Algorithmic Guessing

Alin Bostan

Alin Bostan

Algorithmic Guessing

(1) Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

- Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.
- Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- 3 Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.
- **④** Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

▷ By linearity, it is sufficient to prove this for the monomial $P(x) = x^d$.

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

▷ By linearity, it is sufficient to prove this for the monomial $P(x) = x^d$. ▷ Remark: The statement becomes equivalent to a summation question:

$$\sum_{k=0}^{d+1} (-1)^k \binom{d+1}{k} (n+k)^d = 0, \text{ for all } n \ge 0.$$

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

▷ By linearity, it is sufficient to prove this for the monomial $P(x) = x^d$. ▷ Remark: The statement becomes equivalent to a summation question:

$$\sum_{k=0}^{d+1} (-1)^k \binom{d+1}{k} (n+k)^d = 0, \text{ for all } n \ge 0.$$

▷ First solution: there exists a $N_d(x) \in \mathbb{Q}[x]_{\leq d}$ such that

$$\sum_{n\geq 0} n^d x^n = \frac{N_d(x)}{(1-x)^{d+1}} \tag{1}$$

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

▷ By linearity, it is sufficient to prove this for the monomial $P(x) = x^d$. ▷ Remark: The statement becomes equivalent to a summation question:

$$\sum_{k=0}^{d+1} (-1)^k \binom{d+1}{k} (n+k)^d = 0, \text{ for all } n \ge 0.$$

▷ First solution: there exists a $N_d(x) \in \mathbb{Q}[x]_{\leq d}$ such that

$$\sum_{n\geq 0} n^d x^n = \frac{N_d(x)}{(1-x)^{d+1}}$$
(1)

This can be proved by induction: the case d = 0 is obvious, and (1) implies

$$\sum_{n \ge 0} n^{d+1} x^n = x \frac{d}{dx} \left(\frac{N_d(x)}{(1-x)^{d+1}} \right) = \frac{x(1-x) \cdot N'_d(x) + (d+1)x N_d(x)}{(1-x)^{d+2}}$$

Show that if $P \in \mathbb{K}[x]$ has degree *d*, then the sequence $(P(n))_{n \ge 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

▷ By linearity, it is sufficient to prove this for the monomial $P(x) = x^d$. ▷ Remark: The statement becomes equivalent to a summation question:

$$\sum_{k=0}^{d+1} (-1)^k \binom{d+1}{k} (n+k)^d = 0, \text{ for all } n \ge 0.$$

▷ First solution: there exists a $N_d(x) \in \mathbb{Q}[x]_{\leq d}$ such that

$$\sum_{n \ge 0} n^d x^n = \frac{N_d(x)}{(1-x)^{d+1}} \tag{1}$$

This can be proved by induction: the case d = 0 is obvious, and (1) implies

$$\sum_{n\geq 0} n^{d+1} x^n = x \frac{d}{dx} \left(\frac{N_d(x)}{(1-x)^{d+1}} \right) = \frac{x(1-x) \cdot N'_d(x) + (d+1)x N_d(x)}{(1-x)^{d+2}}$$

▷ Second solution: the operator $\Delta_n = S_n - \text{id} : (u_n)_{n \ge 0} \mapsto (u_{n+1} - u_n)_{n \ge 0}$ decreases by 1 the degree of a polynomial sequence, thus $\Delta_n^{d+1} ((n^d)_n) = 0$.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$.

(a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$.

(a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.

▷ *n* is even if and only if n = 0 in $\mathbb{K} := \mathbb{Z}/2\mathbb{Z}$.

- (a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.
- ▷ *n* is even if and only if n = 0 in $\mathbb{K} := \mathbb{Z}/2\mathbb{Z}$.
- ▷ It is sufficient to compute $P_N(x) := (1 + x + x^2)^N$ in $\mathbb{K}[x]$

- (a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.
- ▷ *n* is even if and only if n = 0 in $\mathbb{K} := \mathbb{Z}/2\mathbb{Z}$.
- \triangleright It is sufficient to compute $P_N(x) := (1 + x + x^2)^N$ in $\mathbb{K}[x]$
- ▷ DAC algorithm based on $P_N(x) = P_{|N/2|}(x)^2 \cdot (1 + x + x^2)^{N \mod 2}$ in $\mathbb{K}[x]$

- (a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.
- ▷ *n* is even if and only if n = 0 in $\mathbb{K} := \mathbb{Z}/2\mathbb{Z}$.
- \triangleright It is sufficient to compute $P_N(x) := (1 + x + x^2)^N$ in $\mathbb{K}[x]$
- ▷ DAC algorithm based on $P_N(x) = P_{|N/2|}(x)^2 \cdot (1 + x + x^2)^{N \mod 2}$ in $\mathbb{K}[x]$
- ▷ Cost recurrence: C(N) = C(N/2) + M(N) + O(N)

- (a) Show that the parity of all coefficients of *P* can be determined in O(M(N)) bit ops.
- ▷ *n* is even if and only if n = 0 in $\mathbb{K} := \mathbb{Z}/2\mathbb{Z}$.
- \triangleright It is sufficient to compute $P_N(x) := (1 + x + x^2)^N$ in $\mathbb{K}[x]$
- ▷ DAC algorithm based on $P_N(x) = P_{|N/2|}(x)^2 \cdot (1 + x + x^2)^{N \mod 2}$ in $\mathbb{K}[x]$
- ▷ Cost recurrence: C(N) = C(N/2) + M(N) + O(N)
- ▷ Conclusion: C(N) = O(M(N))

- (b) Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- (c) Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.

- (b) Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- (c) Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.

▷ Logarithmic derivative:
$$\frac{P'(x)}{P(x)} = \frac{N(2x+1)}{x^2+x+1}$$

- (b) Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- (c) Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.

▷ Logarithmic derivative:
$$\frac{P'(x)}{P(x)} = \frac{N(2x+1)}{x^2+x+1}$$

$$\triangleright P = \sum_{i \ge 0} p_i x^i, \quad P' = \sum_{i \ge 0} (i+1)p_{i+1}x^i, \quad [x^i](x^2 + x + 1)P' - N(2x+1)P = 0$$

- (b) Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- (c) Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.

▷ Logarithmic derivative:
$$\frac{P'(x)}{P(x)} = \frac{N(2x+1)}{x^2+x+1}$$

$$\triangleright P = \sum_{i \ge 0} p_i x^i, \quad P' = \sum_{i \ge 0} (i+1)p_{i+1}x^i, \quad [x^i](x^2 + x + 1)P' - N(2x+1)P = 0$$

 $ightarrow (i-1)p_{i-1} + ip_i + (i+1)p_{i+1} = 2Np_{i-1} + Np_i$, for all $i \ge 0$

- (b) Show that *P* satisfies a linear differential equation of order 1 with polynomial coefficients.
- (c) Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.

▷ Logarithmic derivative:
$$\frac{P'(x)}{P(x)} = \frac{N(2x+1)}{x^2+x+1}$$

$$\triangleright P = \sum_{i \ge 0} p_i x^i, \quad P' = \sum_{i \ge 0} (i+1)p_{i+1}x^i, \quad [x^i](x^2 + x + 1)P' - N(2x+1)P = 0$$

 $(i-1)p_{i-1} + ip_i + (i+1)p_{i+1} = 2Np_{i-1} + Np_i$, for all $i \ge 0$

 \triangleright The recurrence satisfied by the sequence (p_i) is

$$p_{i+1} = \frac{1}{i+1} \Big((N-i)p_i + (2N-i+1)p_{i-1} \Big) \text{ for } i \ge 0.$$

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$.

(d) Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$. (d) Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

▷ The recurrence rewrites in matrix form: $F_i = \frac{1}{i+1}A_iF_{i-1}$, where

$$A_i = \left(\begin{array}{cc} N-i & 2N-i+1\\ i+1 & 0 \end{array}\right) \quad \text{and} \quad F_i = \left(\begin{array}{c} p_{i+1}\\ p_i \end{array}\right).$$

▷ By unrolling it, we obtain the equality $F_i = \frac{1}{(i+1)!} A(i) \cdots A(1) \begin{pmatrix} N \\ 1 \end{pmatrix}$.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$. (d) Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

▷ The recurrence rewrites in matrix form: $F_i = \frac{1}{i+1}A_iF_{i-1}$, where

$$A_i = \left(\begin{array}{cc} N-i & 2N-i+1\\ i+1 & 0 \end{array}\right) \quad \text{and} \quad F_i = \left(\begin{array}{c} p_{i+1}\\ p_i \end{array}\right).$$

▷ By unrolling it, we obtain the equality $F_i = \frac{1}{(i+1)!} A(i) \cdots A(1) \begin{pmatrix} N \\ 1 \end{pmatrix}$.

▷ To compute p_N we determine F_N by binary splitting applied to the integer f = (N+1)!, and to the matrix factorial $B = A(N) \cdots A(1)$, followed by the matrix-vector product $v = B \times (N - 1)^T$ and the (exact) division $\frac{1}{f}v$.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$. (d) Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

▷ The recurrence rewrites in matrix form: $F_i = \frac{1}{i+1}A_iF_{i-1}$, where

$$A_i = \left(\begin{array}{cc} N-i & 2N-i+1\\ i+1 & 0 \end{array}\right) \quad \text{and} \quad F_i = \left(\begin{array}{c} p_{i+1}\\ p_i \end{array}\right).$$

▷ By unrolling it, we obtain the equality $F_i = \frac{1}{(i+1)!} A(i) \cdots A(1) \begin{pmatrix} N \\ 1 \end{pmatrix}$.

▷ To compute p_N we determine F_N by binary splitting applied to the integer f = (N + 1)!, and to the matrix factorial $B = A(N) \cdots A(1)$, followed by the matrix-vector product $v = B \times (N + 1)^T$ and the (exact) division $\frac{1}{f}v$.

▷ The integer *f*, and the entries of *B* and *v*, have $O(N \log(N))$ bits.

Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[x]$ be the polynomial $P(x) = (1 + x + x^2)^N$. (d) Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.

▷ The recurrence rewrites in matrix form: $F_i = \frac{1}{i+1}A_iF_{i-1}$, where

$$A_i = \begin{pmatrix} N-i & 2N-i+1\\ i+1 & 0 \end{pmatrix} \text{ and } F_i = \begin{pmatrix} p_{i+1}\\ p_i \end{pmatrix}.$$

▷ By unrolling it, we obtain the equality $F_i = \frac{1}{(i+1)!} A(i) \cdots A(1) \begin{pmatrix} N \\ 1 \end{pmatrix}$.

▷ To compute p_N we determine F_N by binary splitting applied to the integer f = (N + 1)!, and to the matrix factorial $B = A(N) \cdots A(1)$, followed by the matrix-vector product $v = B \times (N + 1)^T$ and the (exact) division $\frac{1}{f}v$.

▷ The integer *f*, and the entries of *B* and *v*, have $O(N \log(N))$ bits.

 \triangleright Cost of the whole algorithm: $\tilde{O}(N)$ bit ops.

ALGORITHMIC GUESSING

- 1, 1, 1, 1, 1
- 2 1, 1, 2, 3, 5
- 3 1, 1, 2, 5, 14
- ④ 1, 2, 9, 54, 378
- 5 1, 2, 16, 192, 2816
- **(a)** 1, 3, 30, 420, 6930

- 1, 1, 1, 1, 1, 1
 1, 1, 2, 3, 5
 1, 1, 2, 5, 14
- ④ 1, 2, 9, 54, 378
- 5 1, 2, 16, 192, 2816
- 6 1, 3, 30, 420, 6930

1

1, 1, 1, 1, 1 2 1, 1, 2, 3, 5 3 1, 1, 2, 5, 14 ④ 1, 2, 9, 54, 378 5 1, 2, 16, 192, 2816 6 1, 3, 30, 420, 6930 1

8

1, 1, 1, 1, 1	1
2 1, 1, 2, 3, 5	8
3 1, 1, 2, 5, 14	42
4 1, 2, 9, 54, 378	
3 1, 2, 16, 192, 2816	
6 1, 3, 30, 420, 6930	

① 1, 1, 1, 1, 1	1
2 1, 1, 2, 3, 5	8
3 1, 1, 2, 5, 14	42
④ 1, 2, 9, 54, 378	2916
⑤ 1, 2, 16, 192, 2816	
⁽⁶⁾ 1, 3, 30, 420, 6930 ⁽⁷⁾	

1 1, 1, 1, 1, 1	1
2 1, 1, 2, 3, 5	8
3 1, 1, 2, 5, 14	42
④ 1, 2, 9, 54, 378	2916
5 1, 2, 16, 192, 2816	46592
6 1, 3, 30, 420, 6930	

1, 1, 1, 1, 1	1
2 1, 1, 2, 3, 5	8
3 1, 1, 2, 5, 14	42
3 1, 2, 9, 54, 378	2916
5 1, 2, 16, 192, 2816	46592
	126126

1, 1, 1, 1, 1	1/(1-t)
2 1, 1, 2, 3, 5	$1/(1-t-t^2)$
3 1, 1, 2, 5, 14	$(1-\sqrt{1-4t})/(2t)$
4 1, 2, 9, 54, 378	$27 t^2 y^2 + (1 - 18 t) y + 16 t = 1$
3 1, 2, 16, 192, 2816	$64 t^2 y^3 + 16 t y^2 + (1 - 72 t) y + 54 t = 1$
	(27 t2 - t) y'' + (54 t - 2) y' + 6 y = 0

1 1. 1. 1. 1. 1 1/(1-t)2 1, 1, 2, 3, 5 $1/(1-t-t^2)$ $(1 - \sqrt{1 - 4t})/(2t)$ 3 1, 1, 2, 5, 14 $27 t^2 y^2 + (1 - 18 t) y + 16 t = 1$ ④ 1, 2, 9, 54, 378 $64 t^2 y^3 + 16 t y^2 + (1 - 72 t) y + 54 t = 1$ 5 1, 2, 16, 192, 2816 (27 t² - t) y'' + (54 t - 2) y' + 6 y = 0⁽⁶⁾ 1, 3, 30, 420, 6930
 ⁽⁶⁾

Automated guessing: algorithmic computation of these equations

1 1, 1, 1, 1, 1 1/(1-t)2 1, 1, 2, 3, 5 $1/(1-t-t^2)$ $(1 - \sqrt{1 - 4t})/(2t)$ 3 1, 1, 2, 5, 14 $27 t^2 y^2 + (1 - 18 t) y + 16 t = 1$ ④ 1, 2, 9, 54, 378 $64 t^2 y^3 + 16 t y^2 + (1 - 72 t) y + 54 t = 1$ 5 1, 2, 16, 192, 2816 (27 t² - t) y'' + (54 t - 2) y' + 6 y = 0⁽⁶⁾ 1, 3, 30, 420, 6930

▷ Automated guessing: via Padé, or Hermite-Padé, approximants

PADÉ APPROXIMANTS

-guessing linear recurrences with constant coefficients-

Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions) Let $A(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \ge 0}$. The following assertions are equivalent:

- (i) (a_n) is a l.r.s.c.c., having *P* as characteristic polynomial of degree *d*.
- (ii) A(x) is rational, of the form $A = Q/\text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{< d}$, where $\text{rev}_d(P) = P(\frac{1}{x})x^d$.

Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions) Let $A(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \ge 0}$. The following assertions are equivalent:

- (i) (a_n) is a l.r.s.c.c., having *P* as characteristic polynomial of degree *d*.
- (ii) A(x) is rational, of the form $A = Q/\text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{< d}$, where $\text{rev}_d(P) = P(\frac{1}{x})x^d$.

Moreover, if *P* is the minimal polynomial of $(a_n)_{n\geq 0}$, then

 $d = \max\{1 + \deg(Q), \deg(\mathsf{rev}_d(P))\} \text{ and } \gcd(Q, \mathsf{rev}_d(P)) = 1.$

Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions) Let $A(x) = \sum_{n \ge 0} a_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(a_n)_{n \ge 0}$. The following assertions are equivalent:

- (i) (a_n) is a l.r.s.c.c., having *P* as characteristic polynomial of degree *d*.
- (ii) A(x) is rational, of the form $A = Q/\text{rev}_d(P)$ for some $Q \in \mathbb{K}[x]_{< d}$, where $\text{rev}_d(P) = P(\frac{1}{x})x^d$.

Moreover, if *P* is the minimal polynomial of $(a_n)_{n\geq 0}$, then

$$d = \max\{1 + \deg(Q), \deg(\operatorname{rev}_d(P))\}$$
 and $\gcd(Q, \operatorname{rev}_d(P)) = 1$.

 \triangleright Computing MinPol(a_n) is equivalent to solving a Padé approximation pb:

$$\frac{R}{V} \equiv A \mod x^{2N}, \quad x \not\mid V, \ \deg(R) < N, \ \deg(V) \le N \ \text{ and } \ \gcd(R, V) = 1,$$

where $A = a_0 + a_1 x + a_2 x^2 + \dots + a_{2N-1} x^{2N-1}$.

Recall: Euclidean-type algorithm for Padé approximation

Pade(A, 2N)

In: *A* in
$$\mathbb{K}[x]$$
 with deg $A < 2N$
Out: (R, V) s.t. $R/V \equiv A \mod x^{2N}$, deg $R < N$, deg $V \le N$, or FAIL
1 $R_0 := x^{2N}$; $V_0 := 0$; $R_1 := A$; $V_1 := 1$; $i := 1$.
2 While deg $R_i \ge N$ do:
1 $(Q_i, R_{i+1}) :=$ QuotRem (R_{i-1}, R_i)
2 $V_{i+1} := V_{i-1} - Q_i V_i$
3 If $V_i(0) \ne 0$ then return (R_i, V_i) ; else return FAIL.

▷ Quadratic complexity: $O(N^2)$ operations in \mathbb{K} ▷ There exist quasi-linear time algorithms

 $O(\mathsf{M}(N)\log N)$

- **In:** A bound $N \in \mathbb{N}$ on the degree of the minimal polynomial of $(a_n)_{n \ge 0}$ and the first 2*N* terms $a_0, \ldots, a_{2N-1} \in \mathbb{K}$.
- **Out:** the minimal generating polynomial $(a_n)_{n\geq 0}$.

- ② Compute the solution $(R, V) \in \mathbb{K}[x]^2$ of $\mathsf{Pade}(A, 2N)$ s.t. V(0) = 1.
- 3 $d = \max\{1 + \deg(R), \deg(V)\}$. Return $\operatorname{rev}_d(V) = V(1/x)x^d$.

▷ Quadratic complexity: O(N²) operations in K
 ▷ There exist quasi-linear time algorithms

 $O(\mathsf{M}(N)\log N)$

Berlekamp-Massey algorithm, a variant

In: A bound N ∈ N on the degree of the minimal polynomial of (a_n)_{n≥0} and the first 2N terms a₀,..., a_{2N-1} ∈ K.
Out: the minimal generating polynomial (a_n)_{n≥0}.
1 R₀ := x^{2N}; V₀ := 0; R₁ := a_{2n-1} + ··· + a₀x^{2N-1}; V₁ := 1; i := 1.
2 While deg R_i ≥ N, do:

(Q_i, R_{i+1}) := QuotRem(R_{i-1}, R_i)
W_{i+1} := V_{i-1} - Q_iV_i
i := i + 1

3 Return V_i/lc(V_i).

Quadratic complexity: O(N²) operations in K There exist quasi-linear time algorithms

 $O(\mathsf{M}(N)\log N)$

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$ and it computes

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$

and it computes

$$(Q_1, R_2) := \text{QuotRem}(R_0, R_1) = (x - 1, -x^6 - x^5 - 4x^4 - 6x^3 - 12x^2 - 23x + 48)$$
$$V_2 := V_0 - Q_1 V_1 = -x + 1 \quad \longrightarrow \quad a_{n+1} = a_n$$

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$

and it computes

$$(Q_1, R_2) := \text{QuotRem}(R_0, R_1) = (x - 1, -x^6 - x^5 - 4x^4 - 6x^3 - 12x^2 - 23x + 48)$$
$$V_2 := V_0 - Q_1 V_1 = -x + 1 \quad \longrightarrow \quad a_{n+1} = a_n$$

$$(Q_2, R_3) := \text{QuotRem}(R_1, R_2) = (-x, -2x^5 - 3x^4 - 5x^3 - 10x^2 + 73x + 48)$$

$$V_3 := V_1 - Q_2V_2 = -x^2 + x + 1 \longrightarrow a_{n+2} = a_{n+1} + a_n$$

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$ and it computes

$$(Q_1, R_2) := \text{QuotRem}(R_0, R_1) = (x - 1, -x^6 - x^5 - 4x^4 - 6x^3 - 12x^2 - 23x + 48)$$
$$V_2 := V_0 - Q_1 V_1 = -x + 1 \quad \longrightarrow \quad a_{n+1} = a_n$$

$$(Q_2, R_3) := \text{QuotRem}(R_1, R_2) = (-x, -2x^5 - 3x^4 - 5x^3 - 10x^2 + 73x + 48)$$

$$V_3 := V_1 - Q_2V_2 = -x^2 + x + 1 \longrightarrow a_{n+2} = a_{n+1} + a_n$$

$$(Q_3, R_4) := \operatorname{QuotRem}(R_2, R_3) = \left(\frac{x}{2} - \frac{1}{4}, -\frac{9x^4}{4} - \frac{9x^3}{4} - 51x^2 - \frac{115x}{4} + 60\right)$$
$$V_4 := V_2 - Q_3 V_3 = \frac{x^3}{2} - \frac{3x^2}{4} - \frac{5x}{4} + \frac{5}{4} \longrightarrow \qquad a_{n+3} = \frac{3}{2}a_{n+2} + \frac{5}{2}a_{n+1} - \frac{5}{2}a_n$$

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4 \triangleright The previous algorithm starts with $V_0 = 0$, $V_1 = 1$ and

 $R_0 = x^8$, $R_1 = x^7 + x^6 + 2x^5 + 3x^4 + 7x^3 + 13x^2 + 25x + 48$ and it computes

$$(Q_1, R_2) := \text{QuotRem}(R_0, R_1) = (x - 1, -x^6 - x^5 - 4x^4 - 6x^3 - 12x^2 - 23x + 48)$$
$$V_2 := V_0 - Q_1 V_1 = -x + 1 \quad \longrightarrow \quad a_{n+1} = a_n$$

$$(Q_2, R_3) := \text{QuotRem}(R_1, R_2) = (-x, -2x^5 - 3x^4 - 5x^3 - 10x^2 + 73x + 48)$$

$$V_3 := V_1 - Q_2V_2 = -x^2 + x + 1 \longrightarrow a_{n+2} = a_{n+1} + a_n$$

$$(Q_{3}, R_{4}) := \operatorname{QuotRem}(R_{2}, R_{3}) = (\frac{x}{2} - \frac{1}{4}, -\frac{9x^{4}}{4} - \frac{9x^{3}}{4} - 51x^{2} - \frac{115x}{4} + 60)$$

$$V_{4} := V_{2} - Q_{3}V_{3} = \frac{x^{3}}{2} - \frac{3x^{2}}{4} - \frac{5x}{4} + \frac{5}{4} \qquad \longrightarrow \qquad a_{n+3} = \frac{3}{2}a_{n+2} + \frac{5}{2}a_{n+1} - \frac{5}{2}a_{n+3}$$

$$(Q_{4}, R_{5}) := \operatorname{QuotRem}(R_{3}, R_{4}) = (\frac{8x}{9} + \frac{4}{9}, \frac{124x^{3}}{3} + \frac{344x^{2}}{9} + \frac{292x}{9} + \frac{64}{3})$$

$$V_{5} := V_{3} - Q_{4}V_{4} = -\frac{4x^{4}}{9} + \frac{4x^{3}}{9} + \frac{4x^{2}}{9} + \frac{4x}{9} + \frac{4}{9} \qquad \longrightarrow \qquad a_{n+4} = a_{n+3} + \dots + a_{n}$$

HERMITE-PADÉ APPROXIMANTS

-guessing equations with polynomial coefficients-

Definition: Given a column vector $\mathbf{F} = (f_1, \ldots, f_n)^T \in \mathbb{K}[[x]]^n$ and an *n*-tuple $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \ldots, P_n) \in \mathbb{K}[x]^n$, ($\mathbf{P} \neq 0$), such that:

Definition: Given a column vector $\mathbf{F} = (f_1, \ldots, f_n)^T \in \mathbb{K}[[x]]^n$ and an *n*-tuple $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \ldots, P_n) \in \mathbb{K}[x]^n$, ($\mathbf{P} \neq 0$), such that: (1) $\mathbf{P} \cdot \mathbf{F} = P_1 f_1 + \cdots + P_n f_n = O(x^{\sigma})$ with $\sigma = \sum_i (d_i + 1) - 1$,

Definition: Given a column vector $\mathbf{F} = (f_1, \ldots, f_n)^T \in \mathbb{K}[[x]]^n$ and an *n*-tuple $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \ldots, P_n) \in \mathbb{K}[x]^n$, $(\mathbf{P} \neq 0)$, such that: (1) $\mathbf{P} \cdot \mathbf{F} = P_1 f_1 + \cdots + P_n f_n = O(x^{\sigma})$ with $\sigma = \sum_i (d_i + 1) - 1$, (2) $\deg(P_i) \leq d_i$ for all *i*.

Definition: Given a column vector $\mathbf{F} = (f_1, \ldots, f_n)^T \in \mathbb{K}[[x]]^n$ and an *n*-tuple $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \ldots, P_n) \in \mathbb{K}[x]^n$, $(\mathbf{P} \neq 0)$, such that: (1) $\mathbf{P} \cdot \mathbf{F} = P_1 f_1 + \cdots + P_n f_n = O(x^{\sigma})$ with $\sigma = \sum_i (d_i + 1) - 1$, (2) $\deg(P_i) \leq d_i$ for all *i*.

 σ is called the order of the approximant **P**.

Definition: Given a column vector $\mathbf{F} = (f_1, \ldots, f_n)^T \in \mathbb{K}[[x]]^n$ and an *n*-tuple $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \ldots, P_n) \in \mathbb{K}[x]^n$, $(\mathbf{P} \neq 0)$, such that: (1) $\mathbf{P} \cdot \mathbf{F} = P_1 f_1 + \cdots + P_n f_n = O(x^{\sigma})$ with $\sigma = \sum_i (d_i + 1) - 1$, (2) $\deg(P_i) \leq d_i$ for all *i*.

 σ is called the order of the approximant **P**.

▷ Very useful concept in number theory (irrationality/transcendence):

- [Hermite, 1873]: *e* is transcendent.
- [Lindemann, 1882]: π is transcendent; so does e^{α} for any $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$.
- [Apéry, 1978; Beukers, 1981]: $\zeta(3) = \sum_{n \ge 1} \frac{1}{n^3}$ is irrational.
- [Rivoal, 2000]: there exist infinite values of *k* such that $\zeta(2k+1) \notin \mathbb{Q}$.

Sur la généralisation des fractions continues algébriques;

PAR M. H. PADÉ,

Docteur ès Sciences mathématiques, Professeur au lycée de Lille.

INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes $X_1, X_2, ..., X_n$, de degrés $\mu_1, \mu_2, ..., \mu_n$, qui satisfont à l'équation

$$S_1 X_1 + S_2 X_2 + \ldots + S_n X_n = S x^{\mu_1 + \mu_2 + \ldots + \mu_n + n - 1},$$

 S_1, S_2, \ldots, S_n étant des séries entières données, et S une série également entière. Ou plutôt, il s'agit d'obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de *n* polynomes, et qui Let us compute a Hermite-Padé approximant of type (1,1,1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$.

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, *C*, *C*²), where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$

Identifying coefficients, this is equivalent to a homogeneous linear system:

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\begin{aligned} \alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5) \\ \text{Identifying coefficients, this is equivalent to a homogeneous linear system:} \end{aligned}$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 & 2 \\ 0 & 0 & 5 & 2 & 14 & 5 \\ 0 & 0 & 14 & 5 & 42 & 14 \end{bmatrix} \times \begin{vmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_1 \end{vmatrix} = 0 \Longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 5 & 2 & 14 \\ 0 & 0 & 14 & 5 & 42 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} 0 \\ 1 \\ 2 \\ 5 \\ 14 \end{bmatrix}$$

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$ Identifying coefficients, this is equivalent to a homogeneous linear system:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 & 2 \\ 0 & 0 & 5 & 2 & 14 & 5 \\ 0 & 0 & 14 & 5 & 42 & 14 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \\ \gamma_1 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 5 & 2 & 14 \\ 0 & 0 & 14 & 5 & 42 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} 0 \\ 1 \\ 2 \\ 5 \\ 14 \end{bmatrix}$$

By homogeneity, one can choose $\gamma_1 = 1$.

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$ Identifying coefficients, this is equivalent to a homogeneous linear system:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 & 2 \\ 0 & 0 & 5 & 2 & 14 & 5 \\ 0 & 0 & 14 & 5 & 42 & 14 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \\ \gamma_1 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 5 & 2 & 14 \\ 0 & 0 & 14 & 5 & 42 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} 0 \\ 1 \\ 2 \\ 5 \\ 14 \end{bmatrix}$$

By homogeneity, one can choose $\gamma_1 = 1$. Then, the violet minor shows that one can take $(\beta_0, \beta_1, \gamma_0) = (-1, 0, 0)$.

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$ Identifying coefficients, this is equivalent to a homogeneous linear system:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 & 2 \\ 0 & 0 & 5 & 2 & 14 & 5 \\ 0 & 0 & 14 & 5 & 42 & 14 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \\ \gamma_1 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 5 & 2 & 14 \\ 0 & 0 & 14 & 5 & 42 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} 0 \\ 1 \\ 2 \\ 5 \\ 14 \end{bmatrix}$$

By homogeneity, one can choose $\gamma_1 = 1$. Then, the violet minor shows that one can take $(\beta_0, \beta_1, \gamma_0) = (-1, 0, 0)$. The other values are $\alpha_0 = 1$, $\alpha_1 = 0$.

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for $(1, C, C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + O(x^5)$. This boils down to finding $\alpha_0, \alpha_1, \beta_0, \beta_1, \gamma_0, \gamma_1$ (not all zero) such that

 $\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$ Identifying coefficients, this is equivalent to a homogeneous linear system:

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 2 & 1 & 5 & 2 \\ 0 & 0 & 5 & 2 & 14 & 5 \\ 0 & 0 & 14 & 5 & 42 & 14 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \\ \gamma_1 \end{bmatrix} = 0 \Longleftrightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 5 & 2 & 14 \\ 0 & 0 & 14 & 5 & 42 \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} 0 \\ 1 \\ 2 \\ 5 \\ 14 \end{bmatrix}$$

By homogeneity, one can choose $\gamma_1 = 1$. Then, the violet minor shows that one can take $(\beta_0, \beta_1, \gamma_0) = (-1, 0, 0)$. The other values are $\alpha_0 = 1$, $\alpha_1 = 0$.

▷ Thus the approximant is (1, -1, x), which corresponds to $P = 1 - y + xy^2$ such that $P(x, C(x)) = 0 \mod x^5$.

Algebraic and differential approximation = guessing

- Hermite-Padé approximants of n = 2 power series are related to Padé approximants, i.e. to approximation of series by rational functions
- algebraic approximants = Hermite-Padé approximants for $f_{\ell} = A^{\ell-1}$, where $A \in \mathbb{K}[[x]]$ seriestoalgeq, listtoalgeq
- differential approximants = Hermite-Padé approximants for $f_{\ell} = A^{(\ell-1)}$, where $A \in \mathbb{K}[[x]]$ seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

 $1 - y(x) + xy(x)^2$

> listtodiffeq([1,1,2,5,14,42,132,429],y(x))[1];

$$\left\{-2y(x) + (2 - 4x)\frac{d}{dx}y(x) + x\frac{d^2}{dx^2}y(x), y(0) = 1, D(y)(0) = 1\right\}$$

Theorem For any vector $\mathbf{F} = (f_1, \dots, f_n)^T \in \mathbb{K}[[x]]^n$ and for any *n*-tuple $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$, there exists a Hermite-Padé approx. of type **d** for **F**.

Proof: The undetermined coefficients of $P_i = \sum_{i=0}^{d_i} p_{i,j} x^j$ satisfy a linear homogeneous system with $\sigma = \sum_i (d_i + 1) - 1$ eqs and $\sigma + 1$ unknowns.

Corollary Computation in $O(\sigma^{\omega})$, for $2 \le \omega \le 3$ (linear algebra exponent)

▷ There are better algorithms (the linear system is structured, Sylvester-like):

- $O(\sigma^2)$ Derksen's algorithm (Euclidean-like) $\tilde{O}(\sigma) = O(\sigma \log^2 \sigma)$ Beckermann-Labahn algorithm (DAC) $\tilde{O}(\sigma)$
- structured linear algebra algorithms for Toeplitz-like matrices

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé approximant of type (d, ..., d) for $\mathbf{F} = (f_1, ..., f_n)$ in $\tilde{O}(n^{\omega}d)$ ops. in \mathbb{K} .

Ideas:

- Compute a whole matrix of approximants
- Exploit divide-and-conquer

Algorithm:

- **(**) If $\sigma = n(d+1) 1 \leq$ threshold, call the naive algorithm
- 2 Else:
 - **(**) recursively compute $\mathbf{P}_1 \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_1 \cdot \mathbf{F} = O(x^{\sigma/2})$, $\deg(\mathbf{P}_1) \approx \frac{d}{2}$
 - ② compute "residue" **R** such that $\mathbf{P}_1 \cdot \mathbf{F} = x^{\sigma/2} \cdot (\mathbf{R} + O(x^{\sigma/2}))$
 - **3** recursively compute $\mathbf{P}_2 \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_2 \cdot \mathbf{R} = O(x^{\sigma/2})$, $\deg(\mathbf{P}_2) \approx \frac{d}{2}$
 - (a) return $\mathbf{P} := \mathbf{P}_2 \cdot \mathbf{P}_1$

▷ The precise choices of degrees is a delicate issue

▷ Corollary: Gcd, extended gcd, Padé approximants in $\tilde{O}(d)$ ops. in K.

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most d in x and at most n in y. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$.

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most d in x and at most n in y. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$.

In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$.

In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

Remark: If n = 1, this simply says that if $A \in \mathbb{K}(x)_{\leq d}$ and if $Q_0(x) + Q_1(x)A = O(x^{2d+1})$ with $\deg(Q_i) \leq d$, then $Q_0(x) + Q_1(x)A = 0$.

Indeed, if $A = P_0/P_1$ with deg $(P_i) \le d$, then $Q_0P_1 + Q_1P_0 = O(x^{2d+1})$ and deg $(Q_0P_1 + Q_1P_0) \le 2d$ implies $Q_0P_1 + Q_1P_0 = 0$.

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$.

In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

Proof:

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$. In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

In order words, if is a rest of the polynomial $\mathcal{L} = \bigcup_{l=0}^{\infty} \mathcal{L}_{l}$

Proof: Let $P \in \mathbb{K}[x, y]$ be an irreducible polynomial such that

P(x, A(x)) = 0, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

Application: certified algebraic guessing

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$. In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

In other words, M is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)$

Proof: Let $P \in \mathbb{K}[x, y]$ be an irreducible polynomial such that

P(x, A(x)) = 0, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

• $R(x) = \text{Res}_{y}(P, Q) \in \mathbb{K}[x]$ has degree at most 2dn.

Application: certified algebraic guessing

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{O} \cdot \mathbf{F} = 0$. In other words, A is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x) y^i$.

Proof: Let $P \in \mathbb{K}[x, y]$ be an irreducible polynomial such that

P(x, A(x)) = 0, and $\deg_x(P) \le d$, $\deg_u(P) \le n$.

• $R(x) = \text{Res}_{y}(P, Q) \in \mathbb{K}[x]$ has degree at most 2dn.

•
$$R(x) = UP + VQ$$
 for $U, V \in \mathbb{K}[x, y]$ with $\deg_y(V) < n$.

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$. In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

Proof: Let $P \in \mathbb{K}[x, y]$ be an irreducible polynomial such that

P(x, A(x)) = 0, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

- $R(x) = \text{Res}_{y}(P, Q) \in \mathbb{K}[x]$ has degree at most 2dn.
- R(x) = UP + VQ for $U, V \in \mathbb{K}[x, y]$ with $\deg_{y}(V) < n$.
- Evaluation at y = A(x) yields

$$R(x) = U(x, A(x)) \underbrace{P(x, A(x))}_{0} + V(x, A(x)) \underbrace{Q(x, A(x))}_{O(x^{2dn+1})} = O(x^{2dn+1}).$$

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x, y]$ of degree at most *d* in *x* and at most *n* in *y*. Let $\mathbf{Q} = (Q_0, Q_1, \dots, Q_n)$ be a Hermite-Padé approximant of type (d, \dots, d) for $\mathbf{F} = (1, A, \dots, A^n)$. If $\mathbf{Q} \cdot \mathbf{F} = O(x^{2dn+1})$, then $\mathbf{Q} \cdot \mathbf{F} = 0$.

In other words, *A* is a root of the polynomial $Q = \sum_{i=0}^{n} Q_i(x)y^i$.

Proof: Let $P \in \mathbb{K}[x, y]$ be an irreducible polynomial such that

P(x, A(x)) = 0, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

- $R(x) = \text{Res}_{y}(P, Q) \in \mathbb{K}[x]$ has degree at most 2dn.
- R(x) = UP + VQ for $U, V \in \mathbb{K}[x, y]$ with $\deg_y(V) < n$.
- Evaluation at y = A(x) yields

$$R(x) = U(x, A(x)) \underbrace{P(x, A(x))}_{0} + V(x, A(x)) \underbrace{Q(x, A(x))}_{O(x^{2dn+1})} = O(x^{2dn+1}).$$

• Thus R = 0, that is $gcd(P, Q) \neq 1$, and thus $P \mid Q$, and A is a root of Q.

Show that the following series is algebraic:

$$f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$$

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

() Find *P* s.t. $P(t, f(t)) = 0 \mod t^{20}$ by Hermite-Padé approximation.

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

(1) Find *P* s.t. $P(t, f(t)) = 0 \mod t^{20}$ by Hermite-Padé approximation.

② Show that there exists a unique root $r(t) \in \mathbb{Q}[[t]]$ of *P* such that r(0) = 1.

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

(1) Find *P* s.t. $P(t, f(t)) = 0 \mod t^{20}$ by Hermite-Padé approximation.

- ② Show that there exists a unique root $r(t) \in \mathbb{Q}[[t]]$ of *P* such that r(0) = 1.
- ③ $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is D-finite, and so (r_n) is P-recursive.

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

(1) Find *P* s.t. $P(t, f(t)) = 0 \mod t^{20}$ by Hermite-Padé approximation.

- ② Show that there exists a unique root $r(t) \in \mathbb{Q}[[t]]$ of *P* such that r(0) = 1.
- ③ $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is D-finite, and so (r_n) is P-recursive.
- ④ Deduce that $(r_n)_n$ and $(f_n)_n$ with $f_n = \binom{5n}{n}$ satisfy the same recurrence of order 1 and the same initial condition $r_0 = f_0 = 1$.

Show that the following series is algebraic:

 $f(t) = \sum_{n \ge 0} \binom{5n}{n} t^n$

Strategy: First guess a polynomial P(t, y) in $\mathbb{Q}[t, y]$, s.t. $P(t, f(t)) = 0 \mod t^2$, then prove that *P* admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

- **(1)** Find *P* s.t. $P(t, f(t)) = 0 \mod t^{20}$ by Hermite-Padé approximation.
- ② Show that there exists a unique root $r(t) \in \mathbb{Q}[[t]]$ of *P* such that r(0) = 1.
- ③ $r(t) = \sum_{n=0}^{\infty} r_n t^n$ being algebraic, it is D-finite, and so (r_n) is P-recursive.
- ④ Deduce that $(r_n)_n$ and $(f_n)_n$ with $f_n = {\binom{5n}{n}}$ satisfy the same recurrence of order 1 and the same initial condition $r_0 = f_0 = 1$.
- So Conclude that $f_n = r_n$ for all n, thus f(t) = r(t) is algebraic.

> f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):

> simplify(f5) assuming t>0 and t<1/100;</pre>

$${}_{4}F_{3}\left(\left[\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right]; \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]; \frac{3125t}{256}\right)$$

- > f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):
- > simplify(f5) assuming t>0 and t<1/100;</pre>

$${}_{4}F_{3}\left(\left[\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right]; \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]; \frac{3125t}{256}\right)$$

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

 $1 + 15y + 80y^2 + 160y^3 + (3125t - 256)y^5$

- > f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):
- > simplify(f5) assuming t>0 and t<1/100;</pre>

$${}_{4}F_{3}\left(\left[\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right]; \left[\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right]; \frac{3125t}{256}\right)$$

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

 $1 + 15y + 80y^2 + 160y^3 + (3125t - 256)y^5$

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, -625

> deq5:=algeqtodiffeq(P5, y(t))[1];

$$120 y(t) + (15000 t - 24) \frac{d}{dt} y(t) + (45000 t^2 - 816 t) \frac{d^2}{dt^2} y(t) + (25000 t^3 - 1152 t^2) \frac{d^3}{dt^3} y(t) + (3125 t^4 - 256 t^3) \frac{d^4}{dt^4} y(t) = 0$$

> deq5:=algeqtodiffeq(P5, y(t))[1];

$$120 y(t) + (15000 t - 24) \frac{d}{dt} y(t) + (45000 t^{2} - 816 t) \frac{d^{2}}{dt^{2}} y(t) + (25000 t^{3} - 1152 t^{2}) \frac{d^{3}}{dt^{3}} y(t) + (3125 t^{4} - 256 t^{3}) \frac{d^{4}}{dt^{4}} y(t) = 0$$

~

> rec5:=map(factor, diffeqtorec(deq5, y(t), r(n)));

5 (5n+1) (5n+2) (5n+3) (5n+4) r (n) -8 (4n+1) (2n+1) (4n+3) (n+1) r (n+1) = 0

> deq5:=algeqtodiffeq(P5, y(t))[1];

$$120 y(t) + (15000 t - 24) \frac{d}{dt} y(t) + (45000 t^{2} - 816 t) \frac{d^{2}}{dt^{2}} y(t) + (25000 t^{3} - 1152 t^{2}) \frac{d^{3}}{dt^{3}} y(t) + (3125 t^{4} - 256 t^{3}) \frac{d^{4}}{dt^{4}} y(t) = 0$$

> rec5:=map(factor, diffeqtorec(deq5, y(t), r(n)));

5 (5n+1) (5n+2) (5n+3) (5n+4) r (n) -8 (4n+1) (2n+1) (4n+3) (n+1) r (n+1) = 0

> f:=n -> binomial(5*n,n):

> simplify(convert(subs({r(n)=f(n), r(n+1)=f(n+1)}, rec5), GAMMA));

Let (a_n) be a sequence with $a_0 = a_1 = 1$ satisfying the recurrence

 $(n+3)a_{n+1} = (2n+3)a_n + 3na_{n-1}$, for all n > 0.

Show that all a_n is an integer for all n.

Let (a_n) be a sequence with $a_0 = a_1 = 1$ satisfying the recurrence

 $(n+3)a_{n+1} = (2n+3)a_n + 3na_{n-1}$, for all n > 0.

Show that all a_n is an integer for all n.

Follow the next steps:

- **(1)** Compute the first 5 terms of the sequence, a_0, \ldots, a_4 ;
- 2 Determine a Hermite-Padé approximant of type (0,1,2) for $(1, f, f^2)$, where $f = \sum_n a_n x^n$;
- 3 Deduce that $P(x, f(x)) = 0 \mod x^5$ for $P(x, y) := 1 + (x 1)y + x^2y^2$;
- ④ Show that the equation P(x, y) = 0 admits a root $y = g(x) \in \mathbb{Q}[[x]]$ whose coefficients satisfy the same linear recurrence as (a_n) ;
- **(b)** Deduce that $a_{n+2} = a_{n+1} + \sum_{k=0}^{n} a_k \cdot a_{n-k}$ for all *n*, and conclude.