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The exercises from last lecture

(1) Show that if P ∈ K[x] has degree d, then the sequence (P(n))n≥0 is
C-recursive, and admits (x− 1)d+1 as a characteristic polynomial.

(2) Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

1 Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

2 Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

3 Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.
4 Give an algorithm that computes pN in Õ(N) bit ops.
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Solution 1

Show that if P ∈ K[x] has degree d, then the sequence (P(n))n≥0 is
C-recursive, and admits (x− 1)d+1 as a characteristic polynomial.

. By linearity, it is sufficient to prove this for the monomial P(x) = xd.

. Remark: The statement becomes equivalent to a summation question:

d+1

∑
k=0

(−1)k
(

d + 1
k

)
(n + k)d = 0, for all n ≥ 0.

. First solution: there exists a Nd(x) ∈ Q[x]≤d such that

∑
n≥0

ndxn =
Nd(x)

(1− x)d+1 (1)

This can be proved by induction: the case d = 0 is obvious, and (1) implies

∑
n≥0

nd+1xn = x
d

dx

(
Nd(x)

(1− x)d+1

)
=

x(1− x) · N′d(x) + (d + 1)xNd(x)
(1− x)d+2

. Second solution: the operator ∆n = Sn − id : (un)n≥0 7→ (un+1 − un)n≥0

decreases by 1 the degree of a polynomial sequence, thus ∆d+1
n

(
(nd)n

)
= 0.
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Solution 2(a)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

. n is even if and only if n = 0 in K := Z/2Z.

. It is sufficient to compute PN(x) := (1 + x + x2)N in K[x]

. DAC algorithm based on PN(x) = PbN/2c(x)2 · (1 + x + x2)N mod 2 in K[x]

. Cost recurrence: C(N) = C(N/2) + M(N) + O(N)

. Conclusion: C(N) = O(M(N))
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Solution 2(b), 2(c)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P′(x)
P(x)

=
N (2 x + 1)
x2 + x + 1

. P = ∑
i≥0

pixi, P′ = ∑
i≥0

(i + 1)pi+1xi, [xi](x2 + x + 1)P′ − N(2x + 1)P = 0

. (i− 1)pi−1 + ipi + (i + 1)pi+1 = 2Npi−1 + Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i + 1

(
(N − i)pi + (2N − i + 1)pi−1

)
for i ≥ 0.

Alin Bostan Algorithmic Guessing



5 / 27

Solution 2(b), 2(c)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P′(x)
P(x)

=
N (2 x + 1)
x2 + x + 1

. P = ∑
i≥0

pixi, P′ = ∑
i≥0

(i + 1)pi+1xi, [xi](x2 + x + 1)P′ − N(2x + 1)P = 0

. (i− 1)pi−1 + ipi + (i + 1)pi+1 = 2Npi−1 + Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i + 1

(
(N − i)pi + (2N − i + 1)pi−1

)
for i ≥ 0.

Alin Bostan Algorithmic Guessing



5 / 27

Solution 2(b), 2(c)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P′(x)
P(x)

=
N (2 x + 1)
x2 + x + 1

. P = ∑
i≥0

pixi, P′ = ∑
i≥0

(i + 1)pi+1xi, [xi](x2 + x + 1)P′ − N(2x + 1)P = 0

. (i− 1)pi−1 + ipi + (i + 1)pi+1 = 2Npi−1 + Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i + 1

(
(N − i)pi + (2N − i + 1)pi−1

)
for i ≥ 0.

Alin Bostan Algorithmic Guessing



5 / 27

Solution 2(b), 2(c)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P′(x)
P(x)

=
N (2 x + 1)
x2 + x + 1

. P = ∑
i≥0

pixi, P′ = ∑
i≥0

(i + 1)pi+1xi, [xi](x2 + x + 1)P′ − N(2x + 1)P = 0

. (i− 1)pi−1 + ipi + (i + 1)pi+1 = 2Npi−1 + Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i + 1

(
(N − i)pi + (2N − i + 1)pi−1

)
for i ≥ 0.

Alin Bostan Algorithmic Guessing



5 / 27

Solution 2(b), 2(c)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P′(x)
P(x)

=
N (2 x + 1)
x2 + x + 1

. P = ∑
i≥0

pixi, P′ = ∑
i≥0

(i + 1)pi+1xi, [xi](x2 + x + 1)P′ − N(2x + 1)P = 0

. (i− 1)pi−1 + ipi + (i + 1)pi+1 = 2Npi−1 + Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i + 1

(
(N − i)pi + (2N − i + 1)pi−1

)
for i ≥ 0.

Alin Bostan Algorithmic Guessing



6 / 27

Solution 2(d)

Let P = ∑2N
i=0 pixi ∈ Z[x] be the polynomial P(x) = (1 + x + x2)N .

(d) Give an algorithm that computes pN in Õ(N) bit ops.

. The recurrence rewrites in matrix form: Fi =
1

i+1 AiFi−1, where

Ai =

(
N − i 2N − i + 1
i + 1 0

)
and Fi =

(
pi+1

pi

)
.

. By unrolling it, we obtain the equality Fi =
1

(i + 1)!
A(i) · · · A(1)

(
N
1

)
.

. To compute pN we determine FN by binary splitting applied to the integer
f = (N + 1)!, and to the matrix factorial B = A(N) · · · A(1), followed by the
matrix-vector product v = B×

(
N 1

)T and the (exact) division 1
f v.

. The integer f , and the entries of B and v, have O(N log(N)) bits.

. Cost of the whole algorithm: Õ(N) bit ops.
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1

2 1, 1, 2, 3, 5

3 1, 1, 2, 5, 14

4 1, 2, 9, 54, 378

5 1, 2, 16, 192, 2816

6 1, 3, 30, 420, 6930
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378

5 1, 2, 16, 192, 2816
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816
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Alin Bostan Algorithmic Guessing



8 / 27

Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816 46592
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1

2 1, 1, 2, 3, 5 8

3 1, 1, 2, 5, 14 42

4 1, 2, 9, 54, 378 2916

5 1, 2, 16, 192, 2816 46592

6 1, 3, 30, 420, 6930 126126
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1/(1− t)

2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0
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2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0

. Automated guessing: algorithmic computation of these equations
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Guessing: what’s the next term of the sequence?

1 1, 1, 1, 1, 1 1/(1− t)

2 1, 1, 2, 3, 5 1/(1− t− t2)

3 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

4 1, 2, 9, 54, 378 27 t2y2 + (1− 18 t) y + 16 t = 1

5 1, 2, 16, 192, 2816 64 t2 y3 + 16 t y2 + (1− 72 t) y + 54 t = 1

6 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ + (54 t− 2) y′ + 6 y = 0

. Automated guessing: via Padé, or Hermite-Padé, approximants
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PADÉ APPROXIMANTS

—guessing linear recurrences with constant coefficients—
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Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions)
Let A(x) = ∑n≥0 anxn ∈ K[[x]] be the generating function of (an)n≥0.
The following assertions are equivalent:

(i) (an) is a l.r.s.c.c., having P as characteristic polynomial of degree d.

(ii) A(x) is rational, of the form A = Q/revd(P) for some Q ∈ K[x]<d,
where revd(P) = P( 1

x )xd.

Moreover, if P is the minimal polynomial of (an)n≥0, then

d = max{1 + deg(Q), deg(revd(P))} and gcd(Q, revd(P)) = 1.

. Computing MinPol(an) is equivalent to solving a Padé approximation pb:

R
V
≡ A mod x2N , x 6 | V, deg(R) < N, deg(V) ≤ N and gcd(R, V) = 1,

where A = a0 + a1x + a2x2 + · · ·+ a2N−1x2N−1.
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Recall: Euclidean-type algorithm for Padé approximation

Pade(A, 2N)

In: A in K[x] with deg A < 2N
Out: (R, V) s.t. R/V ≡ A mod x2N , deg R < N, deg V ≤ N, or FAIL

1 R0 := x2N ; V0 := 0; R1 := A; V1 := 1; i := 1.
2 While deg Ri ≥ N do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Vi+1 := Vi−1 −QiVi
3 i := i + 1.

3 If Vi(0) 6= 0 then return (Ri, Vi); else return FAIL.

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Berlekamp-Massey algorithm

In: A bound N ∈N on the degree of the minimal polynomial of (an)n≥0
and the first 2N terms a0, . . . , a2N−1 ∈ K.

Out: the minimal generating polynomial (an)n≥0.

1 A = a0 + a1x + · · ·+ a2N−1x2N−1.
2 Compute the solution (R, V) ∈ K[x]2 of Pade(A, 2N) s.t. V(0) = 1.
3 d = max{1 + deg(R), deg(V)}. Return revd(V) = V(1/x)xd.

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Berlekamp-Massey algorithm, a variant

In: A bound N ∈N on the degree of the minimal polynomial of (an)n≥0
and the first 2N terms a0, . . . , a2N−1 ∈ K.

Out: the minimal generating polynomial (an)n≥0.

1 R0 := x2N ; V0 := 0; R1 := a2n−1 + · · ·+ a0x2N−1; V1 := 1; i := 1.
2 While deg Ri ≥ N, do:

1 (Qi , Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = Qi Ri + Ri+1
2 Vi+1 := Vi−1 −QiVi
3 i := i + 1

3 Return Vi/lc(Vi).

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) log N)
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Example

Assume given the terms 1, 1, 2, 3, 7, 13, 25, 48 and the bound N = 4

. The previous algorithm starts with V0 = 0, V1 = 1 and

R0 = x8, R1 = x7 + x6 + 2 x5 + 3 x4 + 7 x3 + 13 x2 + 25 x + 48

and it computes

(Q1, R2) := QuotRem(R0, R1) = (x− 1, −x6− x5− 4 x4− 6 x3− 12 x2− 23 x+ 48)

V2 := V0 −Q1V1 = −x + 1 −→ an+1 = an

(Q2, R3) := QuotRem(R1, R2) = (−x, −2 x5− 3 x4− 5 x3− 10 x2 + 73 x + 48)
V3 := V1 −Q2V2 = −x2 + x + 1 −→ an+2 = an+1 + an

(Q3, R4) := QuotRem(R2, R3) = (
x
2
− 1

4
, −9x4

4
− 9x3

4
− 51 x2 − 115 x

4
+ 60)

V4 := V2 −Q3V3 =
x3

2
− 3x2

4
− 5 x

4
+

5
4

−→ an+3 =
3
2

an+2 +
5
2

an+1 −
5
2

an

(Q4, R5) := QuotRem(R3, R4) = (
8 x
9

+
4
9

,
124 x3

3
+

344 x2

9
+

292 x
9

+
64
3
)

V5 := V3 −Q4V4 = −4x4

9
+

4x3

9
+

4x2

9
+

4x
9

+
4
9
−→ an+4 = an+3 + · · ·+ an
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HERMITE-PADÉ APPROXIMANTS

—guessing equations with polynomial coefficients—
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Definition

Definition: Given a column vector F = ( f1, . . . , fn)T ∈ K[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1 f1 + · · ·+ Pn fn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

[Hermite, 1873]: e is transcendent.

[Lindemann, 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry, 1978; Beukers, 1981]: ζ(3) = ∑n≥1

1
n3 is irrational.

[Rivoal, 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + O(x5).

This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

. Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.
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0 0 14 5 42
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α1
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0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.
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Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ K[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

1− y (x) + xy (x)2

> listtodiffeq([1,1,2,5,14,42,132,429],y(x))[1];

{
−2 y (x) + (2− 4 x)

d
dx

y (x) + x
d2

dx2 y (x) , y (0) = 1, D (y) (0) = 1
}
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Existence and naive computation

Theorem For any vector F = ( f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(σω), for 2 ≤ ω ≤ 3 (linear algebra exponent)

. There are better algorithms (the linear system is structured, Sylvester-like):

Derksen’s algorithm (Euclidean-like) O(σ2)

Beckermann-Labahn algorithm (DAC) Õ(σ) = O(σ log2 σ)

structured linear algebra algorithms for Toeplitz-like matrices Õ(σ)
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Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = ( f1, . . . , fn) in Õ(nωd) ops. in K.

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ K[x]n×n s.t. P2 · R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

. The precise choices of degrees is a delicate issue

. Corollary: Gcd, extended gcd, Padé approximants in Õ(d) ops. in K.
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Application: certified algebraic guessing

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.
Let Q = (Q0, Q1, . . . , Qn) be a Hermite-Padé approximant of type (d, . . . , d)
for F = (1, A, . . . , An). If Q · F = O(x2dn+1), then Q · F = 0.

In other words, A is a root of the polynomial Q = ∑n
i=0 Qi(x)yi.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P(x, A(x)) = 0, and degx(P) ≤ d, degy(P) ≤ n.

R(x) = Res y(P, Q) ∈ K[x] has degree at most 2dn.

R(x) = UP + VQ for U, V ∈ K[x, y] with degy(V) < n.

Evaluation at y = A(x) yields

R(x) = U(x, A(x)) P(x, A(x))︸ ︷︷ ︸
0

+V(x, A(x)) Q(x, A(x))︸ ︷︷ ︸
O(x2dn+1)

= O(x2dn+1).

Thus R = 0, that is gcd(P, Q) 6= 1, and thus P |Q, and A is a root of Q.
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Application: algebraicity of a hypergeometric series

Show that the following series is algebraic:

f (t) = ∑
n≥0

(
5n
n

)
tn

Strategy: First guess a polynomial P(t, y) in Q[t, y], s.t. P(t, f (t)) = 0 mod t?,
then prove that P admits the power series f (t) as a root, i.e., P(t, f (t)) = 0.

1 Find P s.t. P(t, f (t)) = 0 mod t20 by Hermite-Padé approximation.

2 Show that there exists a unique root r(t) ∈ Q[[t]] of P such that r(0) = 1.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so (rn) is P-recursive.

4 Deduce that (rn)n and ( fn)n with fn = (5n
n ) satisfy the same recurrence

of order 1 and the same initial condition r0 = f0 = 1.

5 Conclude that fn = rn for all n, thus f (t) = r(t) is algebraic.
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Application: algebraicity of a hypergeometric series

> f5:=sum(binomial(5*n,n)*t^n, n=0..infinity):
> simplify(f5) assuming t>0 and t<1/100;

4F3

([
1
5

,
2
5

,
3
5

,
4
5

]
;
[

1
4

,
1
2

,
3
4

]
;

3125 t
256

)

> P5:=subs(y(t) = y, seriestoalgeq(series(f5,t,20), y(t))[1]);

1 + 15 y + 80 y2 + 160 y3 + (3125 t− 256) y5

> subs({t=0, y=1}, P5), subs({t=0, y=1}, diff(P5,y));

0, −625
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Application: algebraicity of a hypergeometric series

> deq5:=algeqtodiffeq(P5, y(t))[1];

120 y (t) + (15000 t− 24)
d
dt

y (t) +
(

45000 t2 − 816 t
) d2

dt2 y (t) +(
25000 t3 − 1152 t2

) d3

dt3 y (t) +
(

3125 t4 − 256 t3
) d4

dt4 y (t) = 0

> rec5:=map(factor, diffeqtorec(deq5, y(t), r(n)));

5 (5 n + 1) (5 n + 2) (5 n + 3) (5 n + 4) r (n)−
8 (4 n + 1) (2 n + 1) (4 n + 3) (n + 1) r (n + 1) = 0

> f:=n -> binomial(5*n,n):
> simplify(convert(subs({r(n)=f(n), r(n+1)=f(n+1)}, rec5), GAMMA));

0
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An exercise for next time (18/11/2019)

Let (an) be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1, for all n > 0.

Show that all an is an integer for all n.

Follow the next steps:

1 Compute the first 5 terms of the sequence, a0, . . . , a4;
2 Determine a Hermite-Padé approximant of type (0, 1, 2) for (1, f , f 2),

where f = ∑n anxn;
3 Deduce that P(x, f (x)) = 0 mod x5 for P(x, y) := 1 + (x− 1)y + x2y2;
4 Show that the equation P(x, y) = 0 admits a root y = g(x) ∈ Q[[x]]

whose coefficients satisfy the same linear recurrence as (an);
5 Deduce that an+2 = an+1 + ∑n

k=0 ak · an−k for all n, and conclude.
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