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The exercises fro

(1) Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)?*1 as a characteristic polynomial.

(2) Let P = Y2, p;x' € Z[x] be the polynomial P(x) = (1 + x + x?)N.
@ Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.
@ Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

@ Determine a linear recurrence of order 2 satisfied by the sequence (p;);.
@ Give an algorithm that computes py in O(N) bit ops.
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Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.
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Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.

> By linearity, it is sufficient to prove this for the monomial P(x) = x9.

3/27



Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.

> By linearity, it is sufficient to prove this for the monomial P(x) = x9.
> Remark: The statement becomes equivalent to a summation question:

d+1
Y (—1)F (d;(Ll) (n+k)=0, forall n>o0.
k=0
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Sol

Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.

> By linearity, it is sufficient to prove this for the monomial P(x) = x9.
> Remark: The statement becomes equivalent to a summation question:

d+1
Y (—1)F (d+ 1) (n+k? =0, forall n>0.
k=0 k

> First solution: there exists a Ny(x) € Q[x]<4 such that

n N
L4 o g
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Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.

> By linearity, it is sufficient to prove this for the monomial P(x) = x9.
> Remark: The statement becomes equivalent to a summation question:

d+1

Z(—l)k(d+1>( +k)¥=0, forall n>0.
k=0

> First solution: there exists a Ny(x) € Q[x]<4 such that

Z nx = —ngd)ﬂ )

n>0
This can be proved by induction: the case d = 0 is obvious, and (1) implies

Y it — xi (( 1 (x > x(1—x) - Nj(x) + (d 4 1)xNy(x)

dx —x)d+l (1—x)4+2

n>0
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Show that if P € K[x] has degree d, then the sequence (P(n)),>0 is
C-recursive, and admits (x — 1)4*1 as a characteristic polynomial.

> By linearity, it is sufficient to prove this for the monomial P(x) = x“.
> Remark: The statement becomes equivalent to a summation question:

d+1

Y (—1)F (d“)( k)T =0, forall n>0.
k=0

> First solution: there exists a Ny(x) € Q[x]<4 such that

Z nx = 71\]‘13(53“ )

n>0
This can be proved by induction: the case d = 0 is obvious, and (1) implies

Y it — xi (( 1(x) ) x(1—x) - Nj(x) + (d 4 1)xNy(x)

dx — x)d+l (1—x)4+2

n>0

> Second solution: the operator A, = S, —id @ (Un)n>0 = (U1 — Un)u>0
decreases by 1 the degree of a polynomial sequence, thus A%*! ((nd)n) =0.



Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.
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Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

> nis evenif and onlyif n = 0in K := Z/27Z.
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Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

> nis evenif and onlyif n = 0in K := Z/27Z.

> It is sufficient to compute Py (x) := (1 + x + x2)N in K][x]

4/27



Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.
> nis evenif and onlyif n = 0in K := Z/27Z.

> It is sufficient to compute Py (x) := (1 + x + x2)N in K][x]

> DAC algorithm based on Py (x) = Py (x)% - (14 x + x2)N mod 2 jn K [x]
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sowen2e

Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

> nis evenif and onlyif n = 0in K := Z/27Z.
> It is sufficient to compute Py (x) := (1 + x + x2)N in K][x]
> DAC algorithm based on Py (x) = Py (x)% - (14 x + x2)N mod 2 jn K [x]

> Cost recurrence: C(N) = C(N/2) + M(N) + O(N)

4/27
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Sol

Let P = y2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

> nis evenif and onlyif n = 0in K := Z/27Z.

> It is sufficient to compute Py (x) := (1 + x + x2)N in K][x]

> DAC algorithm based on Py (x) = Py (x)% - (1+ x4+ x2)Nmod 2 in K[x]
> Cost recurrence: C(N) = C(N/2) + M(N) + O(N)

> Conclusion: C(N) = O(M(N))
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Let P = Y2 pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.
(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.



Let P = Y2 pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.
(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

x) _ NQ@x+1)

P/(
P(x) x2+x+1

> Logarithmic derivative:



sowen2.20

Let P = Y2 pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.
(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

x) _ NQ@x+1)

P/(
P(x) x2+x+1

> Logarithmic derivative:

sP=Y pxt, P =Y (i+1)pi1x, [¥](x?+x+1)P ~N@2x+1)P =0
i>0 i>0
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sowen2.20

Let P = Y2 pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.
(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

x) _ NQ@x+1)

P/(
P(x) x2+x+1

> Logarithmic derivative:

sP=Y pxt, P =Y (i+1)pi1x, [¥](x?+x+1)P ~N@2x+1)P =0
i>0 i>0

> (i = 1)pi—1 +ipi+ (i +1)piy1 = 2Np;1 + Np;, foralli >0
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Let P = Y2 pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.
(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

x) _ NQ@x+1)

P/(
P(x) x2+x+1

> Logarithmic derivative:

sP=Y pxt, P =Y (i+1)pi1x, [¥](x?+x+1)P ~N@2x+1)P =0
i>0 i>0

> (i = 1)pi—1 +ipi+ (i +1)piy1 = 2Np;1 + Np;, foralli >0

> The recurrence satisfied by the sequence (p;) is

1 . . .
pis1 = i—i-_l((N_ ip;i+ (2N —i+ 1)pi,1) for i>0.

N i criric Gueeing



Let P = Y 2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(d) Give an algorithm that computes py in O(N) bit ops.
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Let P = Y 2N pix' € Z[x] be the polynomial P(x) = (1 + x + x2)N.
(d) Give an algorithm that computes py in O(N) bit ops.

> The recurrence rewrites in matrix form: F; = H_%AiFi,l, where
o N —i 2N—1+1 o Pi+1
A’_<i+1 0 ) and F,—( v, .

> By unrolling it, we obtain the equality F; = ﬁ A(i)---A(1) ( ZII > .
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Solution 2(

Let P = Y2 pix! € Z[x] be the polynomial P(x) = (1 +x + x2)N.
(d) Give an algorithm that computes py in O(N) bit ops.

> The recurrence rewrites in matrix form: F; = ; +1 —=A;F;_1, where

o N —i 2N—l+1 o Pi+1
A,-( i1 0 ) and Fl—( v, .

ﬁA(i)mA(1)<1¥>.

> To compute py we determine Fy by binary splitting applied to the integer
f=(N+1)!, and to the matrix factorial B= A(N)--- A(1), followed by the

matrix-vector productv =B x( N 1 )T and the (exact) division %v.

> By unrolling it, we obtain the equality F; =
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Solution 2(d)

Let P = Y2 pix! € Z[x] be the polynomial P(x) = (1 +x + x2)N.

(d) Give an algorithm that computes py in O(N) bit ops.

> The recurrence rewrites in matrix form: F; = ; +1 —=A;F;_1, where
o N —i 2N—1+1 o Pi+1
A’_(i—|—1 0 ) and Fl—( v, .

> By unrolling it, we obtain the equality F; = ﬁ A(D)--- A1) ( 1;] > .

> To compute py we determine Fy by binary splitting applied to the integer

f=(N+1)!, and to the matrix factorial B= A(N)--- A(1), followed by the

matrix-vector productv =B x( N 1 )T and the (exact) division %v.

> The integer f, and the entries of B and v, have O(N log(N)) bits.
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Solution 2(d)

Let P = Y2 pix! € Z[x] be the polynomial P(x) = (1 +x + x2)N.

(d) Give an algorithm that computes py in O(N) bit ops.

> The recurrence rewrites in matrix form: F; = ; +1 —=A;F;_1, where
o N —i 2N—1+1 o Pi+1
A’_(i—|—1 0 ) and Fl—( v, .

ﬁA(i)mA(l)<1¥>.

> To compute py we determine Fy by binary splitting applied to the integer
f=(N+1)!, and to the matrix factorial B= A(N)--- A(1), followed by the

matrix-vector productv =B x( N 1 )T and the (exact) division %v.

> By unrolling it, we obtain the equality F; =

> The integer f, and the entries of B and v, have O(N log(N)) bits.

& Cost of the whole algorithm: O(N) bit ops.
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ALGORITHMIC GUESSING
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9, 54, 378

16, 192, 2816

30, 420, 6930
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16, 192, 2816
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9, 54, 378

16, 192, 2816
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9, 54, 378

16, 192, 2816

30, 420, 6930

42
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9, 54, 378

16, 192, 2816

30, 420, 6930

42

2916
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9, 54, 378

16, 192, 2816

30, 420, 6930

42

2916

46592
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9, 54, 378

16, 192, 2816

30, 420, 6930

42

2916

46592

126126
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@1, 1 1, 1, 1 1/(1-1t)
@1, 1,2 3,5 1/(1—t—13)
@1, 1, 2 5 14 (1—+/1—4t)/(2t)
@1, 2 9, 54 378 27122 + (1 - 18ty + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1—72t)y +54t =1
® 1, 3, 30, 420, 6930 (27822 =)y + (54t —2)y' + 6y =0
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@1, 1 1, 1,1 1/(1—t)
@112 3 5 1/(1—t—1t%)
@1, 1 2 5 14 (1—/1—4t)/(2t)
@1, 2 9 54 378 278292 + (118t )y + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1 —72t)y +54t =1
® 1, 3, 30, 420, 6930 (272 —t)y" + (54t —2)y' +6y =0

> Automated guessing: algorithmic computation of these equations
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@1, 1 1,1, 1 1/(1—t)
@112 3, 5 1/(1—t—1t%)
@1, 1, 2 5 14 (1—/1—4t)/(2t)
@1, 2 9 54 378 278292 + (118t )y + 16t =1
® 1, 2, 16, 192, 2816 64123 +16ty> + (1 —72t)y +54t =1
® 1, 3, 30, 420, 6930 (2712 —t)y" + (54t —2)y' + 6y =0

> Automated guessing: via Padé, or Hermite-Padé, approximants

9/27



PADE APPROXIMANTS

—guessing linear recurrences with constant coefficients—

10 /27
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Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:
(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.
(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(%)xd.

11/27



Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:
(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.
(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(1)x?.

Moreover, if P is the minimal polynomial of (a,),>0, then

d = max{1 + deg(Q),deg(revy(P))} and gcd(Q,revy(P)) =1.
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Recall: duality le

Duality lemma (link between lL.r.s.c.c. and rational functions)
Let A(x) = ¥,>0 anX" € K[[x]] be the generating function of (a,),>0.
The following assertions are equivalent:

(i) (ay) is a Lrs.c.c,, having P as characteristic polynomial of degree d.

(i) A(x) is rational, of the form A = Q/rev,;(P) for some Q € K[x] 4,
where rev;(P) = P(1)x?.

Moreover, if P is the minimal polynomial of (a,),>0, then

d = max{1 + deg(Q),deg(revy(P))} and gcd(Q,revy(P)) =1.

> Computing MinPol(a,) is equivalent to solving a Padé approximation pb:

g = Amod ¥*N, xf V, deg(R) < N, deg(V) <N and gcd(R,V) =1,

where A = ay+ a1x +apx? + - - - + apy_ 02N "L

R —



Recall: Eucli

Pade(A,2N)

In: A in K[x] with deg A < 2N

Out: (R,V)s.t. R/V = Amod x?N, degR < N,degV < N, or FAIL
@ Rp:= x2N, Voi=0;Ri:=A, Vi :=1i:=1
@ While degR; > N do:

@ (Qi,Riy1) := QuotRem(R;_1, R;) #R; 1 = QiR; + Riy
@ Vip1 =V —QiV;
@ i:=i+1.

@ If V;(0) # 0 then return (R;, V;); else return FAIL.

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)
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Berlekamp

In: A bound N € N on the degree of the minimal polynomial of (a;),>0
and the first 2N terms ag, ..., a5ny_1 € K.

Out: the minimal generating polynomial (ay),>0-
@ A=ay+ax+-- +ayn_1x2N-1,
@ Compute the solution (R, V) € K[x]? of Pade(A,2N) s.t. V(0) = 1.
@ d = max{1+ deg(R),deg(V)}. Return revy(V) = V(1/x)x".

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)
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Berlekamp-

In: A bound N € N on the degree of the minimal polynomial of (a,),>0
and the first 2N terms ag, ..., aon_1 € K.

Out: the minimal generating polynomial (4, ),>0-
@ Ryp:=xN;Vy:=0; Ry :=apy 1+ +apx® N1 v :=1;i:=1.
@ While degR; > N, do:

@ (Qji,Riy1) := QuotRem(R;_1, R;) #Ri1 = QiRi + Rip1
@ Viir=V1-QiV;
@ i:=i+1

@ Return V;/1c(V}).

& Quadratic complexity: O(N?) operations in K
> There exist quasi-linear time algorithms O(M(N)logN)
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ryi=x"+x0+2x5+3x*+7x3+13x% +25x+48
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ryi=x"+x0+2x5+3x*+7x3+13x% +25x+48

and it computes
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ri=a"+x042x543x*+7x34+13x2+25x+48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x% Ri=a"+x042x543x*+7x34+13x2+25x+48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)
V3 = V1 — Q2V2 = —x2 +x+1 — Ayyp = Apy1 +an
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Eampe

Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=x8 Ry =x"4+2°+2x°+3x* +7x3 41342 +25x +48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)

V3 = V1 — Q2V2 = —xz +x+1 — Ap42 = Ap41 + an
x 1 9t 918 , 115x
(Q3,R4) = QuotRem(Rz,Rg;) = (z - Z, —T - T —51x° — +60)
3 2
X 3x 5x 5 3 5 5
Vi=V,—Q3V3 = E—T—T‘f‘z — A3 = Ean+2+§an+1_§un
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Assume given the terms 1,1,2,3,7,13,25,48 and the bound N = 4
> The previous algorithm starts with Vy =0, V; =1 and

Ro=28 Ry=a"+x°+2x°4+3x* +723+13x% +25x +48
and it computes
(Q1,Ry) := QuotRem(Rg, Ry) = (x =1, —x® —x° —4x* —6x3 —12x> — 23 x +48)
Vo=Vo—Q1Vi=—x+1 — Ayy1 = ay

(Q2,R3) := QuotRem(Ry, Ry) = (—x, —2x° —3x* —5x% —10x% +73x 4 48)

Vai=Vi—QVh=—x*+x+1 — Ayt = Ayq1 + dn
x 1 9t 918 , 115x
(Q3,R4) = QuotRem(Rz,Rg;) = (5 - Z, —T - T —51x° — +60)
3 2
X 3x 5x 5 3 5 5
Vy:=Vo—Q3V3 = E—T—T‘f‘z — Ap43 = Eﬂn+2+§ﬂn+1—§ﬂn
8x 4 124x% 344x? 292x 64
(Q4, R5) = QuotRem(R3, R4) = (? =+ 6, 3 =+ 9 =+ 9 + ?)
axt 4 4 4x 4
V5::V3_Q4V4:_T+T+T+?+§ —  App4 = Apg3 oo tan

15 /27
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HERMITE-PADE APPROXIMANTS

—guessing equations with polynomial coefficients—
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Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

17 /27



Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F=Pifi+ -+ Pyfy = O(x7) with ¢ = Y (d; +1) — 1,

17 /27



Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 + - +Pnfn = O(XU) with 0 = Zi(di + 1) — 1,
(2) deg(P;) < d; for all i.
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Definition: Given a column vector F = (fi,..., f4)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 + - +Pnfn = O(XU) with 0 = Zi(di + 1) — 1,
(2) deg(P;) < d; for all i.

o is called the order of the approximant P.
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 —+ e +Pnfn = O(X‘T) with 0 = Zi(di + 1) —1,
(2) deg(P;) < d for all i.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality/transcendence):
© [Hermite, 1873]: e is transcendent.
© [Lindemann, 1882]: 7t is transcendent; so does ¢* for any & € Q \ {0}.
© [Apéry, 1978; Beukers, 1981]: {(3) = ¥ ;>1 n% is irrational.
© [Rivoal, 2000]: there exist infinite values of k such that {(2k + 1) ¢ Q.
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Sur la généralisation des fractions continues algébriques;

Par M. H. PADE,

Docteur s Sciences mathématiques,
Professeur au lycée de Lille.

INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X, X,, ..., X,, de degrés ,, pyy ..y iy,
qui satisfont & I'équation

S, X, + 8,X, +...+ 5. X, = S gttt
S,, 8, ..., S, étant des séries entiéres données, et S une série égale-
ment entiére. Ou plutét, il s’ngi permette
le calcul de proche en proche de ces systémes de n polynomes, et qui’



Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, Cz),
where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),
where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x +2x% 4 5x3 + 14x* + O(x°).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

ag+ayx+(Bo + 1) (1 + x +2x% +5x° + 14x*)+ (70 + 11x) (1 + 2x + 557 4 14x° + 42x*) = O (x)
Identifying coefficients, this is equivalent to a homogeneous linear system:
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 zo 10 1 0 1 g 0
01 1 1 2 1 1 01 1 1 2 a 1
00 2 1 5 2><ﬁ°=0<=>00215></30=—712.
00 5 2 14 5 P 00 5 2 14 B 5
0 0 14 5 42 14 zfl’ 0 0 14 5 42 Yo 14
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 zo 10 1 0 1 g 0
01 1 1 2 1 1 01 1 1 2 a 1
00 2 1 5 2[x[Pl_oeslo 0 2 1 5[x[g|=-m|2
00 5 2 14 5 P 00 5 2 14 B 5
0 0 14 5 42 14 zfl’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),

where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).

This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 o 10 1 0 1 xo 0
01 1 1 2 1 1 01 1 1 2 a 1
000 2 1 5 2[x|Pl_oe=lo 0 2 1 5|x|g|=-m|2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 zfl’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
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Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, C2),
where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 o 10 1 0 1 xg 0
01 1 1 2 1 1 01 1 1 2 a 1
000 2 1 5 2[x|Pl_oe=lo 0 2 1 5|x|g|=-m|2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 z(l’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are g = 1, a7 = 0.

' AinBostan Algorithmic Guessing



Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, CZ),
where C(x) = 1+ x + 2x% 4+ 523 4+ 14x* + O(x%).
This boils down to finding &g, &1, Bo, B1,7Y0, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (0 + 1) (1 + 2x + 5x% + 14x° +42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 ZO 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
000 2 1 5 2|x|2% =010 0 2 1 5|x|f|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 z(l’ 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are g = 1, a7 = 0.

& Thus the approximant is (1, —1, x), which corresponds to P = 1 — y + xy/?
such that P(x,C(x)) = 0 mod x°.
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Algebraic and differential app

© Hermite-Padé approximants of 1 = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

© algebraic approximants = Hermite-Padé approximants for f, = A1,
where A € K[[x]] seriestoalgeq, listtoalgeq

© differential approximants = Hermite-Padé approximants for f, = A=),
where A € K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

1—y(x) +xy (x)?

> listtodiffeq([1,1,2,5,14,42,132,429],y(x)) [1];

2
{20+ @240 Sy 042 55y 0.5 0 = 1D0) 0) =1



Existence and naiv

Theorem For any vector F = (fi,..., fu)T € K[[x]]" and for any n-tuple
d = (dq,...,dn) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i;o pi,jxf satisfy a linear
homogeneous system with o =) ;(d; + 1) — 1 eqs and ¢ + 1 unknowns.

Corollary Computation in O(¢0®), for 2 < w < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

© Derksen’s algorithm (Euclidean-like) O(c?)
© Beckermann-Labahn algorithm (DAC) O(c) = O(clog? r)
@ structured linear algebra algorithms for Toeplitz-like matrices O(U)
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Quasi-optimal ¢

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (fi,..., fu) in O(n“d) ops. in K.

Ideas:

© Compute a whole matrix of approximants
© Exploit divide-and-conquer

Algorithm:

@ If o =n(d+1)—1 < threshold, call the naive algorithm

@ Else:

recursively compute P € K[x]"*" s.t. Py - F = O(x%/2), deg(P;) ~ ¢
compute “residue” R such that P - F = x7/2 . (R + O(x7/2))

recursively compute Py € K[x]"*" s.t. P, - R = O(x7/2), deg(P;) ~ %
return P := P, - P;

®06 © 6

> The precise choices of degrees is a delicate issue
> Corollary: Ged, extended gcd, Padé approximants in O(d) ops. in K.

N i criric Gueeing



Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.
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Appl

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.
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Application: certified

Theorem. Suppose A € K|[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,--.,Qxn) be a Hermite-Padé approximant of type (d, ..., d)
for F=(1,A,...,A"). If Q- F = O(x?*"+1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y, Q;(x)y'.

Remark: If n = 1, this simply says that if A € K(x)<4 and if
Qo(x) + Q1 (x)A = O(x?¥*1) with deg(Q;) < d, then Qp(x) + Q1 (x)A = 0.

Indeed, if A = Py/P; with deg(P;) < d, then QoP; + Q1 Py = O(x***1) and
deg(QoPl +Q1Py) <24 implies QoP; + Q1P = 0.



Appl

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof:
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Application:

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.
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Application: cer

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.

© R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
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Application: certifi

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q =Y Qi(x)yl.

Proof: Let P € K[x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg,(P) <d, deg, (P) < n.

© R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
© R(x) =UP+VQfor U,V € K[x,y] with degy(V) <n.
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Application: certified algebr

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1,---,Qxn) be a Hermite-Padé approximant of type (d,...,d)
for F= (1,A,...,A"). If Q-F = O(x2*1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y7 ; Q;(x)y'.

Proof: Let P € K]x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg, (P) <d, degy(P) <n.
® R(x) = Resy(P,Q) € K[x] has degree at most 2dn.
© R(x) =UP+VQ for U,V € K[x,y] with deg, (V) < n.
© Evaluation at y = A(x) yields
R(x) = U(x, A(x)) P(x, A(x)) +V (x, A(x)) Q(x, A(x)) = O(*""*1).
N——r N——

0 O(x2n+1)



Application: certified algebraic guessing

Theorem. Suppose A € K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most # in y.
Let Q = (Qo, Q1, ..., Qn) be a Hermite-Padé approximant of type (d,...,d)
for F=(1,A,...,A"). If Q-F = O(x*"*1), then Q - F = 0.

In other words, A is a root of the polynomial Q = Y-, Q;(x)y'.

Proof: Let P € K]x, y] be an irreducible polynomial such that
P(x,A(x)) =0, and deg, (P) <d, degy(P) <n.
© R(x) = Resy(P,Q) € K]x] has degree at most 2dn.

© R(x) =UP+VQ for U,V € K[x,y] with deg, (V) < n.
¢ Evaluation at y = A(x) yields

R(x) = U(x, A(x)) P(x, A(x)) +V(x, A(x)) Q(x, A(x)) = O(x21m+1y,
0 O(x2n+1)

© Thus R =0, thatis gcd(P, Q) # 1, and thus P | Q, and A is a root of Q.

Alin Bostan Algorithmic Guessing



Show that the following series is algebraic:

=1 ()

n>0
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Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.
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Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
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~ Application:alebracty of a hypergeometricsries

Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.

@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.

" AinBostan Algorithmic Guessing



Appl

Show that the following series is algebraic:

=1 ()

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.

@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;;) is P-recursive.
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Applicatio

Show that the following series is algebraic:

=1 ()

n>0

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.
@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;;) is P-recursive.

@ Deduce that (r,,), and (f,,), with f, = (5;‘) satisfy the same recurrence
of order 1 and the same initial condition rg = fy = 1.
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Application: al

Show that the following series is algebraic:

=1 ()

n>0

Strategy: First guess a polynomial P(t,y) in Q[t,y], s.t. P(t, f(t)) = 0 mod t’,
then prove that P admits the power series f(t) as a root, i.e., P(t, f(t)) = 0.

@ Find Ps.t. P(t, f(t)) = 0 mod #2° by Hermite-Padé approximation.
@ Show that there exists a unique root r(t) € Q[[t]] of P such that r(0) = 1.
@ r(t)=Y;ornt" being algebraic, it is D-finite, and so (r;,) is P-recursive.

@ Deduce that (r,,), and (f,,), with f, = (5;’) satisfy the same recurrence
of order 1 and the same initial condition rg = fy = 1.

® Conclude that f,, = r,, for all n, thus f(t) = r(t) is algebraic.

' AinBosan Algorithmic Guessing



> f5:=sum(binomial (5*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256
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Application: al

> f5:=sum(binomial (5*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

1+15y +80y> +160y> + (3125t — 256) y°

25/27
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Application: algebraicity o

> f5:=sum(binomial (6*n,n)*t"n, n=0..infinity):
> simplify(£f5) assuming t>0 and t<1/100;

e ([1234] [113] 3125¢
453\ |5'5’5’5|” |4'2"4|" 256

> P5:=subs(y(t) = y, seriestoalgeq(series(£5,t,20), y(t))[1]);

1+15y +80y> +160y> + (3125t — 256) y°

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, —625



> deqb:=algeqtodiffeq(P5, y(t))[1];

2

120y (t) + (15000 t — 24) %y (t) + (45000 2 — 816 t) %y (t)+

3 4
(25000 —11522) %y (1) + (31254 — 256 ) %y (t) =0
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Application:

> deqb:=algeqtodiffeq(P5, y(t))[1];

2

120y (t) + (15000 t — 24) %y (t) + (45000 2 — 816 t) %y (t)+

3 4
(25000 —11522) %y (1) + (31254 — 256 ) %y (t) =0

> recb:=map(factor, diffeqtorec(deq5, y(t), r(n)));

506n+1)(5n+2)5n+3)(5n+4)r(n)—
8(4n+1)2n+1)(4n+3)(n+1)r(n+1)=0

' AinBosan Algorithmic Guessing



Application: algebraicity of

> deqb:=algeqtodiffeq(P5, y(t))[1];

d2
120 (£) + (15000 — 24) %y (1) + (450002 — 816 ) Sy (1) +

& 44
(25000#% — 11522 0K (31254 — 256 1°) v =0

> recb:=map(factor, diffeqtorec(deq5, y(t), r(n)));

506n+1)(5n+2)5n+3)(5n+4)r(n)—
8(4n+1)2n+1)(4n+3)(n+1)r(n+1)=0

> f:=n -> binomial(5*n,n):
> simplify(convert(subs({r(n)=f(n), r(n+1)=f(n+1)}, rec5), GAMMA));

0



Let (a,) be a sequence with 4y = a7 = 1 satisfying the recurrence
(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that all a, is an integer for all n.
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An exercise for n

Let (a,) be a sequence with 4y = a7 = 1 satisfying the recurrence

(n+3)ay1 = (2n+3)a, +3na,_q, forall n> 0.

Show that all a, is an integer for all n.

Follow the next steps:

@ Compute the first 5 terms of the sequence, ay, ..., a4;

@ Determine a Hermite-Padé approximant of type (0,1,2) for (1, f, f2),
where f =Y, a,x";

@® Deduce that P(x, f(x)) = 0 mod x° for P(x,y) := 14 (x — 1)y + x%y>;

@ Show that the equation P(x,y) = 0 admits a root y = g(x) € Q[[x]]
whose coefficients satisfy the same linear recurrence as (a,);

@ Deduce that a,42 = a,41 + Y}_ a - a,_ for all n, and conclude.

R e—



