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Theexerde fromlastweek

Prove the identity

) ( )2 E k! x2k+2
arcsin(x)” = ,
) (k1) &2
by performing the following steps:
@ Show that y = arcsin(x) can be represented by the differential equation
(1 —x2)y"” — xy’ = 0 and the initial conditions y(0) = 0, y'(0) = 1.
@ Compute a linear differential equation satisfied by z(x) = y(x)2.
@ Deduce a linear recurrence relation satisfied by the coefficients of z(x).
@ Conclude.
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The starting point is the identity
L
V1—x2'

which allows to represent arcsin(x) by the differential equation

(arcsin(x))’ =

(1-2)y" —xy =0

together with the initial conditions

y(0) = arcsin(0) =0, y'(0) = =1.
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Let z = y2, with y”’ = 25/,
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Let z = y2, with ¥/ = /. By successive differentiations, we ge

o = 2yy’,

2x
ZII — zylz + zyyll — zy/Z + 1 = xzyy/’

i

2x 2 4x? ,
=4y + 5 )+ (1_xz+(1_x2)2 vy

2 6x2 ) ,
:(1—x2+(1—x2)2 vy

/2
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Let z = y2, with y”" = %5/. By successive differentiations, we get
S = zyy/,
Z” — 2y/2 + Zyy// — 2]//2 +

1—x? v’

i

2x 2 4x? ,
=Wyt (y +uyy") + 1_x2+(1_x2)2 vy

(2 6x2 )
T\1-a2 0 (1—a2)2 vy

> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent
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Let z = y2, with y”" = %5/. By successive differentiations, we get
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z// — 2y/2 + Zyy// — 2]//2 +
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i

2x 2 4x? ,
=Wyt (y +uyy") + 1_x2+(1_x2)2 vy

(2 6x2 )
T\1-a2 0 (1—a2)2 vy

> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent
> A dependence relation is determined by computing the kernel of

/2

1 0 0 0
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sowenPaz

Let z = y2, with y”" = %5/. By successive differentiations, we get

o = Zyy’,
2x
S — 2y’2 + Zyy” _ 2]/2 + — yy’,
nmo_oa 2x ” " 2 4x? /
=Y VAW (Tt g )W

B 2 N 6x2 'y 6x

T\1-a2 0 (1—a2)2 Wity
> z,7,2",7" are Q(x)-linear comb. of y2, yy’, y'?, thus Q(x)-dependent
> A dependence relation is determined by computing the kernel of

1 0 0 0
M = 0 2 2x 2 + 6x2
0 0

-2 T2 ' ([1-2)7

2 6x

1—x2

> The kernel of M is generated by [0, 1, 3x, x> —1]T
> The corresponding differential equation is

(2 =1)2" +3x2" +2/ =0,
~_ AinBostan Fastskew arithmetic
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Let z = y2, with y”’ = 25/,
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Let z = y2, with ¥/ = %5/. By successive differentiations, we get

7z =2y,
=0 /2_|_2yy//=2y/2+ 2x yy/=2y12+ 5/
Y 1—x2 1—x277
1 2x2
m_ gy X " /
z vy ti a2t Tt 1_xz+(1_x2)z z
_4x x o, x41
“i_af gt +(xz_1)22

2x ,, x o x ., x24+1
_ _ Z.
1—x2 <Z 1—2° ) Ti-ef +(x2—1)2

> The corresponding differential equation is

(x> —=1)2" +3x2" +2 =0.



> Write z(x) = Y, a5x". Then:
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> Write z(x) = Y, a5x". Then:
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

n

2" =Y (n+1)(n+2)(n+3)aysx".

> The coefficient of x" in (x*> — 1)z +3xz" + 7' is

(m—=Dnn+1ay —(n+1)(n+2)(n+3)ay3+3n(n+1)a,+(n+1)ay
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

n
2" =Y (n+1)(n+2)(n+3)aysx".
n
> The coefficient of x" in (x> — 1)z 4 3xz" 42 is
(mn=1)nn+1)a, 1 —(n+1)(n+2)(n+3)a,13+3n(n+1)a, + (n+1)a,41
> Thus, the recurrence corresponding to (x> — 1)z +3xz" + 2/ =0 is

(n+1)(n+2)(n+3)ay43 = (n+1)%a, 1.
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> Write z(x) = Y, a5x". Then:
7= E(” +1ay1x",
n

2" =Y (n+1)(n+2)a,x",

I
2" =Y (n+1)(n+2)(n+3)aysx".
7
> The coefficient of x" in (x> — 1)z 4 3xz" 42 is
(n=Dn(n+1ay — (n+1)(n+2)(n+3)ay3+3n(n +agy1+ (n+1)app
> Thus, the recurrence corresponding to (x> — 1)z +3xz" + 2/ =0 is
(n+1)(n+2)(n+3)ani3 = (n+1)%a,41.
> Since (1 + 1) has no roots in N, it further simplifies to

(n+2)(n+3)ay;3 — (n+1)%a,41 = 0.
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>z =), a,x" satisfies

(n+2)(n+3)a13 — (n+1)%a, 41 = 0.

> Initial conditions:

2 = 2(0) = y(0) = 0, a1 = #(0) = 29(0)y/(0) = 0, a2 = 22" (0) = y' (0 =1.

> Recurrence and a1 = 0 imply a1 = 0, so the series is even.
> Let by = ag4o. Then z(x) = Y bex®+2 and

(2k +1)(2k +2)b = 4k*by_1, by =1

> Thus, the sequence (b )y is hypergeometric and

k1?

K2 !
(k+1)!(2k+1)(2k—1)---3

E— — P . = k
BRI CESV TS 2

by
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>z =Y, a,x" satisfies

(n+2)(n+3)ay3 — (n+1)%a,4 = 0.

> Initial conditions:

2 = 2(0) = y(0) = 0, a1 = 2(0) = 29(0)y/(0) = 0, a2 = 22"(0) = y' (0 =1.

> Recurrence and a; = 0 imply a1 = 0, so the series is even.
> Let by = apyp. Then z(x) = Y bex®+2 and

(2k +1)(2k +2)b; = 4k%b_q, by =1

> Thus, the sequence (by )y is hypergeometric and

k! k! 1

e k+1)-(k+ k=13 (k+hHk=1)---12k+2
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1. Compute D-finite representation for y(x) = arcsin(x):

> gfun:-holexprtodiffeq(arcsin(x),y(x));

{(#-1) S +xfv@ v -0pw 0 -1}
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1. Compute D-finite representation for y(x) = arcsin(x):

> gfun:-holexprtodiffeq(arcsin(x),y(x));

{(#-1) S +xfv@ v -0pw 0 -1}

2. Compute D-finite representation for z(x) = arcsin(x)?:

> deqz:=gfun:-‘diffeq*diffeq‘(deql,deql, y(x));

2 3
{Gv+3r gz (#-1) $5r0, 50 =00 W) 0 =0, (D2) 1) 0) =2
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3. Compute linear recurrence satisfied by the coefficients a,, of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

{(+2n+1)a(n+1)+ (-n2 ~5n—6)a(n+3),a(0) =0,a(1) =0,a(2) =1}
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Solution in Maple

3. Compute linear recurrence satisfied by the coefficients a,, of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

{(n2+2n+l)a(n+1)+(—n2—5n—6)a(n+3),a(0) :0,a(1):0,a(2):1}

4. Compute a closed form for a,, and conclude:

> rsolve({recz[1], a(1) = 0, a(2) = 1}, a(n)):
> a2k:=simplify(subs(n=2%k,%)) assuming k::posint;
> subs (GAMMA (k+1/2)=GAMMA (2*k) *sqrt (Pi) /2~ (2xk-1) /GAMMA (k) ,a2k) ;

0 (e )) .
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Solution in Maple

3. Compute linear recurrence satisfied by the coefficients a, of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

{(n2+2n+1)u(n+1)+<fn275n76)u(n+3),u(0) :O,a(l):O,a(Z):l}

4. Compute a closed form for a,, and conclude:

> rsolve({recz[1], a(1l) = 0, a(2) = 1}, a(@)):
> a2k:=simplify(subs(n=2%k,%)) assuming k::posint;
> subs (GAMMA (k+1/2)=GAMMA (2xk) *sqrt (Pi) /2~ (2*k-1) /GAMMA (k) ,a2k) ;

0 (e} Fra

5. Check

> sum(a2k*x”(2%k), k=1..infinity) assuming x>0 and x<1;

(arcsin (x))?

9 /40



LINEAR DIFFERENTIAL OPERATORS
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o K = an effective field (e.g., K = Q, or K = [Fp)
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e K = an effective field (e.g.,, K = Q, or K = [Fp)
o K[x](9) = the Weyl algebra of linear differential operators with
polynomial coefficients in K[x]; commutation rule dx = xd + 1
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e K = an effective field (e.g.,, K = Q, or K = [Fp)
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Algebraic formalization of the notion of linear differential equation
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e K = an effective field (e.g.,, K = Q, or K = [Fp)
e K[x](9) = the Weyl algebra of linear differential operators with
polynomial coefficients in K[x]; commutation rule dx = xd + 1
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ComtextandAim

e K = an effective field (e.g.,, K = Q, or K = [Fp)
e K[x](9) = the Weyl algebra of linear differential operators with
polynomial coefficients in K[x]; commutation rule 0x = xd + 1

Algebraic formalization of the notion of linear differential equation

ar(x)y") (x) + -+ a1 (2)y (x) +ag(x)y(x) = 0
S
L(y) =0, where L =a,(x)0"+--+a1(x)d+ap(x)

Commutation rule formalizes Leibniz’s rule (f¢)" = f'¢ + f¢’
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e K = an effective field (e.g.,, K = Q, or K = [Fp)
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ar(x)y ") (x) + -+ + a1 (2)y' (%) + ag (x)y (x) = 0
S
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Commutation rule formalizes Leibniz’s rule (f¢)" = f'¢ + f¢’

> General aim: understand complexity of operations in K[x](9)
> Specific aims: degree bounds / fast algorithms for x, GCRD, LCLM, ®
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e K = an effective field (e.g., K = Q, or K = [Fy)
e K[x](9) = the Weyl algebra of linear differential operators with
polynomial coefficients in K[x]; commutation rule 0x = xd + 1

Algebraic formalization of the notion of linear differential equation

ar ()y") () + -+ ()Y (x) + ap(x)y(x) = 0
S
L(y)=0, where L=a,(x)0"+---+a1(x)d+ag(x)

Commutation rule formalizes Leibniz’s rule (f¢)" = f'¢ + f¢’

> General aim: understand complexity of operations in K[x](9)
> Specific aims: degree bounds / fast algorithms for x, GCRD, LCLM, ®

> General message: complexity analysis = tool for algorithmic design
> Today: polynomial linear algebra = non-comm. complexity yardstick
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o K[x](9) = the polynomial Weyl algebra of linear differential operators
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o K[x](9) = the polynomial Weyl algebra of linear differential operators
> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]
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e K[x](9) = the polynomial Weyl algebra of linear differential operators
> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]
> Degree r = degy (L) is called the order of L, denoted ord(L)
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e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg, (a;(x)) is the degree of L, denoted deg(L)
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 Skew (differenal)polynomials

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg, (a;(x)) is the degree of L, denoted deg(L)
> Usual +; skew multiplication + defined by 9% P(x) = P(x)x 0+ P'(x)
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 Skew (differenal)polynomials

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg, (a;(x)) is the degree of L, denoted deg(L)
> Usual +; skew multiplication + defined by 9% P(x) = P(x)x 0+ P'(x)

e K(x)(9) = the rational Weyl algebra of linear differential operators
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Skew (di

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)
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Skew (differe

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg,(a;(x)) is the degree of L, denoted deg(L)
> Usual +; skew multiplication + defined by 9% P(x) = P(x)x 0+ P'(x)

e K(x)(9) = the rational Weyl algebra of linear differential operators
> Elements: L = a,(x)0" + - - - 4+ a1(x)0 + ap(x) with ;(x) € K(x)
> r = deg,(L) is called the order of L, denoted ord(L)
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Skew (differentia

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)
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e K(x)(9) = the rational Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)0 + ap(x) with a;(x) € K(x)

> r = deg,(L) is called the order of L, denoted ord(L)

> deg(L) := max(deg(c), deg(b;)), where a; = b; /c with ¢ of minimal degree
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Skew (differential) p

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)9d + ap(x) with g;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg,(a;(x)) is the degree of L, denoted deg(L)
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Skew (differential) polyn

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)d + ap(x) with a;(x) € K[x]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg,(a;(x)) is the degree of L, denoted deg(L)
> Usual +; skew multiplication * defined by 9 x P(x) = P(x) xd + P'(x)

e K(x)(9) = the rational Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)0 + ap(x) with a;(x) € K(x)

> r = deg,(L) is called the order of L, denoted ord(L)

> deg(L) := max(deg(c), deg(b;)), where a; = b; /c with ¢ of minimal degree
> Usual +; skew multiplication * defined by 9 R(x) = R(x) x9 + R'(x)

> Mathematically, the rational Weyl algebra K (x)(d) is nicer
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Skew (differential) polynomi

e K[x](9) = the polynomial Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - 4+ a1 (x)0 + ap(x) with g;(x) € Kx]

> Degree r = degy (L) is called the order of L, denoted ord(L)

> Degree deg, (L) := max(deg,(a;(x)) is the degree of L, denoted deg(L)
> Usual +; skew multiplication * defined by 9 x P(x) = P(x) xd + P'(x)

e K(x)(9) = the rational Weyl algebra of linear differential operators

> Elements: L = a,(x)0" + - - - + a1 (x)0 + ap(x) with a;(x) € K(x)

> r = deg,(L) is called the order of L, denoted ord(L)

> deg(L) := max(deg(c), deg(b;)), where a; = b; /c with ¢ of minimal degree
> Usual +; skew multiplication * defined by 9 R(x) = R(x) x9 + R'(x)

> Mathematically, the rational Weyl algebra K (x)(d) is nicer
> Algorithmically, the polynomial Weyl algebra K[x](9) is nicer
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Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)(9) is a non-commutative (left and right) Euclidean domain: for
A, B € K(x)(9), there exist unique Q, R € K(x)(d) such that

A=QB+R, and ord(R) < ord(B).
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A=QB+R, and ord(R) < ord(B).
(This is called the Euclidean right division of A by B.)

> As a consequence, any A, B € K(x)(0) admit a greatest common right
divisor (GCRD) and a least common left multiple (LCLM).
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Theorem [Libri 1833, Brassinne 1864, Wedderburn 1932, Ore 1932]
K(x)(9) is a non-commutative (left and right) Euclidean domain: for
A, B € K(x)(0), there exist unique Q, R € K(x)(9) such that

A=QB+R, and ord(R) < ord(B).
(This is called the Euclidean right division of A by B.)

> As a consequence, any A, B € K(x)(0) admit a greatest common right
divisor (GCRD) and a least common left multiple (LCLM).

> Moreover, GCRD(A, B) and LCLM(A, B) can be computed by a
non-commutative version of the extended Euclidean algorithm.
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> diffop2de, de2diffop, mult

> with(DEtools):
> mult(Dx,x, [Dx,x]);

xd+1

implements the basic skew multiplication rule.
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Implementation i

> diffop2de, de2diffop, mult

> with(DEtools):
> mult(Dx,x, [Dx,x]);

xd+1
implements the basic skew multiplication rule.

> rightdivision, GCRD, LCLM

[ > rightdivision(Dx~10,Dx"2-x, [Dx,x]) [2]; ]

(20 B4 80) 3+ 1% +100 x2

proves that Ai('%) (x) = (20x3 + 80)Ai (x) + (x° + 100x2) Ai (x).
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Any element of K(x)(9)
L=ar(x)0" +---+a1(x)0+ap(x)
admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

V(L) ={y e R[L(y) = 0}
which contains “all” solutions of L, in the sense that dimc V(L) = r, where

C={yeR|ay) =0}
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Any element of K(x)(9)

L=ar(x)0" +---+a1(x)0+ap(x)
admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

V(L) ={y e R|L(y) = 0}
which contains “all” solutions of L, in the sense that dimc V(L) = r, where

C={yeR|ay) =0}

> Such an R is an analogue of the notion of “splitting field” for polynomials
> V(L): algebraic counterpart of the notion of “fundamental set of solutions”

> If char(K) = 0 and if x = a is an ordinary point (not pole of any a;/ay),
then one may choose R = K[[x — «]] (by the Cauchy-Lipschitz theorem)

15 / 40

T e——



Solution spaces

Any element of K(x)(9)

L=a,(x)0"+ - +a1(x)0 +ao(x)
admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

V(L) ={y € R|L(y) =0}
which contains “all” solutions of L, in the sense that dim¢ V(L) = r, where

C={yeR|ay) =0}

> Such an R is an analogue of the notion of “splitting field” for polynomials
> V(L): algebraic counterpart of the notion of “fundamental set of solutions”

> If char(K) = 0 and if x = a is an ordinary point (not pole of any a;/ay),
then one may choose R = K[[x — «]] (by the Cauchy-Lipschitz theorem)

Exercise 1: Prove that L admits at most » = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.
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The least common left multiple (LCLM) of A, B € K(x)(9) is the least order
monic operator L € K(x)(9) such that

L=Q1xA=Qy*B forsome cofactors Q1, Qs € K(x)(9)
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monic operator L € K(x)(9) such that

L=Q1xA=Qy*B forsome cofactors Q1, Qs € K(x)(9)

> In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

16 /40



 Definition of LCLMand GRD.____

The least common left multiple (LCLM) of A, B € K(x)(9) is the least order
monic operator L € K(x)(9) such that

L=Q1xA=Qy*B forsome cofactors Q1, Qs € K(x)(9)

> In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of A, B € K(x)(0) is the highest
order monic operator G € K(x)(9) such that

A=U;*G and B=U;xG forsome cofactors Uy, U € K(x)(9)
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The least common left multiple (LCLM) of A, B € K(x)(9) is the least order
monic operator L € K(x)(9) such that

L=Q1xA=Qy*B forsome cofactors Q1, Qs € K(x)(9)

> In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of A, B € K(x)(0) is the highest
order monic operator G € K(x)(9) such that

A=U;*G and B=U;xG forsome cofactors Uy, U € K(x)(9)

> In terms of solution spaces: V(GCRD(A,B)) = V(A)NV(B)
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Definition of LC

The least common left multiple (LCLM) of A, B € K(x)(9) is the least order
monic operator L € K(x)(9) such that

L=Q1xA=Qy*B forsome cofactors Q1, Qs € K(x)(9)

> In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)
The greatest common right divisor (GCRD) of A, B € K(x)(0) is the highest
order monic operator G € K(x)(9) such that

A=U;*G and B=U;xG forsome cofactors Uy, U € K(x)(9)

> In terms of solution spaces: V(GCRD(A,B)) = V(A)NV(B)

> Contrary to the commutative case: A x B # LCLM(A, B) x GCRD(A, B)
but ord(A x B) = ord(A) + ord(B) = ord(LCLM(A, B)) 4+ ord(GCRD(A, B))
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> A:=(x-1)*Dx"3+(x~x"2) *Dx "2+ (3-2#*x) *Dx-X :
> B:=3*Dx"2+(x"3-3*x) #*Dx-x"4-3:
> G:=rightdivision(4,B, [Dx,x]);

x 1 ¥ a8 ¥ X ¥ x
N N S A (0 T S ST 4_ 3 X X
{(3 3>a 9+9,( SR )a x+xt—x +
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> A:=(x-1)*Dx"3+(x~x"2) *Dx "2+ (3-2#*x) *Dx-X :
> B:=3*Dx"2+(x"3-3*x) #*Dx-x"4-3:
> G:=rightdivision(4,B, [Dx,x]);

x 1 LSS ¥ x® ¥ a7
U N o 173 2 A R 4 3 4 o
Ks 3) 9+9’( ity 9) rEr-xogty

> rightdivision(B,G, [Dx,x]);

27 x (2 —x® —30x° +27x +9x2 4+ 81 x — 54)
7 6 3 2 9+9 2 /0
X7 —=x0—9x> +9x%+9 (x7 —x6—9x3 +9x2 +9)
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> A:=(x-1)*Dx"3+(x~x"2) *Dx "2+ (3-2#*x) *Dx-X :
> B:=3*Dx"2+(x"3-3*x) #*Dx-x"4-3:
> G:=rightdivision(4,B, [Dx,x]);

x 1 LSS ¥ x® ¥ a7
U N o 173 2 A R 4 .3 o
Ks 3) 9*9’( ity 9) rEr-xogty

> rightdivision(B,G, [Dx,x]);

27 x (2 —x® —30x° +27x +9x2 4+ 81 x — 54)
a+9 ,0
x7 —x6 —9x34+9x2 49 (x7 — x6 —9x3 +9x2 +9)2

> GCRD(A,B, [Dx,x]);

Jd—x
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Euclid(A, B)

In: A and B in K]x].

Out: A ged G of A and B.
@ Ry:=A;Ri:=B;i:=1
@ While R; is non-zero, do:

Ri+1 = Rifl mod Ri
i:=i+1

@ Return R;_;.

> Termination: deg(B) > deg(Rp) > deg(Ry) > ---
> Correctness: ged(A, B) = ged(B, A mod B)
> Quadratic complexity: O( deg(A) deg(B)) operations in K
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_ Skew Fudidean algorithm i K(9®)

SkewEuclid(A, B)

In: A and B in K(x)(9).
Out: A GCRD G of A and B.

@ Ry:=A;Ri:=B;i:=1

@ While R; is non-zero, do:

Ri+1 = Rifl rmod R,’
i:=i+1

@ Return R;_;.

> Termination: ord(B) > ord(R;) > ord(Ry) > - --
> Correctness: GCRD(A, B) = GCRD(B, A rmod B)
> “Complexity”: O(ord(A) ord(B)) operations in K(x)

19 / 40
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Extended Eu

ExtendedEuclid(A, B)

In: A and B in K[x].
Out: A ged G of A and B, and cofactors U and V.

@ Ry:=AUy:=1,Vy:=0,Ri:=B, U1 :=0;,V;:=1,i:=1.

@ While R; is non-zero, do:
® (QisRiy1) == QuotRem(R;_1, R;) #R; 1 = QiR; + Rij1
@ Uy == Ui — Qilly; Vi == Vi1 — QiVi
@ i:=i+1.

° Return (Ri—ll lIi_l, Vi—l)'

> Termination: deg(B) > deg(Ry) > deg(Ry) > - -
> Correctness: R; = U;A + V;B (by induction):

Riy1 =Ri1 — QiR =U; 1A+ Vi 1B— Qi(U;A+V;B) = U1 A+ V1B
> Quadratic complexity: O( deg(A) deg(B)) operations in K

20/ 40
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Skew Extende

SkewExtendedEuclid(A, B)

In: A and B in K(x){(9).
Out: A GCRD G of A and B, and cofactors U and V.

@ Ry:=AUy:=1,Vy:=0,Ri:=B, U1 :=0;,V;:=1,i:=1.

@ While R; is non-zero, do:
1) (Qi/ RH—l) = RightDiViSion(R,‘_l,Ri) #R; 1 = QiRi + Ri+l
@ Uy == Ui — Qilly; Vi == Vi1 — QiVi
@ i:=i+1.

° Return (Ri—ll lI,-_l, Vi—l)'

> Termination: ord(B) > ord(Ry) > ord(Ry) > - -
> Correctness: R; = U;A + V;B (by induction):

Riy1 =Ri 1 — QiR =U; 1A+ Vi 1B— Qi(U;A+V;B) = Ui 1A+ V1B
> “Complexity”: O(ord(A) ord(B)) operations in K(x)

21/ 40
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_ HalfBxtended Euclidean algorithm in K[

HalfExtendedEuclid(A, B)

In: A and B in K[x].
Out: A ged G and an lem L of A and B.

@ Ry:=A;Uy:=1;,R;:=B; Uy :=0;i:=1.
@ While R; is non-zero, do:

@ (Qi, Riy1) := QuotRem(R;_1, R;) #Ri1 = QiR + Riy1
@ Uiy :=Ui—1 — QiU
@ i:=i+1.

@ Return (Ri,l, UiA).

> Quadratic complexity: O( deg(A) deg(B)) operations in K

22 /40
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 Skew HaltExtended Fucidean algoritim in K((0)

SkewHalfExtendedEuclid(A, B)

In: A and B in K(x)(9).
Out: A GCRD G and an LCLM L of A and B.

@ Ry:=A;Uy:=1;,R;:=B; Uy :=0;i:=1.
@ While R; is non-zero, do:

@ (Qi Rit1) := RightDivision(R;_1, R;) #R;_1 = QiR; + Rij1
@ Uiy :=Ui—1 — QiU
@ i:=i+1.

@ Return (Ri,l, UiA).

> “Complexity”: O(ord(A) ord(B)) operations in K(x)

23 /40

T e——



Def. The symmetric product (SYM) of L1, Ly € K(x)(9), denoted Sym(Ly, L),
or L1 ® Ly, is the least order monic operator S € K(x)(9) such that

S(ylyQ) =0 forall Y1 € V(Ll),yz (S V(Lz)
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Defintonof M

Def. The symmetric product (SYM) of L1, Ly € K(x)(9), denoted Sym(Ly, L),
or L1 ® Ly, is the least order monic operator S € K(x)(9) such that

S(yl]/g) =0 forall Y1 € V(Ll),yz S V(Lz)
> In terms of solution spaces: V(A ® B) = V(A) @ V(B)

> symmetric_product(Dx~3, Dx~2, [Dx,x]);

a4
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Def. The symmetric product (SYM) of L1, Ly € K(x)(9), denoted Sym(Ly, L),
or L1 ® Ly, is the least order monic operator S € K(x)(9) such that

S(ylyg) =0 forall Y1 € V(Ll),yz S V(Lz)
> In terms of solution spaces: V(A ® B) = V(A) @ V(B)

> symmetric_product(Dx~3, Dx~2, [Dx,x]);

a4

Def. The m-th symmetric power (SYMP) of L € K(x)(9), denoted Sym™ (L),
is the least order monic operator S € K(x)(d) such that

S(y")=0 forallye V(L).
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Definition of SYM

Def. The symmetric product (SYM) of L1, Ly € K(x)(9), denoted Sym(Ly, L),
or L1 ® Ly, is the least order monic operator S € K(x)(9) such that

S(]/l]/Z) =0 forall Y1 € V(Ll),yz S V(Lz)
> In terms of solution spaces: V(A ® B) = V(A) @ V(B)

> symmetric_product(Dx~3, Dx~2, [Dx,x]);

a4

Def. The m-th symmetric power (SYMP) of L € K(x)(9), denoted Sym™ (L),
is the least order monic operator S € K(x)(d) such that

S(y")=0 forallye V(L).

> symmetric_power (Dx~3, 2, [Dx,x]);

85
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> deqin:=(1-x"2)*diff (diff (y(x),x) ,x)-x*diff (y(x),x):
> de:={deqin, y(0)=rand(100) (), D(y) (0)=rand(100) )};

2
{rgy@+ (1-2) $5v(),v 0 =820 0 =31}
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Example — back to the e

v

deqin:=(1-x"2)*diff (diff (y(x),x),x)-x*diff (y(x),x):
de:={deqin, y(0)=rand(100) (), D(y) (0)=rand(100) O};

Vv

2
{_x%y(x) +(1-22) %y(x),y (0) =82,D () (0) = 31}

with(numapprox): Order:=30; p:=/: r:=3:

Z:=series(op(2, dsolve(de, y(x), series))”2,x,p):
hermite_pade([Z,seq(series(diff(Z,x$k) ,x,p),k=1..r)],x,p):
deqout :=add (HP [k+1]*diff (z(x) ,x$k), k=1..r);

d d? 5 d?
e (x) +3x@z (x)+ (x - 1) e (x)
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> Linear differential operators L = p,0" 4 - - - 4 pp with coefficients p; € K
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> Linear differential operators L = p,0" 4 - - - 4 pp with coefficients p; € K
> Characteristic polynomial: P(x) = p,x” + - - - + py splits over K

P(x) =pr(x —ap)™ - (x —ap)™, wa; €K, m; € N*,
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> Linear differential operators L = p,0" 4 - - - 4 pp with coefficients p; € K
> Characteristic polynomial: P(x) = p,x” + - - - + py splits over K
P(x) = pr(x—a)™ -+ (x —ag)™, a; €K, m; € N*,
> V(L) is generated (over K) by
{e"‘lx,xe"‘lx, coxmTlemX X kX e X } ,

where for a € K, we denote by e** the power series ¥, a"x" /n! of K[[x]].
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> V(L) is generated (over K) by
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where for a € K, we denote by e** the power series ¥, a"x" /n! of K[[x]].

> GCRD and LCLM can be computed by the usual Euclidean algorithm
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The case of co

> Linear differential operators L = p,0" 4 - - - 4 pp with coefficients p; € K

> Characteristic polynomial: P(x) = p,x” + - - - + py splits over K
P(x) =pr(x —ap)™ - (x —ap)™, wa; €K, m; € N*,
> V(L) is generated (over K) by
{e"‘l",xe"‘lx,...,x"’l_le"‘lx,..., P T L NP L e L },
where for a € K, we denote by e** the power series ¥, a"x" /n! of K[[x]].

> GCRD and LCLM can be computed by the usual Euclidean algorithm

> SYM can be computed by resultants: SYM(L1, Ly)= P @ Py ifall m; =1

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.
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> L1:=225%Dx"3-1375%Dx"2-2054*Dx+2088: L2:=245%Dx"2-1759%Dx-36:
> GCRD(L1,L2, [Dx,x]), LCLM(L1,L2,[Dx,x]);

536 i 268607 340079° 1002580 232
5 441 3675 11025 ' 1225
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> L1:=225%Dx"3-1375%Dx"2-2054*Dx+2088: L2:=245%Dx"2-1759%Dx-36:
> GCRD(L1,L2, [Dx,x]), LCLM(L1,L2,[Dx,x]);

536 i 268607 340079° 1002580 232
5 441 3675 11025 ' 1225

> gcd(L1,L2): expand(%/lcoeff (%,Dx));
> 1lem(L1,L2) : expand(%/lcoeff (¥%,Dx));

536 i 26860° 340079% 1002580 232
5 441 3675 11025 1225
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> L1:=225%Dx"3-1375%Dx"2-2054*Dx+2088: L2:=245%Dx"2-1759%Dx-36:
> GCRD(L1,L2, [Dx,x]), LCLM(L1,L2,[Dx,x]);

536 4 2686 9° 340079 100258 9 = 232
5’ 441 3675 11025 ' 1225

> gcd(L1,L2): expand(%/lcoeff (%,Dx));
> 1lem(L1,L2) : expand(%/lcoeff (¥%,Dx));

536 4 2686 9° 340079 100258 9 = 232
5’ 441 3675 11025 ' 1225

> symmetric_product(L1,L2, [Dx,x]);
subs (t=Dx, resultant(subs(Dx=x,L1), subs(Dx=t-x,L2),x)):
> expand (%/1lcoeff (%,Dx));

A\

74443 95 1909137901 9* 700478668231 9> 7570609408322 9% 2240061794008 9 1233423295936
2205 4862025 397065375 5955980625 283618125 220591875

20
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Theorem [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903]
Elements of K(x)(d) can be expressed as products of irreducible factors.
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More precisely, any L € K(x)(d) can be written L = r(x) % Ly -+ * Ly,
where r € K(x) and the L;’s are monic and irreducible in K(x)(9).
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Theorem [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903]
Elements of K(x)(d) can be expressed as products of irreducible factors.

More precisely, any L € K(x)(d) can be written L = r(x) x Ly * - - - % L,
where r € K(x) and the L;’s are monic and irreducible in K(x)(9).

Moreover, if L = 7(x) x Ly - - -  Ls for monic irreducible L; and 7 € K(x),
then r = 7, m = s and there exists ¢ € S, such that ord(L;) = ord(Ly(;))-
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Rational Weyl alge

Theorem [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903]
Elements of K(x)(d) can be expressed as products of irreducible factors.
More precisely, any L € K(x)(d) can be written L = r(x) x Ly * - - - % L,
where r € K(x) and the L;’s are monic and irreducible in K(x)(d).

Moreover, if L = 7(x) x Ly - - -  Ls for monic irreducible L; and 7 € K(x),
then r = 7, m = s and there exists ¢ € S, such that ord(L;) = ord(Ly(;))-

> Right-factors of order 1 of L correspond to hyperexponential solutions of
L(y) =0, thatis ' (x)/y(x) € K(x), or y(x) = exp([ r(x)) for r € K(x)
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Rational Weyl algebra is

Theorem [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903]
Elements of K(x)(d) can be expressed as products of irreducible factors.
More precisely, any L € K(x)(d) can be written L = r(x) x Ly * - - - % L,
where r € K(x) and the L;’s are monic and irreducible in K(x)(d).

Moreover, if L = 7(x) « L % - - - % Ls for monic irreducible i]- and 7 € K(x),
then r =7, m = s and there exists ¢ € Sy, such that ord(L;) = ord(Ly(j)).

> Right-factors of order 1 of L correspond to hyperexponential solutions of
L(y) =0, thatis ' (x)/y(x) € K(x), or y(x) = exp([ r(x)) for r € K(x)

> Caution: infinitely many factorizations may exist. E.g., for any ¢ € K,
_ 1 1 1 1) _ 2 2
%0 = (a+m)*(a—m) £ (a—m)*(aer) =& - in
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> with(DEtools) :

> A:=(x-1)*Dx"3+(x-x"2) *Dx "2+ (3-2%x) *Dx-X :
> B:=3%Dx"2+(x"3-3*x)*Dx-x"4-3:

> DFactor (4, [Dx,x]);

[(x—l) (82+(x—1)_1),8—x}
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Bempe

with(DEtools):
A:=(x-1)*Dx"3+(x~-x"2) *Dx "2+ (3-2*x) #*Dx-x:
B:=3*Dx"~2+(x"3-3%x) *Dx-x"4-3:
DFactor (4, [Dx,x]);

[(x—l) (82+(x—1)_1),8—x}

> DFactor (B, [Dx,x]);

39+4x%0—x
[ ]
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with(DEtools):
A:=(x-1)*Dx"3+(x~-x"2) *Dx "2+ (3-2*x) #*Dx-x:
B:=3*Dx"~2+(x"3-3%x) *Dx-x"4-3:
DFactor (4, [Dx,x]);

[(x—l) (82+(x—1)_1),8—x}

> DFactor (B, [Dx,x]);

[3 8+x3,a—x]

> GCRD(A,B, [Dx,x]);

Jd—x
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Theorem [B., Rivoal, Salvy, 2020]
Let L have order m, degree g, height H. Let M be a monic right factor of L.
Then:

deg, (M) < 2(S+1)E +r(N +1)S+rN + %rz(r— D((S+1)N+1)-2),

where
e r = the order of M;

o & = the largest modulus of the local generalized exponents of L at co
and at its finite non-apparent singularities;

e N = the largest slope of L at its finite singularities and at oo;
e S = the number of finite non-apparent singularities of L.

-0(2MM)

& Previous bound [Grigoriev, 1990] was asymptotic ¢*" as m — +oo

30 / 40

T e——



Theorem [B., Rivoal, Salvy, 2020]
Let L have order m, degree g, height H. Let M be a monic right factor of L.
Then:

deg, (M) < *(S+1)E +r(N +1)S+rN + %rz(r— D((S+1HN+1)-2),

where
o r < m;
e N<m+y;
e S<y;
o £ < 2(B6(q+1)m)P @I 1y (5(g+1)m) et

2,,,3m

o(2"M)

> Previous bound [Grigoriev, 1990] was asymptotic ¢*>" "~ ' as m — +oo
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The second-order operator
L:=x0+(2—-x)0+N

admits the right factor of order 1 and degree N

. H(x) _ = 3 (N (=0
M_a_m, where H(x)—lFl(—erx)_Zg( )(44—1)!'
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The second-order operator
L:=x3*+(2-x)9+N

admits the right factor of order 1 and degree N

. H(x) _ oy g (N) (=)
M_a_m, where H(x)—lFl(_Nfzfx)_E]( )W

>Here,m=2,g=1,r=1land £ =N, N =1and S =0.
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The second-order operator
L:=x3*+(2-x)9+N

admits the right factor of order 1 and degree N

. H(x) _ oy g (N) (=)
M=2o— A’ where H(x) =1F (—N; 2,x)—;)< )W

>Here,m=2,g=1,r=1land £ =N, N =1and S =0.

> The bound of [B., Rivoal, Salvy, 2020] writes deg, (M) < N (optimal).
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K(x)[y] versus K(x)(9)



K(x)[y] versus K(x)(9)

© Analogies
© Both are (effective) algebras: addition, multiplication
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© Both are (effective) algebras: addition, multiplication
© Both are Euclidean: (effective) division with quotient and remainder
© In both cases, there are polynomial time algorithms for algebra and
Euclidean operations
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~ Polynomials and skew polynomials aalogiesand difrences

K(x)[y] versus K(x)(9)

© Analogies
© Both are (effective) algebras: addition, multiplication
© Both are Euclidean: (effective) division with quotient and remainder
© In both cases, there are polynomial time algorithms for algebra and
Euclidean operations
© Both are (effective) factorization domains, e.g. when K = Q
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K(x)[y] versus K(x)(9)

© Analogies

© Both are (effective) algebras: addition, multiplication

© Both are Euclidean: (effective) division with quotient and remainder

© In both cases, there are polynomial time algorithms for algebra and
Euclidean operations

© Both are (effective) factorization domains, e.g. when K = Q

© In both cases, irreducibility and factoring are decidable
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_ Polynomias and skew polynomials: analogies and differnces

K(x)[y] versus K(x)(9)

© Analogies
© Both are (effective) algebras: addition, multiplication
© Both are Euclidean: (effective) division with quotient and remainder
© In both cases, there are polynomial time algorithms for algebra and
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Polynomials and skew polyno

K(x)[y] versus K(x)(d)

© Analogies
© Both are (effective) algebras: addition, multiplication
© Both are Euclidean: (effective) division with quotient and remainder
© In both cases, there are polynomial time algorithms for algebra and
Euclidean operations
Both are (effective) factorization domains, e.g. when K = Q
In both cases, irreducibility and factoring are decidable

ee

© Differences

© K(x)(9) is (slightly) non-commutative

© Only right-factors in K(x)(d) correspond to “solutions”

© Minimal-order annihilating skew polynomials for a D-finite function need
not be irreducible L{:i(‘}_ 0= (a + xlj> ]
GCRDs and LCLMs in K(x)(9) not always visible on factorizations
Factorization in K(x)(9) is not unique

Worse, degrees on factors of L € K(x)(9) depend on the bit-size of L, not
only on its order/degree

© Worse, degrees on factors are not polynomially bounded (!)

© Factoring in K(x)(9) is much more difficult than in K(x)[y].

eoeo
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Main results (bal

Wy, = set of operators in K[x](d) with ord < n,deg < n

Theorem [Hoeven'02; B."03; B.-Chyzak-Li-Salvy’12; Hoeven'16]

One can compute output (ord, deg)
© MUL in Wy, in O(n) ops. in K (O(n),0(n))
© GCRD in Wy, in O(n“*!) ops. in K (O(n),0(n?))
© LCLM in Wy, in O(n“*1) ops. in K (O(n),0(n?))
© REM in W, , in O(n“*1) ops. in K (O(n),0(n?))
© SYM in Wy, , in O(1n?¢“*3) ops. in K (0(n?),0(n*))

> Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:
© reduction to (polynomial) linear algebra

© reduction to fast skew multiplication
&> FACTOR: (N£)°(""), with £ = bitsize(L) and N < e(£2")*" [Grigoriev'90]
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> for n from 1 to 8 do

> Al:=add(randpoly(x,degree=n,dense)*Dx"i, i=0..n);
> A2:=add(randpoly(x,degree=n,dense)*Dx"i, i=0..n);
> L:=LCLM(A1,A2, [Dx,x]);

> LL:=mult(denom(L), L, [Dx,x]):

> print(n, [degree(LL,Dx),degree(LL,x)]);

> od:

2,4]
4,12]
[6,24]
[8,40]
[10, 60]
[12,84]
[14,112]
[16,144]

® NS U W N e

34 /40

T e—



Degree bounds a

> for n from 1 to 8 do

> Al:=add(randpoly(x,degree=n,dense)*Dx"i, i=0..n);
> A2:=add(randpoly(x,degree=n,dense)*Dx"i, i=0..n);
> L:=LCLM(A1,A2, [Dx,x]);

> LL:=mult(denom(L), L, [Dx,x]):

> print(n, [degree(LL,Dx),degree(LL,x)]);

> od:

2,4]
4,12]
[6,24]
[8,40]
[10, 60]
[12,84]
[14,112]
[16,144]

® NS U W N e

> Bounds for LCLM in Wy, , can be read off: (2n,2n(n + 1))
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Main results (un

W, 4 = set of operators in K[x](9) with ord < r,deg < d,

Theorem [B.’03; B.-Chyzak-Li-Salvy’12; Benoit-B.-Hoeven'12; Hoeven'16]

One can compute output (ord, deg)
© MUL in W, 4 in O(dr - min(r,d)“~2) ops. in K (O(r),0(d))
© GCRD in W, 4 in O(r“d) ops. in K (O(r),0(rd))
© LCLM in W, 4 in O(r“d) ops. in K (O(r),0(rd))
© REMin W, 4 in O(r“d) ops. in K (O(r),0(rd))
© SYM in W, 4 in O(r“*3d%) ops. in K (O(rd),0(r3d))

> Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:
© reduction to (polynomial) linear algebra
© reduction to fast skew multiplication

& FACTOR: (NL£)°("), with £ = bitsize(L) and N < e(£2)" [Grigoriev’90]
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Combinatorial a

e ¢(n) = number of n-steps { , ./, -, — }-walks in IN?
1,2,7,21,78, 260, 988, 3458, 13300, 47880, . ..

Question: What is the nature of the generating function

G(t) = ég(n) "2
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e ¢(i,j;n) = number of n-steps { ', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A
Question: What is the nature of the generating function
Glx,y;t)= Y g(i,j;n)x'y/t" 2

i,jn=0

/O—C
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Combinatorial application:

e ¢(i,j;n) = number of n-steps { /', ./, +—, — }-walks in IN? from (0,0) to (7, ])

Question: What is the nature of the generating function
00

Glxyt)= Y, glijn)x'y/t"?

i,jn=0

e Qe

Theorem [B., Kauers, 2010] J

G(x,y;t) is an algebraic functiont.

> computer-driven discovery/proof via algorithmic Guess-and-Prove

> involves a LCLM computation of two 11th order (guessed) differential
operators for G(x,0;t), and G(0,y; t).

> LCLM has order 20, tridegree (359,717,279) in (¢, x,y), 1.5 billion coeffs

t Minimal polynomial P(G(x,y;t);x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)
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Combinatorial a

e ¢(n) = number of n-steps { ,/, -, — }-walks in IN?

Question: What is the nature of the generating function

G(t) = iog(n) "2

Corollary [B., Kauers, 2010] (former conjecture of Gessel’s)
(Bn+1)g(2n) = (12n+2)g(2n—1) and (n+1) g(2n +1) = (4n +2) g(2n) J

> involves a LCLM computation of two 11th order (guessed) differential
operators for G(x,0;t), and G(0,y; t).
> LCLM has order 20, tridegree (359,717,279) in (¢, x,), 1.5 billion coeffs

36 /40



degree
100

80

60

40t

0 bbb order
0 5 10 15 20 25 30

1000 terms of G(x,0;t) are enough to guess candidates differential equations
below the red curve. GCRD of candidates could jump above the red curve.
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Def: p-curvature A, (L) = the matrix in .4, (K(x)) whose (i, ]) entry is the
coefficient of & in 9Pt/ rmod L for 0 <i,j<r
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Def: p-curvature A, (L) = matrix of ¥ modulo L (“diff. Frobenius map”)

Grothendieck’s conjecture ('70s) T € Q[x](d) has a basis of algebraic solu-
tions over Q(x) if and only if A, (I" mod p) is zero for almost all primes p.

> Proved by [Katz 1982] for Picard-Fuchs operators; widely open in general.
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Application to n

Def: p-curvature A, (L) = matrix of ¥ modulo L (“diff. Frobenius map”)

Grothendieck’s conjecture ('70s) T € Q[x](d) has a basis of algebraic solu-
tions over Q(x) if and only if A, (I" mod p) is zero for almost all primes p.

> Proved by [Katz 1982] for Picard-Fuchs operators; widely open in general.

> holexprtodiffeq(hypergeom([1/9,4/9,7/9]1, [1/3, 2/3], x), y(x))[1]:
> L:=de2diffop(%, y(x), [Dx,x]);

(729 B - 729 xz) P+ (3159 2 — 1458 x) 9 + (2052x — 162) 9 + 28
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Application to number theory

Def: p-curvature A, (L) = matrix of ¥ modulo L (“diff. Frobenius map”)

Grothendieck’s conjecture ('70s) T € Q[x](d) has a basis of algebraic solu-
tions over Q(x) if and only if A, (I" mod p) is zero for almost all primes p.

> Proved by [Katz 1982] for Picard-Fuchs operators; widely open in general.

> holexprtodiffeq(hypergeom([1/9,4/9,7/9]1, [1/3, 2/3], x), y(x))[1]:
> L:=de2diffop(%, y(x), [Dx,x]);

(729 B - 729 xz) P+ (3159 2 — 1458 x) 9 + (2052x — 162) 9 + 28

:=7; for j to 3 do N:=rightdivision(Dx"p,L, [Dx,x]) [2] mod p;
:=nextprime(p); print(p, N); od:

Vv Vv
o lise]

11,0
13,0
17,0
19,0

23 ., 0 38 / 40



Bonus: sizes of differenti

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
feQIt]], P(tf(t) =0withdegP =D

Question: sizes (order & coefficients degree) of differential equations for f?

Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:

degree
0O(D"3)

Nice differential equation

Differential equation
corresponding to recurrence of
small order

o(D"2)

0(D*2)
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Question: sizes (order & coefficients degree) of differential equations for f?

Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:

degree
0O(D"3)

Computation

Nice differential equation A(D9)

Differential equation
corresponding to recurrence of
small order

C’)(DZuHa

degree )
Corresponding recurrences
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Bonus: sizes of differential equatio

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
feQIt]], P(tf(t) =0withdegP =D

Question: sizes (order & coefficients degree) of differential equations for f?

Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:

degree
O(D"3) . .
Computation Unrolling the recurrence

Nice differential equation A(D9) O(DM(D)N)
Differential equation
corresponding to recurrence of
small order

B0* O(M(DIN)

degree )
Corresponding recurrences

o(Dr2)

0O(D"2)

0O(D*2)

o(D)
O(D)

39 /40

Fast skew arithmetic



Exercises for next week

Exercise 1: Prove that L admits at most r = ord(L) linearly independent
solutions (over C). Hint: use Wronskians.

Exercise 2: Estimate the cost of SYM in the case of constant coefficients.

Exercise 3: Assume that the LCLM of A, B in W, ,; is computed using the
algorithm from last time (closure of D-finite functions with respect to +).

© Estimate the size and the degree of the polynomial matrix;
© Deduce a bound on the degrees of LCLM(A, B);
© Estimate the complexity of computing LCLM(A, B) by this method.

Alin Bostan Fast skew arithmetic



