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aip0 + ai+1p1 + . . .+ ai+npn = 0, 8i � 0

How to compute the minimal polynomial?
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I There exists a generating polynomial of degree  n

I h(x) =
P2n�1

i=0 a2n�i�1xi

p is the minimal polynomial if and only if p is minimal such that

p(x)h(x) = r(x) mod x2n, deg r < deg p

⇥
h(x) �1

⇤  p(x) ·
r(x) ·

�
=

⇥
0 0

⇤
mod x2n
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Minimal approximant basis

H(x) an m ⇥ 2m matrix of power series in K[[x]]

A polynomial matrix B 2 K[x](2m)⇥(2m) is a minimal approximant basis
of H at order � if:

I its columns form a basis of the K[x]-module of vectors v 2 K[x]2m such that
Hv = 0 mod x�

I the basis is minimal

m = 1,� = 6

h
5 + 3 x + 2 x2 + x3 + x4 �1

i
2

4
x2 � x � 1 2 x4 � 3 x3

�8 x � 5 x4 � 15 x3

3

5 =
h

x6 2 x8 � x7 + x6
i
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Algorithm m = 1

At step i:

⇥
g(x) h(x)

⇤  bi,1(x) ci,1(x)
bi,2(x) ci,2(x)

�
=

⇥
⇢ xi + xi+1(. . .) ⌧ xi + xi+1(. . .)

⇤

I ⌧ 6= 0, deg bi � deg ci: bi+1  bi � (⇢/⌧) ci ci+1  x ci

I ⌧ = 0, bi+1  x bi

Cost bound: O(�2)
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Two other algorithms “essentially equivalent” to the minimal approximant algorithm?

9
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Berlekamp–Massey algorithm

I Shortest linear feedback shift register (LFSR) for a given binary output sequence

I Minimal polynomial of a linearly recurring sequence

I Decoding

10
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! Given two polynomials sequence of polynomials with decreasing degrees
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TABLE I 
COMPARISON OF S,,(k) WITH UPPER AND LOWER BOUNDS 

accuracy, especially for moderate to low probabilities. The two 
upper bounds are close across all parameter values tried. From 
this numerical evidence and an examination of the expressions, it 
appears that the degree of improvement of (6) over the upper 
bound of (4) may not be sufficient to warrant its use for most 
cases. The lower bound (5) gives good accuracy across a range of 
parameters and, in particular, gives significantly better results 
than the lower bound of (4) when e is relatively large and k 
small. This improvement of the lower bound is achieved at a 
modest increase in complexity and seems worthwhile for many 
applications. In general, the upper and lower bounds can be used 
with confidence in place of exact values when their ratio is close 
to unity. This will occur, for example, when r, is small, which 
will be true when kq is much larger than n e. 

In the foregoing computations exact values of b,,(k) were used. 
However, if efficiency of computation is of concern, then in most 
cases bounds on b,,(k) could be used along with the bounds of 
(5) and (6) (or (4)). This is a very well investigated problem and 
very tight bounds are available. In particular, the following 
version of Stirling’s approximation to the factorial might be used: 

i 
1 

(28) 1/2#+1/2 
exp --n+- 12n + 1 1 

< n! < (277)l’27p/2 exp(-rr+&). 

While this approximation yields excellent results, it can easily be 
improved further by taking more terms in the argument (expo- 
nent) of the exponential [5]. This result can be used to upper and 
lower bound b,,(k) as follows: 

where H(X, y) = -X log, X - y log, y is the binary entropy 
function and E(X, E) = X log, (e) + y log, (n). 
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On the Equivalence Between Berlekamp’s and 
Euclid’s Algorithms 

JEAN LOUIS DORNSTETTER 

Abstract-It is shown that Berlekamp’s iterative algorithm can be 
derived from a normalized version of Euclid’s extended algorithm. Simple 
proofs of the results given recently by Cheng are also presented. 

I. INTROLXJ~TI~N 

The similarity between Berlekamp’s iterative algorithm [l] and 
the extended Euclidean algorithm [7] has been previously noticed 
by several authors [3], [4]. Recently, Cheng [6] gave a more 
explicit description of the relations between the partial results 
produced by both algorithms. The original version of the iterative 
algorithm has been simplified by Massey [2]. We shall show in 
Section II that all partial results generated by this simplified 
version are in agreement (to a reciprocation and a normalization 
factor) with those given by Euclid’s algorithm. The equivalence of 
the two algorithms is made more explicit in Section III by 
demonstrating that the iterative algorithm can be derived from a 
normalized version of Euclid’s algorithm. 

II. FORMAL EQUIVALENCEOFTHETWOALGORITHMS 

All polynomials to be considered in the following have their 
coefficients in a given commutative field K. By convention, the 
degree of the zero polynomial is - cc. We will first restate some 
of the basic properties of the extended Euclidean algorithm 
for computing the greatest common divisor of R, and R-, 
when R_, = X” and R, is the polynomial S(X) = S, + 
s,x+ ... + S, _ i X”- ’ (the syndrome polynomial in the context 
of decoding BCH codes). 

Manuscript received April 19, 1985; revised July 15, 1986. 
The author is with the Laboratoire Central de Telecommunications, 18-20 

rue Grange Dame Rose, 78141 Velizy-Villacoublay Cedex, France. 
IEEE Log Number 8611419. 

1 
(2?rnXy)1’2 

y(ll(h,-/)+MX.~)) 

1 - ~ - ~ 
12Xn y=1-X,X=k/n (7) 

OOlS-9448/87/0500-0428$01.00 01987 IEEE 

428 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-33, NO. 3, MAY 1987 

TABLE I 
COMPARISON OF S,,(k) WITH UPPER AND LOWER BOUNDS 

accuracy, especially for moderate to low probabilities. The two 
upper bounds are close across all parameter values tried. From 
this numerical evidence and an examination of the expressions, it 
appears that the degree of improvement of (6) over the upper 
bound of (4) may not be sufficient to warrant its use for most 
cases. The lower bound (5) gives good accuracy across a range of 
parameters and, in particular, gives significantly better results 
than the lower bound of (4) when e is relatively large and k 
small. This improvement of the lower bound is achieved at a 
modest increase in complexity and seems worthwhile for many 
applications. In general, the upper and lower bounds can be used 
with confidence in place of exact values when their ratio is close 
to unity. This will occur, for example, when r, is small, which 
will be true when kq is much larger than n e. 

In the foregoing computations exact values of b,,(k) were used. 
However, if efficiency of computation is of concern, then in most 
cases bounds on b,,(k) could be used along with the bounds of 
(5) and (6) (or (4)). This is a very well investigated problem and 
very tight bounds are available. In particular, the following 
version of Stirling’s approximation to the factorial might be used: 

i 
1 

(28) 1/2#+1/2 
exp --n+- 12n + 1 1 

< n! < (277)l’27p/2 exp(-rr+&). 

While this approximation yields excellent results, it can easily be 
improved further by taking more terms in the argument (expo- 
nent) of the exponential [5]. This result can be used to upper and 
lower bound b,,(k) as follows: 

where H(X, y) = -X log, X - y log, y is the binary entropy 
function and E(X, E) = X log, (e) + y log, (n). 

ACKNOWLEDGMENT 

The authors would like to thank the reviewers for their careful 
reading of the manuscript and helpful comments. 

[ll 

P-1 

131 

[41 

[51 

REFERENCES 
T. Kasami and S. Lin, “On the probability of undetected errcx for 
maximum distance separable codes,” IEEE Truns. Commun., vol. COM- 
32, pp. 99x-1006, 1984. 
E. R. Berlekamp, “The technology of error correcting codes,” Proc. 
IEEE, vol. 68, pp. 564-593, 1980. 
W. Feller, An Introduction to Prohubility Themy and Its Applications, vol. 
1, 3rd ed. New York: Wiley, 1968. 
W. W. Peterson, Error Correcting Codes. Cambridge, MA: MIT Press, 
1961. 
P. A. P. Moran, An Introduction to Probubility Theory. London: Oxford 
Univ. Press, 1968. 

On the Equivalence Between Berlekamp’s and 
Euclid’s Algorithms 

JEAN LOUIS DORNSTETTER 

Abstract-It is shown that Berlekamp’s iterative algorithm can be 
derived from a normalized version of Euclid’s extended algorithm. Simple 
proofs of the results given recently by Cheng are also presented. 

I. INTROLXJ~TI~N 

The similarity between Berlekamp’s iterative algorithm [l] and 
the extended Euclidean algorithm [7] has been previously noticed 
by several authors [3], [4]. Recently, Cheng [6] gave a more 
explicit description of the relations between the partial results 
produced by both algorithms. The original version of the iterative 
algorithm has been simplified by Massey [2]. We shall show in 
Section II that all partial results generated by this simplified 
version are in agreement (to a reciprocation and a normalization 
factor) with those given by Euclid’s algorithm. The equivalence of 
the two algorithms is made more explicit in Section III by 
demonstrating that the iterative algorithm can be derived from a 
normalized version of Euclid’s algorithm. 

II. FORMAL EQUIVALENCEOFTHETWOALGORITHMS 

All polynomials to be considered in the following have their 
coefficients in a given commutative field K. By convention, the 
degree of the zero polynomial is - cc. We will first restate some 
of the basic properties of the extended Euclidean algorithm 
for computing the greatest common divisor of R, and R-, 
when R_, = X” and R, is the polynomial S(X) = S, + 
s,x+ ... + S, _ i X”- ’ (the syndrome polynomial in the context 
of decoding BCH codes). 

Manuscript received April 19, 1985; revised July 15, 1986. 
The author is with the Laboratoire Central de Telecommunications, 18-20 

rue Grange Dame Rose, 78141 Velizy-Villacoublay Cedex, France. 
IEEE Log Number 8611419. 

1 
(2?rnXy)1’2 

y(ll(h,-/)+MX.~)) 

1 - ~ - ~ 
12Xn y=1-X,X=k/n (7) 

OOlS-9448/87/0500-0428$01.00 01987 IEEE 

11



Linearly recurring sequences Padé-Hermite approximation

cost  number of iterations ⇥ approximation order ?
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H(x)B(1)(x) = x�R(x)

H(x)B(1)(x)Q(x) = x�+kS(x)

#

H(x)B(1)(x) = x�R(x)

R(x)B(2)(x) = xkT(x)

One has H(x)B(1)(x)B(2)(x) = (x�R(x))B(2)(x) = x�+kT(x)

Is B(1)B(2) a correct answer ?
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Recursive approximant computation (simplified)

1. Approximation basis for H(x) at order �/2, input degrees (0, 0)

2. H0(x) = x��/2H(x)B(1)(x) mod x�/2

3. Approximation basis for H0(x) at order �/2, input degrees (d1, d2)

4. B(x) = B(1)(x)B(2)(x)

Correctness: uses only the first � coefficients of H

Cost: T(n)  2T(n/2) + O(M(n)) O(M(n) log n)
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H(x) mod x8, 6 ⇥ 3
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Minimal approximant basis (general dimensions)

H(x) an m⇥ k matrix of power series in K[[x]]

A polynomial matrix B 2 K[x]k⇥k is a minimal approximant basis
of H at order � if:

I its columns form a basis of the K[x]-module of vectors v 2 K[x]k such that
Hv = 0 mod x�

I the basis is minimal

19
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Fast Power Hermite Pad Solver [Beckermann & Labahn 1994, Derksen 1994]

810 BERNHARD BECKERMANN AND GEORGE LABAHN

LEMMA 3.3. For P, Q e ]K’[z], c e K \ {0}"
(S)
dct (c.P)=dctP, dct (P+Q)>_min{dctP, dctQ}

(9)
ord(c.P)=ordP, ord(P+Q)_>min {ordP, ordQ},

Proof. The proof is left to the reader.
From the characterization (5), it is clear that c +1 and +1 c . In

addition, if P E \ +1, i.e. ord P a, then from (8), (9) it is easy to see that
for each Q E Z: there exists a c IK such that Q c. P +1. This proves the
statement

(10) +1 C/:, dim + _> dim 1

and already gives an idea about the computation of a-bases by recurrence on the
order as proposed in the procedure FPHPS (fast power Hermite Padd solver) below.
We show in Theorem 3.4 that this method is both correct and produces the desired
a-bases.

FPHPS ALGORITHM
INPUT" rn _> 2, s N,F (f, fm)T, multiindex n- (n, am)
INITIALIZATION: Let for a- 0,1 1,..., m:

dr,0 at, Pt,0 (0,..., 0, 1, 0,..., 0)(/th unit vector)
RECURSIVE STEP: For a 0, 1, 2,

Let forl-l,...,m:ct,-z-.Pt,(z).F(z)lz=0andAo-{1 c,0}
CASE A {}, then for 1,...,m:
P,+ P,, d,+ d,

CASE A {}, then let 7 r A be defined by
d.,-max{dt, 1EA}
and compute for 1,..., m:

A, 7r: Pt ad-1 P, c, p., dl,a+l dl,a
Aa: Pl,a+l Pl,a,dl,a+l dl,a
’: Pr,a+l z" P.,a, dr,a+l d,,a 1

OUTPUT: For a 0, 1, 2,
a-bases P,,..., Pm,a with dct Pt, dt, + 1,1 1,..., m, i.e.
for allh’-{al.P,+...+am.P,, deg cl<_dt,o+5}.
THEOREM 3.4 (Feasibility of method FPHPS). Method FPHPS is well defined

and gives the specified results.
Proof. We show the assertion by induction on a for a fixed
The case a 0 follows immediately from the definition of 0. Hence, suppose

a _> 0 and that the algorithm is correct for a. We show that the algorithm produces
the correct output for a + 1. Note that by assumption ord Pl, _< a, i.e., its s-residual
takes the form

dct (z-P)-dctP-1,

ord (z-P) -ord P + s.

Hence, Cl,a

Pz,(zS) F(z) z. Rt(z) with Rt e K[[z]].
Rt(0) and the recurrence step is well defined. By construction we have

ordPt,+_>a+l and dctPt,+ >_dt,+l+l.

20

Note added:

Here transposed problem i.e. approximant 
 on the left (row operations) 

m x k --> k x m, actually with m=1 
(1 x k) in the course 

The general problem (matrix vs vector) 
could be reduced to the one here
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S are such that if the ith row of S is identically zero then
the ith column of L is the ith unit vector.

Algorithm M-Basis(G, d)
Input: G � K[[x]]m⇥n with m � n and d � N.
Output: a �-basis M � K[x]m⇥m with � = nd.

M := Im;
� := 0 � Nm;
for k from 1 to d do

� := �� where matrix � sorts � in descending order;
� := x�(k�1)�MG mod x;
� := � augmented with m � n zero columns;
Compute the LSP factorization of �;
D := diag(d1, . . . , dm) where di = x if i � {i1, . . . , ir}

and di = 1 otherwise;
M := DL�1�M ;
� := � + [d1(0) � 1, . . . , dm(0) � 1]T ;

od;
return M ;

Lemma 2.2. Algorithm M-Basis is correct. Its cost is
O(MM(m)d2) or O(m!d2) operations in K.

Proof. Let M0(x) = Im and, for 1 � k � d, write Mk(x)
for the matrix M computed by step k. We see that the de-
gree of Mk in x is no more than k and, assuming the algo-
rithm is correct, that MkG � 0 mod xk. The computation
of � at step k thus costs O(MM(m)k) field operations. This
dominates the cost of step k, for both LSP factorization
and the update of M require only O(MM(m)) operations in
K. The overall complexity then follows.

To prove the algorithm is correct, note first that M0(x)
is a 0-basis of G(x). Then, assuming for k � {1, . . . , m}
that Mk�1(x) is an n(k � 1)-basis of G(x), we verify that
Mk(x) = D(x)L�1�Mk�1(x) is an nk-basis of G(x).

Let Nk�1(x) = �Mk�1(x) and recall that P is the permu-
tation matrix in the LSP factorization at step k. It follows
that Nk�1(x) is an n(k � 1)-basis of G(x)P �1. Algorithm
FPHPS of [2, p. 810] with input parameters m, n,

F (x) = Nk�1(x
n)G(xn)P �1[1, x, . . . , xn�1]

T

and (0, . . . , 0) � Nm then returns an nk-basis of G(x)P �1

after n steps. We denote this basis by Nk(x). (Uniqueness
of the output of FPHPS is explained in [2, p. 818].) As
shown below, the two bases are related as

Nk(x) = D(x)L�1Nk�1(x) (2)

and hence Mk = Nk is an nk-basis of GP �1 and G as well.
We now prove identity (2). Let � = �P �1 and let �j be

the jth column of �. Then

x�(k�1)nF (x) � �1 + x�2 + · · · + xn�1�n mod xn.

Since the rows of Nk�1 have been sorted by permutation
�, the first step of FPHPS simply consists in picking the
first nonzero entry of �1 – say, �1 with row index h1 – and
zeroing the lower entries of �1 by using pivot �1. The h1st
row is then multiplied by x. In other words, Nk�1(x) is
transformed into E1(x)T1Nk�1(x) where we define E1(x) =
diag(Ih1�1, x, Im�h1) and

T1 =

�

�
Ih1�1

1
t1 Im�h1

�

� with t1 � Km�h1 . (3)

Recalling that i1 is the index of the first nonzero row of S
in factorization � = LS, we verify first that h1 = i1: since
the zero rows of S correspond with unit vector columns in
L, the product of these two matrices has the form

� = LS =

�

�
Ii1�1

1
l1 L0

�

�

�

� �1 sT
1

S0

�

� , �1 � K\{0}.

Here L0 � K(m�i1)⇥(m�i1), S0 � K(m�i1)⇥(n�1) and �1 is
indeed the first nonzero entry of �1. Hence h1 = i1. Second,
comparing the first column in both sides of T1� = T1LS
yields t1 = �l1 and the i1st column of T �1

1 is thus equal
to the i1st column of L. The first step of FPHPS yields
eventually

x�(k�1)nE1(x
n)T1F (x) � x�0

2 + · · · + xn�1�0
n mod xn

where

�
0|�0

2| · · · |�0
n

�
= E1(0)T1� =

�
0 0
0 L0S0

�
� Km⇥n. (4)

Let h2 be the pivot index at step 2 and let T2 and E2(x) be
the associated transformation matrices. It follows from (4)
that h2 > i1. Hence T2 has the form T2 = diag(Ii1 , T 0

2) and
E1(x) commutes with T2. Then, noticing that the ordering
imposed by � is still the same, one can iterate by replacing
T1, LS and i1 < · · · < ir with respectively T 0

2, L0S0 and
i2 � i1 < · · · < ir � i1. We eventually get hj = ij for
1 � j � r. Therefore, defining for 1 � j � r matrices Ej(x)
and Tj as done in (3) for j = 1, we have

Nk(x) = Er(x) · · · E2(x)E1(x)Tr · · · T2T1Nk�1(x). (5)

It follows that Er(x) · · · E2(x)E1(x) = D(x) and that the
ijth column of T �1

j equals the ijth column of L. Noticing
further that because of the structure of Tj the ijth column
of T �1 equals the ijth column of T �1

j , we have T �1 = L
and (2) follows from (5).

2.2 Via Polynomial Matrix Multiplication
To use polynomial matrix multiplication, we now give

a divide-and-conquer version of Algorithm M-Basis called
PM-Basis. This version is based on the following “transi-
tivity lemma”, which may be seen as the counterpart of
Theorem 6.1 in [2] and can be shown in the same way.

For this lemma, we need to keep track of the value of the
multiindex � involved in Algorithm M-Basis. Noting that
Lemma 2.2 is actually valid for any initial value of variable
� � Nm, one can modify this algorithm so that it takes
(G, d, �) as an input and returns (M, µ) where µ is the last
value taken by �. The initialization step “M := Im; � := 0”
thus reduces to “M := Im;”.

Lemma 2.3. If (M, µ), (M 0, µ0), (M 00, µ00) are the outputs
of Algorithm M-Basis for inputs (G, d, �), (G, d/2, �) and
(x�d/2M 0G, d/2, µ0) respectively, then (M, µ) = (M 00M 0, µ00).

Algorithm PM-Basis(G, d, �)
Input: G � K[[x]]m⇥n with m � n, d � N and � � Nm.
Output: a �-basis M � K[x]m⇥m with � = nd, µ � Nm.
Condition: d = 0 or log d � N.
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if d = 0 then (M, µ) := (Im, �);
else if d = 1 then (M, µ) := M-Basis(G,d,�);
else if d � 2 then

(M 0, µ0) := PM-Basis(G, d/2, �);
G0 := x�d/2M 0G mod xd/2;
(M 00, µ00) := PM-Basis(G0, d/2, µ0);
(M, µ) := (M 00M 0, µ00);

fi;
return (M, µ);

Theorem 2.4. Algorithm PM-Basis is correct. Its cost is
O(MM0(m, d)) or O (̃m!d) operations in K.

Proof. For correctness it su�ces to show that the algo-
rithm with input (G, d, �) uses only the first d coe�cients
of series G: when d = 1 this is true because of Algorithm
M-Basis; if we assume this is true for a given d/2 then this is
still true for d since x�d/2M 0G mod xd/2 depends only on G
mod xd. Correctness then follows immediately from Lemma
2.3.

Now about complexity. First, it follows from Algorithm
M-Basis that deg M � d. Hence the product M 00M 0 costs
MM(m, d/2). Second, since deg M 0 � d/2, the coe�cient
in xi of x�d/2M 0G mod xd/2 is the coe�cient in xi+d/2 of
M 0(G mod xd). This product costs MM(m, d). The cost
C(m, n, d) of Algorithm PM-Basis thus satisfies C(m, n, 1) =
O(MM(m)) and, for d � 2,

C(m, n, d) � 2C(m, n, d/2) + MM(m, d/2) + MM(m, d).

This gives the bound O(MM0(m, d)).

3. COLUMN REDUCTION
For A � K[x]n⇥n we consider the problem of computing

C � K[x]n⇥n such that C = AU is column reduced, U being
a unimodular matrix over K[x]. Column reduction is essen-
tially lattice basis reduction for K[x]-modules. To define the
reduction, let dj denote the degree of the jth column of C.
The corresponding coe�cient vector of xdj is the jth lead-
ing vector of C. We let [C]l be the matrix of these leading
vectors.

Definition 3.1. A matrix C is column reduced if its lead-
ing coe�cient matrix satisfies rank [C]l = rank C.

We refer to [14, 23] and the references therein for discus-
sions on previous reduction algorithms and applications of
the form especially in linear algebra and in linear control
theory. If r is the rank of A, the best previously known cost
for reducing A was O(n2rd2) operations in K [14]. Thus
in particular O(n3d2) for a nonsingular matrix. Here we
propose a di�erent approach which takes advantage of fast
polynomial matrix multiplication and gives in particular the
complexity estimate O (̃n!d).

We assume that A of degree d is nonsingular in K[x]n⇥n.
The general case would require further developments. We
compute a column reduced form of A by combining our tech-
niques in [23] to the high-order lifting and the integrality
certificate in [17]. The main idea is to reduce the problem
to the computation of a matrix Padé approximant whose
side-e�ect is to normalize the involved matrices [23]. Let us
first recall the definition of right matrix greatest common
divisors.

Definition 3.2. A right matrix gcd of P � K[x]m⇥n and
A � K[x]n⇥n is any full row rank matrix G such that

U

�
P
A

�
=

�
G
0

�

with U unimodular.

Right gcd’s are not unique, but if [P T AT ]T has full col-
umn rank — here this is true by assumption — then, for
given matrices P and A, all the gcd’s are nonsingular and
left equivalent (up to multiplication by a unimodular matrix
on the left) in K[x]n⇥n. This also leads to the notion of an ir-
reducible matrix fraction description. (See for example [11]
for a detailed study of matrix gcd’s and fractions.)

Definition 3.3. If a right gcd of P and A is unimodular
then we say that P and A are relatively prime and that PA�1

is an irreducible right matrix fraction description.

The whole algorithm for column reduction will be given
in Section 3.3. A matrix fraction H � K(x)n⇥n is said to
be strictly proper if it tends to zero when x tends to in-
finity [11, §6.3.2]. The first step of the algorithm, detailed
in Section 3.1, is to compute from A a strictly proper and
irreducible right fraction description

H = RA�1 � K(x)n⇥n, R � K[x]n⇥n. (6)

The fact that H is strictly proper implies that the degree of
the jth column of R must be strictly lower than the degree
of the jth column of A. Since the degrees of R and A are
bounded by d, the second step of the method, studied in
Section 3.2, is to compute from the first 2d + 1 terms of the
expansion of H a right matrix Padé approximant

H = TC�1

of H. Such an approximant, obtained from the results of
Section 2 and [2], will have the additional property that C
is column reduced. We will see that by the equivalence of
irreducible fractions, C will be a column reduced form of A.

Like the algorithms in [17], our column reduction algo-
rithm is randomized Las Vegas since the first step requires
that det A(0) �= 0. Without loss of generality this may be
assumed by choosing a random element x0 in K and by com-
puting a column reduced form C of A(x + x0). Indeed, a
column reduced form of A is then recovered as C(x � x0).

3.1 AStrictly Proper and Irreducible Fraction
For a given A, its inverse A�1 may not be a strictly proper

rational function, a case where R = I is not a suitable choice
in (6). We show that the integrality certificate of [17, §11]
can be used here to find a target strictly proper function.

Lemma 3.4. Let A � K[x]n⇥n of degree d be such that
det A(0) �= 0. For h > (n � 1)d define R � K[x]m⇥n by

I =
�
A�1 mod xh

�
A + xhR. (7)

The fraction RA�1 is strictly proper and irreducible. If h is
the closest power of 2 greater than (n � 1)d + 1, the 2d + 1
first terms of the expansion of RA�1 may be computed at the
cost of O(MM(n, d) log n+MM00(n, d))+O (̃n2d) operations
in K.
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21

Transposed problem also here, 
in the lesson : m x k 
m x k --> k x m (m x n) 

the order sigma is for elementary 
steps, hence the matrix order d is 
sigma here divided by n 



Linearly recurring sequences Padé-Hermite approximation

Related problem - 1

Bézout relation

a(x), b(x) 2 K[x], degree n

compute a relation
u(x)a(x) + v(x)b(x) = g(x)

where g(x) is the gcd, say of degree k

with deg u < deg b � k and deg v < deg a � k

21
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Related problem - 2

Rational reconstruction

f (x) 2 K[x], degree n

h(x)

Find p(x) and q(x) such that for k given 1  k  n:

h(x) =
p(x)
q(x)

mod f (x)

with gcd(q, f ) = 1, deg p < k, deg q  n � k

22
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Related problem - 3 a(x)u(x) = v(x) mod x2n+1

Toeplitz (Hankel) linear system
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Related problem - 3 a(x)u(x) = v(x) mod x2n+1

Toeplitz (Hankel) linear system
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Related problem - 3

Toeplitz (Hankel) linear system
[Brent, Gustavson & Yun]
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Theorem of polynomials

In O(M(n) log n) = Õ(n) arithmetic operations one can solve:

I Multipoint evaluation and interpolation

I Minimal polynomial of a linearly recurring sequence

I Gcd and Bézout relation

I Rational reconstruction and Padé approximation

I Hankel and Toeplitz linear system

I Univariate polynomial resultant
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Digression: displacement rank
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Padé-Hermite approximant

H(x) a row vector of dimension m of power series in K[[x]]

A polynomial vector B 2 K[x]m is a Padé-Hermite of order � and type (d1, . . . , dm) if

I H(x) · B(x) = 0 mod x�

I � =
P

i(di + 1)� 1

I deg Bi  di, 1  i  m
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[Zhou & Labahn 2012]

Theorem

k � m, an approximant basis of order d can be computed in Õ(k!dmd/ke)
arithmetic operations
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Theorem

I m ⇥ 2m, an approximant basis of order d can be computed in Õ(m!d) arithmetic
operations

I A Padé-Hermite approximant can be computed in Õ(m!�) arithmetic operations

I To go further:
with technical difficulties (shifts + overlapping linearization + output linearization)
Õ(m!d) with d the average degree in the output
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Theorem

I m ⇥ 2m, an approximant basis of order d can be computed in Õ(m!d) arithmetic
operations

I A Padé-Hermite approximant can be computed in Õ(m!�) arithmetic operations

I To go further:
with technical difficulties (shifts + overlapping linearization + output linearization)
Õ(m!d) with d the average degree in the output
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Exercise

Let ↵(x) 2 K[[x]] be a root of f (x, y) irreducible in K[x, y], degx f  d, degy f  n

Let [g0 g1 . . . gn]T be a Padé-Hermite approximant of type (d, d, . . . , d):

⇥
1 ↵(x) ↵2(x) . . .↵n(x)

⇤

2

6664

g0
g1
...

gn

3

7775
= 0 mod x�

If � > 2dn then ↵ is a root of g(x, y) = g0(x) + yg1(x) + . . .+ gn(x)yn
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