li-Salvy’12; Benoit-B.-Hoeven’12; Hoeven’16]
One can compute output (ord, deg)

MUL in Wr,d in O(dr ·min(r, d)ω−2) ops. in K (O(r), O(d))
GCRD in Wr,d in Õ(rωd) ops. in K (O(r), O(rd))
LCLM in Wr,d in Õ(rωd) ops. in K (O(r), O(rd))
REM in Wr,d in Õ(rωd) ops. in K (O(r), O(rd))

SYM in Wr,d in Õ(rω+3dω) ops. in K (O(rd), O(r3d))

. Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:

reduction to (polynomial) linear algebra

reduction to fast skew multiplication

. FACTOR: (NL)O(r4), with L = bitsize(L) and N ≤ e(L·2
r)2r

[Grigoriev’90]
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Combinatorial application: Gessel’s conjecture

• g(n) = number of n-steps {↗,↙,←,→}-walks in N2

1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880, . . .

Question: What is the nature of the generating function

G(t) =
∞

∑
n=0

g(n) tn ?
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Combinatorial application: Gessel’s conjecture

• g(i, j; n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

Question: What is the nature of the generating function

G(x, y; t) =
∞
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Combinatorial application: Gessel’s conjecture

• g(i, j; n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

Question: What is the nature of the generating function

G(x, y; t) =
∞

∑
i,j,n=0

g(i, j; n) xiyjtn ?

Theorem [B., Kauers, 2010]

G(x, y; t) is an algebraic function†.

. computer-driven discovery/proof via algorithmic Guess-and-Prove

. involves a LCLM computation of two 11th order (guessed) differential
operators for G(x, 0; t), and G(0, y; t).
. LCLM has order 20, tridegree (359,717,279) in (t, x, y), 1.5 billion coeffs

† Minimal polynomial P(G(x, y; t); x, y, t) = 0 has > 1011 terms; ≈ 30 Gb (6 DVDs!)
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Application to differential guessing

0 5 10 15 20 25 30
order Dt0

20

40

60

80

100

degree t

1000 terms of G(x, 0; t) are enough to guess candidates differential equations
below the red curve. GCRD of candidates could jump above the red curve.
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Application to number theory

Def: p-curvature Ap(L) = the matrix in Mr(K(x)) whose (i, j) entry is the
coefficient of ∂i in ∂p+j rmod L for 0 ≤ i, j < r

Grothendieck’s conjecture (’70s) Γ ∈ Q[x]〈∂〉 has a basis of algebraic solu-
tions over Q(x) if and only if Ap(Γ mod p) is zero for almost all primes p.

. Proved by [Katz 1982] for Picard-Fuchs operators; widely open in general.

> holexprtodiffeq(hypergeom([1/9,4/9,7/9], [1/3, 2/3], x), y(x))[1]:
> L:=de2diffop(%, y(x), [Dx,x]);

(
729 x3 − 729 x2

)
∂3 +

(
3159 x2 − 1458 x

)
∂2 + (2052 x− 162) ∂ + 28

> p:=7; for j to 3 do N:=rightdivision(Dx^p,L,[Dx,x])[2] mod p;
> p:=nextprime(p); print(p, N); od:

11, 0
13, 0
17, 0
19, 0
23, 0
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Bonus: sizes of differential equations for algebraic series

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
f ∈ Q[[t]], P(t, f (t)) = 0 with deg P = D

Question: sizes (order & coefficients degree) of differential equations for f ?
Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:

order

degree

O(D)

O(D^3)

O(D)

O(D^2)

O(D^2)

O(D^2)

Differential equation 
corresponding to recurrence of 

small order

order

degree

O(D)

O(D^3)

Minimal differential equation

O(D)

O(D^2)

Nice differential equation

O(D^2)

O(D^2)Alin Bostan Fast skew arithmetic
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Corresponding recurrences
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O(D^2)O(D^2)

Corresponding recurrences

Computation

Õ(D       )ω+4

Õ(D       )ω+3

Õ(D        )2ω+3

Unrolling the recurrence

Õ(D   M(D)N)2

Õ(DM(D)N)

Õ(M(D )N)2
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Exercises for next week

Exercise 1: Prove that L admits at most r = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.

Exercise 3: Assume that the LCLM of A, B in Wn,n is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

Estimate the size and the degree of the polynomial matrix;

Deduce a bound on the degrees of LCLM(A, B);

Estimate the complexity of computing LCLM(A, B) by this method.
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