# Fast skew arithmetic

### Alin Bostan





Alin Bostan

Fast skew arithmetic

Prove the identity

$$\arcsin(x)^2 = \sum_{k \ge 0} \frac{k!}{\left(\frac{1}{2}\right) \cdots \left(k + \frac{1}{2}\right)} \frac{x^{2k+2}}{2k+2},$$

by performing the following steps:

- **(**) Show that  $y = \arcsin(x)$  can be represented by the differential equation  $(1 x^2)y'' xy' = 0$  and the initial conditions y(0) = 0, y'(0) = 1.
- ② Compute a linear differential equation satisfied by  $z(x) = y(x)^2$ .
- 3 Deduce a linear recurrence relation satisfied by the coefficients of z(x).
- ④ Conclude.

The starting point is the identity

$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}},$$

which allows to represent  $\arcsin(x)$  by the differential equation

$$(1-x^2)y''-xy'=0$$

together with the initial conditions

$$y(0) = \arcsin(0) = 0, \quad y'(0) = \frac{1}{\sqrt{1 - 0^2}} = 1.$$

Let  $z = y^2$ , with  $y'' = \frac{x}{1 - x^2}y'$ .

Let  $z = y^2$ , with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get

Let 
$$z = y^2$$
, with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get  
 $z' = 2yy'$ ,  
 $z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2}yy'$ ,  
 $z''' = 4y'y'' + \frac{2x}{1-x^2}(y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2}\right)yy'$   
 $= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2}\right)yy' + \frac{6x}{1-x^2}y'^2$ .

Let 
$$z = y^2$$
, with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get  
 $z' = 2yy'$ ,  
 $z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2}yy'$ ,  
 $z''' = 4y'y'' + \frac{2x}{1-x^2}(y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2}\right)yy'$   
 $= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2}\right)yy' + \frac{6x}{1-x^2}y'^2$ .

 $\triangleright z, z', z'', z'''$  are Q(x)-linear comb. of  $y^2, yy', y'^2,$  thus Q(x)-dependent

Let 
$$z = y^2$$
, with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get  
 $z' = 2yy'$ ,  
 $z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2}yy'$ ,  
 $z''' = 4y'y'' + \frac{2x}{1-x^2}(y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2}\right)yy'$   
 $= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2}\right)yy' + \frac{6x}{1-x^2}y'^2$ .

 $\triangleright z, z', z'', z'''$  are  $\mathbb{Q}(x)$ -linear comb. of  $y^2, yy', y'^2$ , thus  $\mathbb{Q}(x)$ -dependent  $\triangleright$  A dependence relation is determined by computing the kernel of

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & \frac{2x}{1-x^2} & \frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \\ 0 & 0 & 2 & \frac{6x}{1-x^2} \end{bmatrix}$$

Let 
$$z = y^2$$
, with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get  
 $z' = 2yy'$ ,  
 $z'' = 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1-x^2}yy'$ ,  
 $z''' = 4y'y'' + \frac{2x}{1-x^2}(y'^2 + yy'') + \left(\frac{2}{1-x^2} + \frac{4x^2}{(1-x^2)^2}\right)yy'$   
 $= \left(\frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2}\right)yy' + \frac{6x}{1-x^2}y'^2$ .

 $\triangleright z, z', z'', z'''$  are  $\mathbb{Q}(x)$ -linear comb. of  $y^2, yy', y'^2$ , thus  $\mathbb{Q}(x)$ -dependent  $\triangleright$  A dependence relation is determined by computing the kernel of

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & \frac{2x}{1-x^2} & \frac{2}{1-x^2} + \frac{6x^2}{(1-x^2)^2} \\ 0 & 0 & 2 & \frac{6x}{1-x^2} \end{bmatrix}$$

▷ The kernel of *M* is generated by  $[0, 1, 3x, x^2 - 1]^T$ ▷ The corresponding differential equation is

$$(x^2 - 1)z''' + 3xz'' + z' = 0.$$

### Solution, Part 2, a variant

Let 
$$z = y^2$$
, with  $y'' = \frac{x}{1-x^2}y'$ .

Let  $z = y^2$ , with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get

Let  $z = y^2$ , with  $y'' = \frac{x}{1-x^2}y'$ . By successive differentiations, we get z'=2uu'.  $z'' = 2y'^{2} + 2yy'' = 2y'^{2} + \frac{2x}{1 - y^{2}}yy' = 2y'^{2} + \frac{x}{1 - y^{2}}z',$  $z''' = 4y'y'' + \frac{x}{1-x^2}z'' + \left(\frac{1}{1-x^2} + \frac{2x^2}{(1-x^2)^2}\right)z'$  $=\frac{4x}{1-x^2}y'^2+\frac{x}{1-x^2}z''+\frac{x^2+1}{(x^2-1)^2}z'$  $=\frac{2x}{1-x^2}\left(z''-\frac{x}{1-x^2}z'\right)+\frac{x}{1-x^2}z''+\frac{x^2+1}{(x^2-1)^2}z'.$ 

> The corresponding differential equation is

$$(x^2 - 1)z''' + 3xz'' + z' = 0.$$

▷ Write  $z(x) = \sum_{n} a_n x^n$ . Then:

▷ Write  $z(x) = \sum_{n} a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^n,$$

▷ Write  $z(x) = \sum_{n} a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^{n},$$
$$z'' = \sum_{n} (n+1)(n+2)a_{n+2}x^{n},$$

▷ Write  $z(x) = \sum_n a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^{n},$$
$$z'' = \sum_{n} (n+1)(n+2)a_{n+2}x^{n},$$
$$z''' = \sum_{n} (n+1)(n+2)(n+3)a_{n+3}x^{n}.$$

▷ Write  $z(x) = \sum_n a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^{n},$$
$$z'' = \sum_{n} (n+1)(n+2)a_{n+2}x^{n},$$
$$z''' = \sum_{n} (n+1)(n+2)(n+3)a_{n+3}x^{n}.$$

▷ The coefficient of  $x^n$  in  $(x^2 - 1)z''' + 3xz'' + z'$  is

 $(n-1)n(n+1)a_{n+1} - (n+1)(n+2)(n+3)a_{n+3} + 3n(n+1)a_{n+1} + (n+1)a_{n+1} + ($ 

▷ Write  $z(x) = \sum_n a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^{n},$$
$$z'' = \sum_{n} (n+1)(n+2)a_{n+2}x^{n},$$
$$z''' = \sum_{n} (n+1)(n+2)(n+3)a_{n+3}x^{n}.$$

▷ The coefficient of  $x^n$  in  $(x^2 - 1)z''' + 3xz'' + z'$  is

 $(n-1)n(n+1)a_{n+1} - (n+1)(n+2)(n+3)a_{n+3} + 3n(n+1)a_{n+1} + (n+1)a_{n+1}$ 

 $\triangleright$  Thus, the recurrence corresponding to  $(x^2-1)z^{\prime\prime\prime}+3xz^{\prime\prime}+z^\prime=0$  is

$$(n+1)(n+2)(n+3)a_{n+3} = (n+1)^3a_{n+1}.$$

▷ Write  $z(x) = \sum_n a_n x^n$ . Then:

$$z' = \sum_{n} (n+1)a_{n+1}x^{n},$$
$$z'' = \sum_{n} (n+1)(n+2)a_{n+2}x^{n},$$
$$z''' = \sum_{n} (n+1)(n+2)(n+3)a_{n+3}x^{n}.$$

▷ The coefficient of  $x^n$  in  $(x^2 - 1)z''' + 3xz'' + z'$  is

 $(n-1)n(n+1)a_{n+1} - (n+1)(n+2)(n+3)a_{n+3} + 3n(n+1)a_{n+1} + (n+1)a_{n+1}$ 

 $\triangleright$  Thus, the recurrence corresponding to  $(x^2 - 1)z''' + 3xz'' + z' = 0$  is

$$(n+1)(n+2)(n+3)a_{n+3} = (n+1)^3a_{n+1}.$$

▷ Since (n + 1) has no roots in **N**, it further simplifies to

$$(n+2)(n+3)a_{n+3} - (n+1)^2a_{n+1} = 0.$$

$$\triangleright z = \sum_n a_n x^n$$
 satisfies

$$(n+2)(n+3)a_{n+3} - (n+1)^2a_{n+1} = 0.$$

Initial conditions:

 $a_0 = z(0) = y(0)^2 = 0, a_1 = z'(0) = 2y(0)y'(0) = 0, a_2 = \frac{1}{2}z''(0) = y'(0)^2 = 1.$ 

▷ Recurrence and  $a_1 = 0$  imply  $a_{2k+1} = 0$ , so the series is even. ▷ Let  $b_k = a_{2k+2}$ . Then  $z(x) = \sum_k b_k x^{2k+2}$  and  $(2k+1)(2k+2)b_k = 4k^2b_{k-1}$ ,  $b_0 = 1$ 

 $\triangleright$  Thus, the sequence  $(b_k)_k$  is hypergeometric and

$$b_k = 2 \frac{k^2}{(k+1)(2k+1)} b_{k-1} = \dots = 2^k \frac{k!^2}{(k+1)!(2k+1)(2k-1)\cdots 3}$$

$$\triangleright z = \sum_n a_n x^n$$
 satisfies

$$(n+2)(n+3)a_{n+3} - (n+1)^2a_{n+1} = 0.$$

Initial conditions:

 $a_0 = z(0) = y(0)^2 = 0, a_1 = z'(0) = 2y(0)y'(0) = 0, a_2 = \frac{1}{2}z''(0) = y'(0)^2 = 1.$ 

▷ Recurrence and  $a_1 = 0$  imply  $a_{2k+1} = 0$ , so the series is even. ▷ Let  $b_k = a_{2k+2}$ . Then  $z(x) = \sum_k b_k x^{2k+2}$  and  $(2k+1)(2k+2)b_k = 4k^2b_{k-1}$ ,  $b_0 = 1$ 

 $\triangleright$  Thus, the sequence  $(b_k)_k$  is hypergeometric and

$$b_k = \frac{k!}{(k+1)\cdot(k+\frac{1}{2})(k-\frac{1}{2})\cdots\frac{3}{2}} = \frac{k!}{(k+\frac{1}{2})(k-\frac{1}{2})\cdots\frac{1}{2}}\frac{1}{2k+2}$$

1. Compute D-finite representation for  $y(x) = \arcsin(x)$ :

> gfun:-holexprtodiffeq(arcsin(x),y(x));

$$\left\{ \left(x^{2}-1\right) \frac{d^{2}}{dx^{2}}y\left(x\right)+x\frac{d}{dx}y\left(x\right), y\left(0\right)=0, D\left(y\right)\left(0\right)=1\right\}$$

1. Compute D-finite representation for  $y(x) = \arcsin(x)$ :

> gfun:-holexprtodiffeq(arcsin(x),y(x));

$$\left\{ \left(x^{2}-1\right) \frac{d^{2}}{dx^{2}} y\left(x\right)+x \frac{d}{dx} y\left(x\right), y\left(0\right)=0, D\left(y\right)\left(0\right)=1 \right\}$$

2. Compute D-finite representation for  $z(x) = \arcsin(x)^2$ :

> deqz:=gfun:-'diffeq\*diffeq'(deq1,deq1, y(x));

$$\left\{\frac{\mathrm{d}}{\mathrm{d}x}y(x) + 3x\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}y(x) + \left(x^{2} - 1\right)\frac{\mathrm{d}^{3}}{\mathrm{d}x^{3}}y(x), y(0) = 0, D(y)(0) = 0, \left(D^{(2)}\right)(y)(0) = 2\right\}$$

3. Compute linear recurrence satisfied by the coefficients  $a_n$  of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

 $\left\{ \left(n^{2}+2\,n+1\right)a\left(n+1\right)+\left(-n^{2}-5\,n-6\right)a\left(n+3\right),a\left(0\right)=0,a\left(1\right)=0,a\left(2\right)=1\right\}$ 

3. Compute linear recurrence satisfied by the coefficients  $a_n$  of z(x):

> recz:=gfun:-diffeqtorec(deqz,y(x),a(n));

 $\left\{ \left(n^{2}+2\,n+1\right)a\left(n+1\right)+\left(-n^{2}-5\,n-6\right)a\left(n+3\right),a\left(0\right)=0,a\left(1\right)=0,a\left(2\right)=1\right\}$ 

4. Compute a closed form for  $a_n$  and conclude:

- > rsolve({recz[1], a(1) = 0, a(2) = 1}, a(n)):
- > a2k:=simplify(subs(n=2\*k,%)) assuming k::posint;
- > subs(GAMMA(k+1/2)=GAMMA(2\*k)\*sqrt(Pi)/2^(2\*k-1)/GAMMA(k),a2k);

$$\frac{\sqrt{\pi}\Gamma(k)}{2k} \left(\Gamma\left(k+\frac{1}{2}\right)\right)^{-1}, \quad \frac{2^{2k-1}\left((k-1)!\right)^2}{2(2k-1)!k}$$

3. Compute linear recurrence satisfied by the coefficients  $a_n$  of z(x):

 $\left\{ \left(n^{2}+2\,n+1\right)a\left(n+1\right)+\left(-n^{2}-5\,n-6\right)a\left(n+3\right),a\left(0\right)=0,a\left(1\right)=0,a\left(2\right)=1\right\}$ 

4. Compute a closed form for  $a_n$  and conclude:

- > rsolve({recz[1], a(1) = 0, a(2) = 1}, a(n)):
- > a2k:=simplify(subs(n=2\*k,%)) assuming k::posint;
- > subs(GAMMA(k+1/2)=GAMMA(2\*k)\*sqrt(Pi)/2^(2\*k-1)/GAMMA(k),a2k);

$$\frac{\sqrt{\pi}\Gamma(k)}{2k}\left(\Gamma\left(k+\frac{1}{2}\right)\right)^{-1}, \quad \frac{2^{2k-1}\left((k-1)!\right)^2}{2(2k-1)!k}$$

5. Check

> sum(a2k\*x^(2\*k), k=1..infinity) assuming x>0 and x<1;</pre>

 $(\arcsin(x))^2$ 

## LINEAR DIFFERENTIAL OPERATORS

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

- $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )
- $\mathbb{K}[x]\langle\partial\rangle$  = the Weyl algebra of linear differential operators with

polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

•  $\mathbb{K}[x]\langle \partial \rangle$  = the Weyl algebra of linear differential operators with polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

Algebraic formalization of the notion of linear differential equation

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

•  $\mathbb{K}[x]\langle\partial\rangle$  = the Weyl algebra of linear differential operators with polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

Algebraic formalization of the notion of linear differential equation

$$a_r(x)y^{(r)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$
  
$$\iff$$
$$L(y) = 0, \quad \text{where} \quad L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

•  $\mathbb{K}[x]\langle\partial\rangle$  = the Weyl algebra of linear differential operators with polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

Algebraic formalization of the notion of linear differential equation

$$a_r(x)y^{(r)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$
  
$$\iff$$
  
$$L(y) = 0, \quad \text{where} \quad L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

Commutation rule formalizes Leibniz's rule (fg)' = f'g + fg'

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

•  $\mathbb{K}[x]\langle\partial\rangle$  = the Weyl algebra of linear differential operators with polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

Algebraic formalization of the notion of linear differential equation

$$a_r(x)y^{(r)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$
  
$$\iff$$
$$L(y) = 0, \quad \text{where} \quad L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

Commutation rule formalizes Leibniz's rule (fg)' = f'g + fg'

▷ General aim: understand complexity of operations in K[x]⟨∂⟩
 ▷ Specific aims: degree bounds / fast algorithms for ⋆, GCRD, LCLM, ⊗

•  $\mathbb{K}$  = an effective field (e.g.,  $\mathbb{K} = \mathbb{Q}$ , or  $\mathbb{K} = \mathbb{F}_p$ )

•  $\mathbb{K}[x]\langle\partial\rangle$  = the Weyl algebra of linear differential operators with polynomial coefficients in  $\mathbb{K}[x]$ ; commutation rule  $\partial x = x\partial + 1$ 

Algebraic formalization of the notion of linear differential equation

$$a_r(x)y^{(r)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$
  
$$\longleftrightarrow$$
$$L(y) = 0, \quad \text{where} \quad L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

Commutation rule formalizes Leibniz's rule (fg)' = f'g + fg'

▷ General aim: understand complexity of operations in K[x]⟨∂⟩
 ▷ Specific aims: degree bounds / fast algorithms for ⋆, GCRD, LCLM, ⊗

General message: complexity analysis = tool for algorithmic design
 Today: polynomial linear algebra = non-comm. complexity yardstick

### Skew (differential) polynomials

•  $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators

### Skew (differential) polynomials

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- $\mathbb{K}(x)\langle\partial\rangle$  = the rational Weyl algebra of linear differential operators

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- $\mathbb{K}(x)\langle \partial \rangle$  = the rational Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}(x)$

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- $\mathbb{K}(x)\langle\partial\rangle$  = the rational Weyl algebra of linear differential operators  $\triangleright$  Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}(x)$  $\triangleright r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the order of *L*, denoted ord(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- K(x)⟨∂⟩ = the rational Weyl algebra of linear differential operators
  Elements: L = a<sub>r</sub>(x)∂<sup>r</sup> + · · · + a<sub>1</sub>(x)∂ + a<sub>0</sub>(x) with a<sub>i</sub>(x) ∈ K(x)
  r = deg<sub>∂</sub>(L) is called the order of L, denoted ord(L)
  deg(L) := max(deg(c), deg(b<sub>i</sub>)), where a<sub>i</sub> = b<sub>i</sub>/c with c of minimal degree

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the order of *L*, denoted ord(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- $\mathbb{K}(x)\langle\partial\rangle$  = the rational Weyl algebra of linear differential operators > Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}(x)$ >  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*) >  $\deg(L) := \max(\deg(c), \deg(b_i))$ , where  $a_i = b_i/c$  with *c* of minimal degree > Usual +; *skew* multiplication \* defined by  $\partial * R(x) = R(x) * \partial + R'(x)$

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- $\mathbb{K}(x)\langle\partial\rangle$  = the rational Weyl algebra of linear differential operators > Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}(x)$ >  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*) >  $\deg(L) := \max(\deg(c), \deg(b_i))$ , where  $a_i = b_i/c$  with *c* of minimal degree > Usual +; *skew* multiplication \* defined by  $\partial * R(x) = R(x) * \partial + R'(x)$

▷ Mathematically, the rational Weyl algebra  $\mathbb{K}(x)\langle \partial \rangle$  is nicer

- $\mathbb{K}[x]\langle\partial\rangle$  = the polynomial Weyl algebra of linear differential operators
- ▷ Elements:  $L = a_r(x)\partial^r + \cdots + a_1(x)\partial + a_0(x)$  with  $a_i(x) \in \mathbb{K}[x]$
- ▷ Degree  $r = \deg_{\partial}(L)$  is called the **order** of *L*, denoted **ord**(*L*)
- ▷ Degree  $\deg_x(L) := \max(\deg_x(a_i(x)))$  is the **degree** of *L*, denoted  $\deg(L)$
- ▷ Usual +; *skew* multiplication  $\star$  defined by  $\partial \star P(x) = P(x) \star \partial + P'(x)$
- K(x)⟨∂⟩ = the rational Weyl algebra of linear differential operators
  Elements: L = a<sub>r</sub>(x)∂<sup>r</sup> + ··· + a<sub>1</sub>(x)∂ + a<sub>0</sub>(x) with a<sub>i</sub>(x) ∈ K(x)
  r = deg<sub>∂</sub>(L) is called the order of L, denoted ord(L)
  deg(L) := max(deg(c), deg(b<sub>i</sub>)), where a<sub>i</sub> = b<sub>i</sub>/c with c of minimal degree
  Usual +; *skew* multiplication ★ defined by ∂ ★ R(x) = R(x) ★ ∂ + R'(x)
- ▷ Mathematically, the rational Weyl algebra  $\mathbb{K}(x)\langle\partial\rangle$  is nicer ▷ Algorithmically, the polynomial Weyl algebra  $\mathbb{K}[x]\langle\partial\rangle$  is nicer

A = QB + R, and ord(R) < ord(B).

A = QB + R, and ord(R) < ord(B).

(This is called the Euclidean right division of *A* by *B*.)

A = QB + R, and ord(R) < ord(B).

(This is called the Euclidean right division of *A* by *B*.)

▷ As a consequence, any  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  admit a greatest common right divisor (GCRD) and a least common left multiple (LCLM).

A = QB + R, and ord(R) < ord(B).

(This is called the Euclidean right division of *A* by *B*.)

▷ As a consequence, any  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  admit a greatest common right divisor (GCRD) and a least common left multiple (LCLM).

 $\triangleright$  Moreover, GCRD(*A*, *B*) and LCLM(*A*, *B*) can be computed by a non-commutative version of the extended Euclidean algorithm.

> diffop2de, de2diffop, mult

> with(DEtools):
> mult(Dx,x,[Dx,x]);

#### $x\partial + 1$

implements the basic skew multiplication rule.

> diffop2de, de2diffop, mult

> with(DEtools):

> mult(Dx,x,[Dx,x]);

 $x\partial + 1$ 

implements the basic skew multiplication rule.

▷ rightdivision, GCRD, LCLM

> rightdivision(Dx<sup>10</sup>,Dx<sup>2</sup>-x,[Dx,x])[2];

 $(20 x^3 + 80) \partial + x^5 + 100 x^2$ 

proves that  $\operatorname{Ai}^{(10)}(x) = (20x^3 + 80)\operatorname{Ai}'(x) + (x^5 + 100x^2)\operatorname{Ai}(x)$ .

$$L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

$$V(L) = \{ y \in R \mid L(y) = 0 \}$$

which contains "all" solutions of *L*, in the sense that  $\dim_C V(L) = r$ , where

$$C = \{y \in R \mid \partial(y) = 0\}$$

$$L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

$$V(L) = \{ y \in R \mid L(y) = 0 \}$$

which contains "all" solutions of *L*, in the sense that  $\dim_C V(L) = r$ , where

$$C = \{y \in R \mid \partial(y) = 0\}$$

▷ Such an *R* is an analogue of the notion of "splitting field" for polynomials

$$L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

$$V(L) = \{ y \in R \mid L(y) = 0 \}$$

which contains "all" solutions of *L*, in the sense that  $\dim_{\mathbb{C}} V(L) = r$ , where

$$C = \{y \in R \mid \partial(y) = 0\}$$

Such an *R* is an analogue of the notion of "splitting field" for polynomials
 *V*(*L*): algebraic counterpart of the notion of "fundamental set of solutions"

$$L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

$$V(L) = \{ y \in R \mid L(y) = 0 \}$$

which contains "all" solutions of *L*, in the sense that  $\dim_C V(L) = r$ , where

$$C = \{y \in R \mid \partial(y) = 0\}$$

▷ Such an *R* is an analogue of the notion of "splitting field" for polynomials ▷ V(L): algebraic counterpart of the notion of "fundamental set of solutions"

▷ If char( $\mathbb{K}$ ) = 0 and if  $x = \alpha$  is an *ordinary point* (not pole of any  $a_j/a_r$ ), then one may choose  $R = \mathbb{K}[[x - \alpha]]$  (by the Cauchy-Lipschitz theorem)

$$L = a_r(x)\partial^r + \dots + a_1(x)\partial + a_0(x)$$

admits a full solution space V(L) in some ring R (Picard-Vessiot extension)

$$V(L) = \{ y \in R \mid L(y) = 0 \}$$

which contains "all" solutions of *L*, in the sense that  $\dim_C V(L) = r$ , where

$$C = \{y \in R \mid \partial(y) = 0\}$$

 $\triangleright$  Such an *R* is an analogue of the notion of "splitting field" for polynomials

 $\triangleright$  *V*(*L*): algebraic counterpart of the notion of "fundamental set of solutions"

▷ If char( $\mathbb{K}$ ) = 0 and if  $x = \alpha$  is an *ordinary point* (not pole of any  $a_j/a_r$ ), then one may choose  $R = \mathbb{K}[[x - \alpha]]$  (by the Cauchy-Lipschitz theorem)

**Exercise 1**: Prove that *L* admits at most r = ord(L) linearly independent solutions (over *C*). Hint: use Wronskians.

The *least common left multiple (LCLM)* of  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  is the least order monic operator  $L \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $L = Q_1 \star A = Q_2 \star B$  for some cofactors  $Q_1, Q_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

The *least common left multiple* (*LCLM*) of  $A, B \in \mathbb{K}(x) \langle \partial \rangle$  is the least order monic operator  $L \in \mathbb{K}(x) \langle \partial \rangle$  such that

 $L = Q_1 \star A = Q_2 \star B$  for some cofactors  $Q_1, Q_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The *least common left multiple* (*LCLM*) of  $A, B \in \mathbb{K}(x) \langle \partial \rangle$  is the least order monic operator  $L \in \mathbb{K}(x) \langle \partial \rangle$  such that

 $L = Q_1 \star A = Q_2 \star B$  for some cofactors  $Q_1, Q_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  is the highest order monic operator  $G \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $A = U_1 \star G$  and  $B = U_2 \star G$  for some cofactors  $U_1, U_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

The *least common left multiple* (*LCLM*) of  $A, B \in \mathbb{K}(x) \langle \partial \rangle$  is the least order monic operator  $L \in \mathbb{K}(x) \langle \partial \rangle$  such that

 $L = Q_1 \star A = Q_2 \star B$  for some cofactors  $Q_1, Q_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  is the highest order monic operator  $G \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $A = U_1 \star G$  and  $B = U_2 \star G$  for some cofactors  $U_1, U_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces:  $V(GCRD(A, B)) = V(A) \cap V(B)$ 

The *least common left multiple* (LCLM) of  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  is the least order monic operator  $L \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $L = Q_1 \star A = Q_2 \star B$  for some cofactors  $Q_1, Q_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces: V(LCLM(A, B)) = V(A) + V(B)

The greatest common right divisor (GCRD) of  $A, B \in \mathbb{K}(x)\langle \partial \rangle$  is the highest order monic operator  $G \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $A = U_1 \star G$  and  $B = U_2 \star G$  for some cofactors  $U_1, U_2 \in \mathbb{K}(x) \langle \partial \rangle$ 

▷ In terms of solution spaces:  $V(GCRD(A, B)) = V(A) \cap V(B)$ 

▷ Contrary to the commutative case:  $A \star B \neq \text{LCLM}(A, B) \star \text{GCRD}(A, B)$ but  $\text{ord}(A \star B) = \text{ord}(A) + \text{ord}(B) = \text{ord}(\text{LCLM}(A, B)) + \text{ord}(\text{GCRD}(A, B))$ 

# Example

$$\left[ \left(\frac{x}{3} - \frac{1}{3}\right) \partial - \frac{x^4}{9} + \frac{x^3}{9}, \left( 1 - x^3 + x^2 + \frac{x^7}{9} - \frac{x^6}{9} \right) \partial - x + x^4 - x^3 - \frac{x^8}{9} + \frac{x^7}{9} \right]$$

# Example

$$\left[ \left(\frac{x}{3} - \frac{1}{3}\right) \partial - \frac{x^4}{9} + \frac{x^3}{9}, \left( 1 - x^3 + x^2 + \frac{x^7}{9} - \frac{x^6}{9} \right) \partial - x + x^4 - x^3 - \frac{x^8}{9} + \frac{x^7}{9} \right]$$

> rightdivision(B,G,[Dx,x]);

$$\left[\frac{27}{x^7 - x^6 - 9x^3 + 9x^2 + 9}\partial + 9\frac{x(x^9 - x^8 - 30x^5 + 27x^4 + 9x^2 + 81x - 54)}{(x^7 - x^6 - 9x^3 + 9x^2 + 9)^2}, 0\right]$$

# Example

$$\left[ \left(\frac{x}{3} - \frac{1}{3}\right) \partial - \frac{x^4}{9} + \frac{x^3}{9}, \left( 1 - x^3 + x^2 + \frac{x^7}{9} - \frac{x^6}{9} \right) \partial - x + x^4 - x^3 - \frac{x^8}{9} + \frac{x^7}{9} \right]$$

> rightdivision(B,G,[Dx,x]);

$$\left[\frac{27}{x^7 - x^6 - 9x^3 + 9x^2 + 9}\partial + 9\frac{x(x^9 - x^8 - 30x^5 + 27x^4 + 9x^2 + 81x - 54)}{(x^7 - x^6 - 9x^3 + 9x^2 + 9)^2}, 0\right]$$

> GCRD(A,B,[Dx,x]);

 $\partial - x$ 

Euclid(A, B)

In: *A* and *B* in  $\mathbb{K}[x]$ . Out: A gcd *G* of *A* and *B*. 1  $R_0 := A; R_1 := B; i := 1$ . 2 While  $R_i$  is non-zero, do:  $R_{i+1} := R_{i-1} \mod R_i$  i := i + 1. 3 Return  $R_{i-1}$ .

▷ Termination:  $\deg(B) > \deg(R_2) > \deg(R_1) > \cdots$ ▷ Correctness:  $\gcd(A, B) = \gcd(B, A \mod B)$ ▷ Quadratic complexity:  $O(\deg(A) \deg(B))$  operations in K  $\mathsf{SkewEuclid}(A, B)$ 

In: *A* and *B* in  $\mathbb{K}(x)\langle\partial\rangle$ . Out: A GCRD *G* of *A* and *B*. 1  $R_0 := A; R_1 := B; i := 1$ . 2 While  $R_i$  is non-zero, do:  $R_{i+1} := R_{i-1} \operatorname{rmod} R_i$  i := i + 1. 3 Return  $R_{i-1}$ .

▷ Termination:  $\operatorname{ord}(B) > \operatorname{ord}(R_2) > \operatorname{ord}(R_1) > \cdots$ ▷ Correctness:  $\operatorname{GCRD}(A, B) = \operatorname{GCRD}(B, A \operatorname{rmod} B)$ ▷ "Complexity":  $O(\operatorname{ord}(A) \operatorname{ord}(B))$  operations in  $\mathbb{K}(x)$   $\mathsf{ExtendedEuclid}(A, B)$ 

In: *A* and *B* in 
$$\mathbb{K}[x]$$
.  
Out: A gcd *G* of *A* and *B*, and cofactors *U* and *V*.  
**1**  $R_0 := A; U_0 := 1; V_0 := 0; R_1 := B; U_1 := 0; V_1 := 1; i := 1.$   
**2** While  $R_i$  is non-zero, do:  
**1**  $(Q_i, R_{i+1}) := \text{QuotRem}(R_{i-1}, R_i)$   
**2**  $U_{i+1} := U_{i-1} - Q_i U_i; V_{i+1} := V_{i-1} - Q_i V_i.$   
**3** Return  $(R_{i-1}, U_{i-1}, V_{i-1})$ .

> Termination: 
$$deg(B) > deg(R_2) > deg(R_1) > \cdots$$
  
> Correctness:  $R_i = U_iA + V_iB$  (by induction):

$$R_{i+1} = R_{i-1} - Q_i R_i = U_{i-1}A + V_{i-1}B - Q_i(U_iA + V_iB) = U_{i+1}A + V_{i+1}B$$

▷ Quadratic complexity:  $O(\deg(A) \deg(B))$  operations in K

## Skew Extended Euclidean algorithm in $\mathbb{K}(x)\langle\partial\rangle$

 $\mathsf{SkewExtendedEuclid}(A,B)$ 

In: *A* and *B* in  $\mathbb{K}(x)\langle\partial\rangle$ . Out: A GCRD *G* of *A* and *B*, and cofactors *U* and *V*. **1**  $R_0 := A; U_0 := 1; V_0 := 0; R_1 := B; U_1 := 0; V_1 := 1; i := 1.$  **2** While  $R_i$  is non-zero, do: **1**  $(Q_i, R_{i+1}) := \text{RightDivision}(R_{i-1}, R_i)$  **2**  $U_{i+1} := U_{i-1} - Q_i U_i; V_{i+1} := V_{i-1} - Q_i V_i.$  **3** Return  $(R_{i-1}, U_{i-1}, V_{i-1})$ . **4**  $R_{i-1} = Q_i R_i + R_{i+1}$ 

▷ Termination:  $ord(B) > ord(R_2) > ord(R_1) > \cdots$ ▷ Correctness:  $R_i = U_i A + V_i B$  (by induction):

$$R_{i+1} = R_{i-1} - Q_i R_i = U_{i-1}A + V_{i-1}B - Q_i(U_iA + V_iB) = U_{i+1}A + V_{i+1}B$$

 $\triangleright$  "Complexity":  $O(\operatorname{ord}(A) \operatorname{ord}(B))$  operations in  $\mathbb{K}(x)$ 

## Half-Extended Euclidean algorithm in $\mathbb{K}[x]$

 $\mathsf{HalfExtendedEuclid}(A, B)$ 

In: *A* and *B* in K[*x*]. Out: A gcd *G* and an lcm *L* of *A* and *B*. (1)  $R_0 := A; U_0 := 1; R_1 := B; U_1 := 0; i := 1.$ (2) While  $R_i$  is non-zero, do: (1)  $(Q_i, R_{i+1}) := \text{QuotRem}(R_{i-1}, R_i)$ (2)  $U_{i+1} := U_{i-1} - Q_i U_i.$ (3)  $Return (R_{i-1}, U_i A).$ (4)  $R_i = Q_i R_i + R_{i+1}$ 

#### $\triangleright$ Quadratic complexity: $O(\deg(A) \deg(B))$ operations in $\mathbb{K}$

SkewHalfExtendedEuclid(A, B)

In: *A* and *B* in  $\mathbb{K}(x)\langle\partial\rangle$ . Out: A GCRD *G* and an LCLM *L* of *A* and *B*. (1)  $R_0 := A; U_0 := 1; R_1 := B; U_1 := 0; i := 1.$ (2) While  $R_i$  is non-zero, do: (1)  $(Q_i, R_{i+1}) := \text{RightDivision}(R_{i-1}, R_i)$ (2)  $U_{i+1} := U_{i-1} - Q_i U_i.$ (3)  $Return (R_{i-1}, U_i A).$ (4)  $R_{i-1} = Q_i R_i + R_{i+1}$ 

 $\triangleright$  "Complexity":  $O(\operatorname{ord}(A) \operatorname{ord}(B))$  operations in  $\mathbb{K}(x)$ 

#### Definition of SYM

**Def.** The symmetric product (SYM) of  $L_1, L_2 \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym $(L_1, L_2)$ , or  $L_1 \otimes L_2$ , is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $S(y_1y_2) = 0$  for all  $y_1 \in V(L_1), y_2 \in V(L_2)$
**Def.** The symmetric product (SYM) of  $L_1, L_2 \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym $(L_1, L_2)$ , or  $L_1 \otimes L_2$ , is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

$$S(y_1y_2) = 0$$
 for all  $y_1 \in V(L_1), y_2 \in V(L_2)$ 

▷ In terms of solution spaces:  $V(A \otimes B) = V(A) \otimes V(B)$ 

**Def.** The *symmetric product* (*SYM*) of  $L_1, L_2 \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym $(L_1, L_2)$ , or  $L_1 \otimes L_2$ , is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

$$S(y_1y_2) = 0$$
 for all  $y_1 \in V(L_1), y_2 \in V(L_2)$ 

▷ In terms of solution spaces:  $V(A \otimes B) = V(A) \otimes V(B)$ 

> symmetric\_product(Dx^3, Dx^2, [Dx,x]);

#### $\partial^4$

**Def.** The *symmetric product* (*SYM*) of  $L_1, L_2 \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym $(L_1, L_2)$ , or  $L_1 \otimes L_2$ , is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

$$S(y_1y_2) = 0$$
 for all  $y_1 \in V(L_1), y_2 \in V(L_2)$ 

▷ In terms of solution spaces:  $V(A \otimes B) = V(A) \otimes V(B)$ 

> symmetric\_product(Dx^3, Dx^2, [Dx,x]);

#### $\partial^4$

**Def.** The *m*-th symmetric power (SYMP) of  $L \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym<sup>*m*</sup>(*L*), is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

 $S(y^m) = 0$  for all  $y \in V(L)$ .

**Def.** The *symmetric product* (*SYM*) of  $L_1, L_2 \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym $(L_1, L_2)$ , or  $L_1 \otimes L_2$ , is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

$$S(y_1y_2) = 0$$
 for all  $y_1 \in V(L_1), y_2 \in V(L_2)$ 

▷ In terms of solution spaces:  $V(A \otimes B) = V(A) \otimes V(B)$ 

> symmetric\_product(Dx^3, Dx^2, [Dx,x]);

#### $\partial^4$

**Def.** The *m*-th symmetric power (SYMP) of  $L \in \mathbb{K}(x)\langle \partial \rangle$ , denoted Sym<sup>*m*</sup>(*L*), is the least order monic operator  $S \in \mathbb{K}(x)\langle \partial \rangle$  such that

$$S(y^m) = 0$$
 for all  $y \in V(L)$ .

> symmetric\_power(Dx^3, 2, [Dx,x]);

#### $\partial^5$

> deqin:=(1-x<sup>2</sup>)\*diff(diff(y(x),x),x)-x\*diff(y(x),x): > de:={deqin, y(0)=rand(100)(), D(y)(0)=rand(100)()};

$$\left\{-x\frac{d}{dx}y(x) + \left(1 - x^{2}\right)\frac{d^{2}}{dx^{2}}y(x), y(0) = 82, D(y)(0) = 31\right\}$$

> deqin:=(1-x<sup>2</sup>)\*diff(diff(y(x),x),x)-x\*diff(y(x),x): > de:={deqin, y(0)=rand(100)(), D(y)(0)=rand(100)()};

$$\left\{-x\frac{d}{dx}y(x) + \left(1 - x^{2}\right)\frac{d^{2}}{dx^{2}}y(x), y(0) = 82, D(y)(0) = 31\right\}$$

- > with(numapprox): Order:=30; p:=%: r:=3:
- > Z:=series(op(2, dsolve(de, y(x), series))^2,x,p):
- > hermite\_pade([Z,seq(series(diff(Z,x\$k),x,p),k=1..r)],x,p):
- > deqout:=add(HP[k+1]\*diff(z(x),x\$k), k=1..r);

$$\frac{\mathrm{d}}{\mathrm{d}x}z(x) + 3x\frac{\mathrm{d}^2}{\mathrm{d}x^2}z(x) + \left(x^2 - 1\right)\frac{\mathrm{d}^3}{\mathrm{d}x^3}z(x)$$

▷ Linear differential operators  $L = p_r \partial^r + \cdots + p_0$  with coefficients  $p_i \in \mathbb{K}$ 

- ▷ Linear differential operators  $L = p_r \partial^r + \cdots + p_0$  with coefficients  $p_i \in \mathbb{K}$
- $\triangleright$  Characteristic polynomial:  $P(x) = p_r x^r + \dots + p_0$  splits over  $\overline{\mathbb{K}}$

$$P(x) = p_r(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}, \quad \alpha_i \in \overline{\mathbb{K}}, m_i \in \mathbb{N}^*,$$

- ▷ Linear differential operators  $L = p_r \partial^r + \cdots + p_0$  with coefficients  $p_i \in \mathbb{K}$
- ▷ Characteristic polynomial:  $P(x) = p_r x^r + \dots + p_0$  splits over  $\overline{\mathbb{K}}$

$$P(x) = p_r(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}, \quad \alpha_i \in \overline{\mathbb{K}}, \, m_i \in \mathbb{N}^*,$$

# $\triangleright V(L) \text{ is generated (over } \overline{\mathbb{K}} \text{ ) by} \\ \left\{ e^{\alpha_1 x}, xe^{\alpha_1 x}, \dots, x^{m_1 - 1}e^{\alpha_1 x}, \dots, e^{\alpha_k x}, xe^{\alpha_k x}, \dots, x^{m_k - 1}e^{\alpha_k x} \right\},$

where for  $\alpha \in \overline{\mathbb{K}}$ , we denote by  $e^{\alpha x}$  the power series  $\sum_{n \ge 0} \alpha^n x^n / n!$  of  $\overline{\mathbb{K}}[[x]]$ .

- ▷ Linear differential operators  $L = p_r \partial^r + \cdots + p_0$  with coefficients  $p_i \in \mathbb{K}$
- ▷ Characteristic polynomial:  $P(x) = p_r x^r + \dots + p_0$  splits over  $\overline{\mathbb{K}}$

$$P(x) = p_r(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}, \quad \alpha_i \in \overline{\mathbb{K}}, \, m_i \in \mathbb{N}^*,$$

# $\triangleright V(L) \text{ is generated (over } \overline{\mathbb{K}}) \text{ by} \\ \left\{ e^{\alpha_1 x}, x e^{\alpha_1 x}, \dots, x^{m_1 - 1} e^{\alpha_1 x}, \dots, e^{\alpha_k x}, x e^{\alpha_k x}, \dots, x^{m_k - 1} e^{\alpha_k x} \right\},$

where for  $\alpha \in \overline{\mathbb{K}}$ , we denote by  $e^{\alpha x}$  the power series  $\sum_{n \ge 0} \alpha^n x^n / n!$  of  $\overline{\mathbb{K}}[[x]]$ .

▷ GCRD and LCLM can be computed by the usual Euclidean algorithm

- ▷ Linear differential operators  $L = p_r \partial^r + \cdots + p_0$  with coefficients  $p_i \in \mathbb{K}$
- ▷ Characteristic polynomial:  $P(x) = p_r x^r + \dots + p_0$  splits over  $\overline{\mathbb{K}}$

$$P(x) = p_r(x - \alpha_1)^{m_1} \cdots (x - \alpha_k)^{m_k}, \quad \alpha_i \in \overline{\mathbb{K}}, \, m_i \in \mathbb{N}^*,$$

# $> V(L) \text{ is generated (over } \overline{\mathbb{K}} \text{ ) by} \\ \left\{ e^{\alpha_1 x}, xe^{\alpha_1 x}, \dots, x^{m_1 - 1}e^{\alpha_1 x}, \dots, e^{\alpha_k x}, xe^{\alpha_k x}, \dots, x^{m_k - 1}e^{\alpha_k x} \right\},$ where for $\alpha \in \overline{\mathbb{K}}$ , we denote by $e^{\alpha x}$ the power series $\sum_{n>0} \alpha^n x^n / n!$ of $\overline{\mathbb{K}}[[x]]$ .

▷ GCRD and LCLM can be computed by the usual Euclidean algorithm

▷ SYM can be computed by resultants: SYM( $L_1, L_2$ ) =  $P_1 \oplus P_2$  if all  $m_i = 1$ 

**Exercise 2**: Estimate the cost of SYM in the case of constant coefficients.

> L1:=225\*Dx^3-1375\*Dx^2-2054\*Dx+2088: L2:=245\*Dx^2-1759\*Dx-36: > GCRD(L1,L2,[Dx,x]), LCLM(L1,L2,[Dx,x]);

$$\partial - \frac{36}{5}, \quad \partial^4 - \frac{2686}{441} - \frac{34007}{3675} + \frac{100258}{11025} + \frac{232}{1225}$$

> L1:=225\*Dx^3-1375\*Dx^2-2054\*Dx+2088: L2:=245\*Dx^2-1759\*Dx-36: > GCRD(L1,L2,[Dx,x]), LCLM(L1,L2,[Dx,x]);

$$\partial - \frac{36}{5}, \quad \partial^4 - \frac{2686}{441} - \frac{34007}{3675} + \frac{100258}{11025} + \frac{232}{1225}$$

> gcd(L1,L2): expand(%/lcoeff(%,Dx)); > lcm(L1,L2): expand(%/lcoeff(%,Dx));

$$\partial - \frac{36}{5}, \quad \partial^4 - \frac{2686}{441} - \frac{34007}{3675} + \frac{100258}{11025} + \frac{232}{1225}$$

> L1:=225\*Dx^3-1375\*Dx^2-2054\*Dx+2088: L2:=245\*Dx^2-1759\*Dx-36: > GCRD(L1,L2,[Dx,x]), LCLM(L1,L2,[Dx,x]);

$$\partial - \frac{36}{5}, \quad \partial^4 - \frac{2686}{441} - \frac{34007}{3675} + \frac{100258}{11025} + \frac{232}{1225}$$

> gcd(L1,L2): expand(%/lcoeff(%,Dx)); > lcm(L1,L2): expand(%/lcoeff(%,Dx));

$$\partial - \frac{36}{5}, \quad \partial^4 - \frac{2686}{441} - \frac{34007}{3675} + \frac{100258}{11025} + \frac{232}{1225}$$

- > symmetric\_product(L1,L2,[Dx,x]);
- > subs(t=Dx, resultant(subs(Dx=x,L1), subs(Dx=t-x,L2),x)):
- > expand(%/lcoeff(%,Dx));



*Theorem* [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903] Elements of  $\mathbb{K}(x)\langle \partial \rangle$  can be expressed as products of irreducible factors.

*Theorem* [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903] Elements of  $\mathbb{K}(x)\langle\partial\rangle$  can be expressed as products of irreducible factors. More precisely, any  $L \in \mathbb{K}(x)\langle\partial\rangle$  can be written  $L = r(x) \star L_1 \star \cdots \star L_m$ , where  $r \in \mathbb{K}(x)$  and the  $L_i$ 's are monic and irreducible in  $\mathbb{K}(x)\langle\partial\rangle$ . *Theorem* [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903] Elements of  $\mathbb{K}(x)\langle\partial\rangle$  can be expressed as products of irreducible factors. More precisely, any  $L \in \mathbb{K}(x)\langle\partial\rangle$  can be written  $L = r(x) \star L_1 \star \cdots \star L_m$ , where  $r \in \mathbb{K}(x)$  and the  $L_i$ 's are monic and irreducible in  $\mathbb{K}(x)\langle\partial\rangle$ . Moreover, if  $\tilde{L} = \tilde{r}(x) \star \tilde{L}_1 \star \cdots \star \tilde{L}_s$  for monic irreducible  $\tilde{L}_j$  and  $\tilde{r} \in \mathbb{K}(x)$ , then  $r = \tilde{r}$ , m = s and there exists  $\sigma \in S_m$  such that  $\operatorname{ord}(\tilde{L}_j) = \operatorname{ord}(\tilde{L}_{\sigma(j)})$ . *Theorem* [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903] Elements of  $\mathbb{K}(x)\langle\partial\rangle$  can be expressed as products of irreducible factors. More precisely, any  $L \in \mathbb{K}(x)\langle\partial\rangle$  can be written  $L = r(x) \star L_1 \star \cdots \star L_m$ , where  $r \in \mathbb{K}(x)$  and the  $L_i$ 's are monic and irreducible in  $\mathbb{K}(x)\langle\partial\rangle$ . Moreover, if  $\tilde{L} = \tilde{r}(x) \star \tilde{L}_1 \star \cdots \star \tilde{L}_s$  for monic irreducible  $\tilde{L}_j$  and  $\tilde{r} \in \mathbb{K}(x)$ , then  $r = \tilde{r}$ , m = s and there exists  $\sigma \in S_m$  such that  $\operatorname{ord}(\tilde{L}_j) = \operatorname{ord}(\tilde{L}_{\sigma(j)})$ .

▷ Right-factors of order 1 of *L* correspond to hyperexponential solutions of L(y) = 0, that is  $y'(x)/y(x) \in \mathbb{K}(x)$ , or  $y(x) = \exp(\int r(x))$  for  $r \in \mathbb{K}(x)$ 

*Theorem* [Schlesinger 1887, Beke 1894, Landau 1902, Loewy 1903] Elements of  $\mathbb{K}(x)\langle\partial\rangle$  can be expressed as products of irreducible factors. More precisely, any  $L \in \mathbb{K}(x)\langle\partial\rangle$  can be written  $L = r(x) \star L_1 \star \cdots \star L_m$ , where  $r \in \mathbb{K}(x)$  and the  $L_i$ 's are monic and irreducible in  $\mathbb{K}(x)\langle\partial\rangle$ . Moreover, if  $\tilde{L} = \tilde{r}(x) \star \tilde{L}_1 \star \cdots \star \tilde{L}_s$  for monic irreducible  $\tilde{L}_j$  and  $\tilde{r} \in \mathbb{K}(x)$ , then  $r = \tilde{r}$ , m = s and there exists  $\sigma \in S_m$  such that  $\operatorname{ord}(\tilde{L}_j) = \operatorname{ord}(\tilde{L}_{\sigma(j)})$ .

▷ Right-factors of order 1 of *L* correspond to hyperexponential solutions of L(y) = 0, that is  $y'(x)/y(x) \in \mathbb{K}(x)$ , or  $y(x) = \exp(\int r(x))$  for  $r \in \mathbb{K}(x)$ 

 $\triangleright \text{ Caution: infinitely many factorizations may exist. E.g., for any } c \in \mathbb{K}, \\ \partial \star \partial = \left(\partial + \frac{1}{x+c}\right) \star \left(\partial - \frac{1}{x+c}\right) \neq \left(\partial - \frac{1}{x+c}\right) \star \left(\partial + \frac{1}{x+c}\right) = \partial^2 - \frac{2}{(x+c)^2}.$ 

> with(DEtools): > A:=(x-1)\*Dx^3+(x-x^2)\*Dx^2+(3-2\*x)\*Dx-x: > B:=3\*Dx^2+(x^3-3\*x)\*Dx-x^4-3: > DFactor(A,[Dx,x]);

$$\left[ (x-1)\left( \partial^2 + (x-1)^{-1} \right), \partial - x \right]$$

> with(DEtools): > A:=(x-1)\*Dx^3+(x-x^2)\*Dx^2+(3-2\*x)\*Dx-x: > B:=3\*Dx^2+(x^3-3\*x)\*Dx-x^4-3: > DFactor(A,[Dx,x]);

$$\left[ (x-1)\left( \partial^2 + (x-1)^{-1} \right), \partial - x \right]$$

> DFactor(B,[Dx,x]);

$$\begin{bmatrix} 3 \ \partial + x^3, \ \partial - x \end{bmatrix}$$

> with(DEtools): > A:=(x-1)\*Dx^3+(x-x^2)\*Dx^2+(3-2\*x)\*Dx-x: > B:=3\*Dx^2+(x^3-3\*x)\*Dx-x^4-3: > DFactor(A,[Dx,x]);

$$\left[ (x-1)\left( \partial^2 + (x-1)^{-1} \right), \partial - x \right]$$

> DFactor(B,[Dx,x]);

$$\begin{bmatrix} 3 \ \partial + x^3, \ \partial - x \end{bmatrix}$$

> GCRD(A,B,[Dx,x]);

 $\partial - x$ 

#### Theorem [B., Rivoal, Salvy, 2020]

Let *L* have order *m*, degree *q*, height *H*. Let *M* be a monic right factor of *L*. Then:

$$\deg_{x}(M) \leq r^{2}(\mathcal{S}+1)\mathcal{E}+r(\mathcal{N}+1)\mathcal{S}+r\mathcal{N}+\frac{1}{2}r^{2}(r-1)\big((\mathcal{S}+1)(\mathcal{N}+1)-2\big),$$

where

- r = the order of M;
- *E* = the largest modulus of the local generalized exponents of *L* at ∞ and at its finite non-apparent singularities;
- $\mathcal{N}$  = the largest slope of *L* at its finite singularities and at  $\infty$ ;
- S = the number of finite non-apparent singularities of *L*.

▷ Previous bound [Grigoriev, 1990] was asymptotic  $e^{2^{m \cdot o(2^m)}}$  as  $m \to +\infty$ 

#### Theorem [B., Rivoal, Salvy, 2020]

Let *L* have order *m*, degree *q*, height *H*. Let *M* be a monic right factor of *L*. Then:

 $\deg_x(M) \leq r^2(\mathcal{S}+1)\mathcal{E} + r(\mathcal{N}+1)\mathcal{S} + r\mathcal{N} + \frac{1}{2}r^2(r-1)\big((\mathcal{S}+1)(\mathcal{N}+1)-2\big),$ 

#### where

- $r \leq m$ ;
- $\mathcal{N} \leq m + q;$
- $S \leq q$ ;
- $\mathcal{E} \leq 2^{(36(q+1)m)^{9(q+1)^2m^{3m}}} H^{(5(q+1)m)^{9(q+1)^2m^{3m}}}$
- ▷ Previous bound [Grigoriev, 1990] was asymptotic  $e^{2^{m \cdot o(2^m)}}$  as  $m \to +\infty$

The second-order operator

$$L := x\partial^2 + (2-x)\partial + N$$

admits the right factor of order 1 and degree  ${\cal N}$ 

$$M = \partial - \frac{H'(x)}{H(x)}, \text{ where } H(x) = {}_{1}F_{1}(-N; 2; x) = \sum_{\ell=0}^{N} \binom{N}{\ell} \frac{(-x)^{\ell}}{(\ell+1)!}.$$

The second-order operator

$$L := x\partial^2 + (2-x)\partial + N$$

admits the right factor of order 1 and degree  ${\cal N}$ 

$$M = \partial - \frac{H'(x)}{H(x)}, \text{ where } H(x) = {}_{1}F_{1}(-N; 2; x) = \sum_{\ell=0}^{N} \binom{N}{\ell} \frac{(-x)^{\ell}}{(\ell+1)!}.$$

▷ Here, m = 2, q = 1, r = 1 and  $\mathcal{E} = N$ ,  $\mathcal{N} = 1$  and  $\mathcal{S} = 0$ .

The second-order operator

$$L := x\partial^2 + (2-x)\partial + N$$

admits the right factor of order 1 and degree  ${\cal N}$ 

$$M = \partial - \frac{H'(x)}{H(x)}, \text{ where } H(x) = {}_{1}F_{1}(-N; 2; x) = \sum_{\ell=0}^{N} \binom{N}{\ell} \frac{(-x)^{\ell}}{(\ell+1)!}.$$

 $\triangleright$  Here, m = 2, q = 1, r = 1 and  $\mathcal{E} = N$ ,  $\mathcal{N} = 1$  and  $\mathcal{S} = 0$ .

▷ The bound of [B., Rivoal, Salvy, 2020] writes  $\deg_x(M) \le N$  (optimal).

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

Analogies

• Both are (effective) algebras: addition, multiplication

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

Analogies

- Both are (effective) algebras: addition, multiplication
- Both are Euclidean: (effective) division with quotient and remainder

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable
- Differences

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable
- Differences
  - $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable
- Differences
  - $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
  - Only right-factors in  $\mathbb{K}(x)\langle \partial \rangle$  correspond to "solutions"
$\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle \partial \rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-r)}^{\min} = \left(\partial + \frac{1}{r-1}\right)\partial$

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle\partial\rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-x)}^{\min} = \left(\partial + \frac{1}{x-1}\right)\partial$
- GCRDs and LCLMs in  $\mathbb{K}(x)\langle\partial\rangle$  not always visible on factorizations

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle \partial \rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-x)}^{\min} = \left(\partial + \frac{1}{x-1}\right)\partial$
- GCRDs and LCLMs in  $\mathbb{K}(x)\langle \partial \rangle$  not always visible on factorizations
- Factorization in  $\mathbb{K}(x)\langle \partial \rangle$  is not unique

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle\partial\rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-x)}^{\min} = \left(\partial + \frac{1}{x-1}\right)\partial$
- GCRDs and LCLMs in  $\mathbb{K}(x)\langle \partial \rangle$  not always visible on factorizations
- Factorization in  $\mathbb{K}(x)\langle \partial \rangle$  is not unique
- Worse, degrees on factors of  $L \in \mathbb{K}(x)\langle \partial \rangle$  depend on the bit-size of *L*, not only on its order/degree

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle\partial\rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-x)}^{\min} = \left(\partial + \frac{1}{x-1}\right)\partial$
- GCRDs and LCLMs in  $\mathbb{K}(x)\langle \partial \rangle$  not always visible on factorizations
- Factorization in  $\mathbb{K}(x)\langle \partial \rangle$  is not unique
- Worse, degrees on factors of  $L \in \mathbb{K}(x)\langle \partial \rangle$  depend on the bit-size of *L*, not only on its order/degree
- Worse, degrees on factors are not polynomially bounded (!)

 $\mathbb{K}(x)[y]$  versus  $\mathbb{K}(x)\langle\partial\rangle$ 

- Analogies
  - Both are (effective) algebras: addition, multiplication
  - Both are Euclidean: (effective) division with quotient and remainder
  - In both cases, there are polynomial time algorithms for algebra and Euclidean operations
  - Both are (effective) factorization domains, e.g. when  $\mathbb{K} = \mathbb{Q}$
  - In both cases, irreducibility and factoring are decidable

- $\mathbb{K}(x)\langle \partial \rangle$  is (slightly) non-commutative
- Only right-factors in  $\mathbb{K}(x)\langle\partial\rangle$  correspond to "solutions"
- Minimal-order annihilating skew polynomials for a D-finite function need not be irreducible  $L_{\ln(1-x)}^{\min} = \left(\partial + \frac{1}{x-1}\right)\partial$
- GCRDs and LCLMs in  $\mathbb{K}(x)\langle \partial \rangle$  not always visible on factorizations
- Factorization in  $\mathbb{K}(x)\langle \partial \rangle$  is not unique
- Worse, degrees on factors of  $L \in \mathbb{K}(x) \langle \partial \rangle$  depend on the bit-size of *L*, not only on its order/degree
- Worse, degrees on factors are not polynomially bounded (!)
- Factoring in  $\mathbb{K}(x)\langle\partial\rangle$  is much more difficult than in  $\mathbb{K}(x)[y]$ .

 $W_{n,n}$  = set of operators in  $\mathbb{K}[x]\langle \partial \rangle$  with ord  $< n, \deg < n$ 

*Theorem* [Hoeven'02; B.'03; B.-Chyzak-Li-Salvy'12; Hoeven'16] One can compute output (ord, deg)

- MUL in  $W_{n,n}$  in  $O(n^{\omega})$  ops. in  $\mathbb{K}$
- GCRD in  $W_{n,n}$  in  $\tilde{O}(n^{\omega+1})$  ops. in  $\mathbb{K}$
- LCLM in  $W_{n,n}$  in  $\tilde{O}(n^{\omega+1})$  ops. in  $\mathbb{K}$
- **REM** in  $W_{n,n}$  in  $\tilde{O}(n^{\omega+1})$  ops. in **K**
- SYM in  $W_{n,n}$  in  $\tilde{O}(n^{2\omega+3})$  ops. in  $\mathbb{K}$

 $\begin{array}{c} (O(n), O(n)) \\ (O(n), O(n^2)) \\ (O(n), O(n^2)) \\ (O(n), O(n^2)) \\ (O(n^2), O(n^4)) \end{array}$ 

- ▷ Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:
  - reduction to (polynomial) linear algebra
  - reduction to fast skew multiplication

▷ FACTOR:  $(N\mathcal{L})^{O(n^4)}$ , with  $\mathcal{L} = \text{bitsize}(L)$  and  $N \le e^{(\mathcal{L} \cdot 2^n)^{2^n}}$  [Grigoriev'90]

```
> for n from 1 to 8 do
> A1:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> A2:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> L:=LCLM(A1,A2,[Dx,x]);
> LL:=mult(denom(L), L, [Dx,x]):
> print(n, [degree(LL,Dx),degree(LL,x)]);
> od:
```

| 1, | [2,4]    |
|----|----------|
| 2, | [4, 12]  |
| 3, | [6,24]   |
| 4, | [8, 40]  |
| 5, | [10,60]  |
| 6, | [12, 84] |
| 7, | [14, 112 |
| 8, | [16, 144 |

```
> for n from 1 to 8 do
> A1:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> A2:=add(randpoly(x,degree=n,dense)*Dx^i, i=0..n);
> L:=LCLM(A1,A2,[Dx,x]);
> LL:=mult(denom(L), L, [Dx,x]):
> print(n, [degree(LL,Dx),degree(LL,x)]);
> od:
```

| 1, | [2, 4]   |
|----|----------|
| 2, | [4, 12]  |
| 3, | [6,24]   |
| 4, | [8, 40]  |
| 5, | [10,60]  |
| 6, | [12, 84] |
| 7, | [14, 112 |
| 8, | [16, 144 |

▷ Bounds for LCLM in  $W_{n,n}$  can be read off: (2n, 2n(n+1))

 $W_{r,d}$  = set of operators in  $\mathbb{K}[x]\langle \partial \rangle$  with ord  $< r, \deg < d$ ,

*Theorem* [B.'03; B.-Chyzak-Li-Salvy'12; Benoit-B.-Hoeven'12; Hoeven'16] One can compute output (ord, deg)

- MUL in  $W_{r,d}$  in  $O(dr \cdot \min(r, d)^{\omega-2})$  ops. in  $\mathbb{K}$
- GCRD in  $W_{r,d}$  in  $\tilde{O}(r^{\omega}d)$  ops. in  $\mathbb{K}$
- LCLM in  $W_{r,d}$  in  $\tilde{O}(r^{\omega}d)$  ops. in K
- REM in  $W_{r,d}$  in  $\tilde{O}(r^{\omega}d)$  ops. in  $\mathbb{K}$
- SYM in  $W_{r,d}$  in  $\tilde{O}(r^{\omega+3}d^{\omega})$  ops. in  $\mathbb{K}$

▷ Algorithms + Bounds + Complexity follow 2 distinct lines of thoughts:

- reduction to (polynomial) linear algebra
- reduction to fast skew multiplication

▷ FACTOR:  $(N\mathcal{L})^{O(r^4)}$ , with  $\mathcal{L} = \text{bitsize}(L)$  and  $N \le e^{(\mathcal{L} \cdot 2^r)^{2^r}}$  [Grigoriev'90]

(O(r), O(d))

(O(r), O(rd))

(O(r), O(rd))

(O(r), O(rd)) $(O(rd), O(r^{3}d))$ 

## Combinatorial application: Gessel's conjecture



• g(n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in  $\mathbb{N}^2$ 1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880,...

**Question**: What is the nature of the generating function  $G(t) = \sum_{n=0}^{\infty} g(n) t^n ?$ 



• g(i, j; n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in  $\mathbb{N}^2$  from (0, 0) to (*i*, *j*)

**Question**: What is the nature of the generating function

$$G(x,y;t) = \sum_{i,j,n=0}^{\infty} g(i,j;n) x^i y^j t^n ?$$



Combinatorial application: Gessel's conjecture

• g(i, j; n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in  $\mathbb{N}^2$  from (0, 0) to (*i*, *j*)

**Question**: What is the nature of the generating function

$$G(x,y;t) = \sum_{i,j,n=0}^{\infty} g(i,j;n) x^i y^j t^n ?$$



Theorem [B., Kauers, 2010] G(x, y; t) is an algebraic function<sup>†</sup>.

▷ computer-driven discovery/proof via *algorithmic Guess-and-Prove* ▷ involves a LCLM computation of two 11th order (guessed) differential operators for *G*(*x*, 0; *t*), and *G*(0, *y*; *t*).
 ▷ LCLM has order 20, tridegree (359,717,279) in (*t*, *x*, *y*), 1.5 billion coeffs

<sup>†</sup> Minimal polynomial P(G(x, y; t); x, y, t) = 0 has  $> 10^{11}$  terms;  $\approx 30$  Gb (6 DVDs!)

## Combinatorial application: Gessel's conjecture

• g(n) = number of *n*-steps { $\nearrow, \checkmark, \leftarrow, \rightarrow$ }-walks in  $\mathbb{N}^2$ 

**Question**: What is the nature of the generating function  $G(t) = \sum_{n=0}^{\infty} g(n) t^n$ ?



Corollary [B., Kauers, 2010] (former conjecture of Gessel's) (3n+1) g(2n) = (12n+2) g(2n-1) and (n+1) g(2n+1) = (4n+2) g(2n)

▷ involves a LCLM computation of two 11th order (guessed) differential operators for G(x,0;t), and G(0,y;t). ▷ LCLM has order 20, tridegree (359,717,279) in (t,x,y), 1.5 billion coeffs

# Application to differential guessing



1000 terms of G(x, 0; t) are enough to guess candidates differential equations below the red curve. GCRD of candidates could jump above the red curve.

**Def:** *p*-curvature  $\mathbf{A}_p(L)$  = the matrix in  $\mathcal{M}_r(\mathbb{K}(x))$  whose (i, j) entry is the coefficient of  $\partial^i$  in  $\partial^{p+j} \operatorname{rmod} L$  for  $0 \le i, j < r$ 

Def: *p*-curvature  $\mathbf{A}_p(L)$  = matrix of  $\partial^p$  modulo *L* ("*diff. Frobenius map*") *Grothendieck's conjecture* ('70*s*)  $\Gamma \in \mathbb{Q}[x]\langle \partial \rangle$  has a basis of algebraic solutions over  $\mathbb{Q}(x)$  if and only if  $\mathbf{A}_p(\Gamma \mod p)$  is zero for almost all primes *p*.

▷ Proved by [Katz 1982] for *Picard-Fuchs operators*; widely open in general.

Def: *p*-curvature  $\mathbf{A}_p(L)$  = matrix of  $\partial^p$  modulo L ("*diff. Frobenius map*") *Grothendieck's conjecture* ('70*s*)  $\Gamma \in \mathbb{Q}[x]\langle \partial \rangle$  has a basis of algebraic solutions over  $\mathbb{Q}(x)$  if and only if  $\mathbf{A}_p(\Gamma \mod p)$  is zero for almost all primes *p*.

▷ Proved by [Katz 1982] for *Picard-Fuchs operators*; widely open in general.

> holexprtodiffeq(hypergeom([1/9,4/9,7/9], [1/3, 2/3], x), y(x))[1]:
> L:=de2diffop(%, y(x), [Dx,x]);

 $(729 x^3 - 729 x^2) \partial^3 + (3159 x^2 - 1458 x) \partial^2 + (2052 x - 162) \partial + 28$ 

Def: *p*-curvature  $\mathbf{A}_p(L)$  = matrix of  $\partial^p$  modulo L ("*diff. Frobenius map*") *Grothendieck's conjecture* ('70*s*)  $\Gamma \in \mathbb{Q}[x]\langle \partial \rangle$  has a basis of algebraic solutions over  $\mathbb{Q}(x)$  if and only if  $\mathbf{A}_p(\Gamma \mod p)$  is zero for almost all primes *p*.

▷ Proved by [Katz 1982] for *Picard-Fuchs operators*; widely open in general.

> holexprtodiffeq(hypergeom([1/9,4/9,7/9], [1/3, 2/3], x), y(x))[1]:
> L:=de2diffop(%, y(x), [Dx,x]);

 $(729 x^3 - 729 x^2) \partial^3 + (3159 x^2 - 1458 x) \partial^2 + (2052 x - 162) \partial + 28$ 

> p:=7; for j to 3 do N:=rightdivision(Dx^p,L,[Dx,x])[2] mod p; > p:=nextprime(p); print(p, N); od:

| Alin Bostan | Fast skew arithmetic |         |
|-------------|----------------------|---------|
| 23          | , <b>0</b> a         | 38 / 40 |
| 19          | ,0                   |         |
| 17          | ,0                   |         |
| 13          | ,0                   |         |
| 11,         | , 0                  |         |
|             |                      |         |
|             |                      |         |



39 / 40

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite  $f \in \mathbb{Q}[[t]]$ , P(t, f(t)) = 0 with deg P = DQuestion: sizes (order & coefficients degree) of differential equations for f? Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:



Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite  $f \in \mathbb{Q}[[t]]$ , P(t, f(t)) = 0 with deg P = DQuestion: sizes (order & coefficients degree) of differential equations for f? Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:



Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite  $f \in \mathbb{Q}[[t]]$ , P(t, f(t)) = 0 with deg P = DQuestion: sizes (order & coefficients degree) of differential equations for f? Answer [B., Chyzak, Lecerf, Salvy, Schost, 2007]:



**Exercise 1**: Prove that *L* admits at most r = ord(L) linearly independent solutions (over *C*). Hint: use Wronskians.

**Exercise 2**: Estimate the cost of SYM in the case of constant coefficients.

**Exercise 3**: Assume that the LCLM of *A*, *B* in  $W_{n,n}$  is computed using the algorithm from last time (closure of D-finite functions with respect to +).

- Estimate the size and the degree of the polynomial matrix;
- Deduce a bound on the degrees of LCLM(*A*, *B*);
- Estimate the complexity of computing LCLM(*A*, *B*) by this method.