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TOOLS FOR PROOFS
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The Sylvester matrix of A = a,,x™ + - - +ag € K[x], (ay # 0), and of
B=Dbux"+---+by € Klx], (by #0), is the square matrix of size m + n

Am  Am—1 ap
Ay Ap_1 ... A
a Ay a
SIAB) = |y e ’
b byq ... b
i by byy ... by |

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

> Definition extends to polynomials over any commutative ring R.
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If A=aux™+---4+ay and B=Dby,x"+---+Dby, then

[ Gy Ay1 ... A 7 [ a*1A(a)
’xm+n—l
Ay A1 --- Ao y _ Aa)
by, b,_1 ... by N a™ 1B («)
A N 1 :
L bn bn—l b() i L B(OL)

Corollary: If A(a) = B(x) =0, then Res (A, B) = 0.

4/28



Bamplethediseriminant

The discriminant of A is the resultant of A and of its derivative A’.
E.g. for A = ax? +bx +c,

a b c
Disc(A) = Res (A, A') = det [ 20 b ] = —a(b? — 4ac).
2a b

E.g. for A = ax3 +bx+ec,

a 0 b ¢
a 0 b c
Disc(A) = Res (A, A') =det| 32 0 b = a?(4b% + 27ac?).
3¢ 0 b
3¢ 0 b

> The discriminant vanishes when A and A’ have a common root, that is
when A has a multiple root.
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Maimpropertes

© Link with gcd  Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

® Elimination property
There exist U, V € K[x] not both zero, with deg(U) < n, deg(V) <m
and such that the following Bézout identity holds in KN (A, B):

Res(A,B) = UA+ VB.

® Poisson's formula
IfA=a(x—ay)---(x—ay) and B=0b(x—pB1) - (x — Bn), then

Res(A,B) = a"b" [ [(wi—B;) = a" [] B(w).

i 1<i<m

©® Multiplicativity

Res(A-B,C) = Res(A,C)-Res(B,C), Res(A,B-C)=Res(A,B)-Res(A,CQC).



Proofof Poisson's formula

> Direct consequence of the key observation:
If A=(x—way) - (x—am)and B= (x—B1) - (x — Bn) then

e L
Syl(A, B) x 3 5 3 3 =

B1 Bn o1 QX

1 .1 1 .1
[ BITTABY) .. BT A(BY) o .. 0 ]

oAy A 0 0
0 0 W 'B(ay) ... af'B(am)
o 0 Ba) ... Blam) |

> To conclude, take determinants and use Vandermonde’s formula



Applic

Let A =T[;(x —a;) and B = [];(x — B;) be polynomials of K[x]. Then

[T~ (ai+B)) = Res c(A(x), B(t ~ x)),
L]

[1(t = (Bj— i) = Resy(A(x), B(t +x)),

ij
[1(t — aiB;) = Res +(A(x), x€BB(t/x)),

ij
[I(t— B(a;)) = Resx(A(x),t — B(x)).

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: [ [ B(t —a;) = [ [(t —a; — Bj)-
i i,j

> The same formulas apply mutatis mutandis to algebraic power series.
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Ifa=+2and b= \S/g,thenRHSis bc where c = 1 —a + 42, LHS is (2 — 1)7,
and resultants provide (equal) annihilating polynomials for RHS and LHS
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Application of the application:
3/ 3 _ 3 1 3 g 3 é
- -

Ifa=+v2and b= \3/; then RHS is bc where ¢ = 1 —a+a?, LHS is (a — 1)%,
and resultants provide (equal) annihilating polynomials for RHS and LHS

> Pc:=resultant(a~3-2, x-(1-a+a"2), a);

¥ -3x24+9x-9

> PR:=resultant (Pc, numer(9*(t/x)"3-1), x);

729 (t9+3t6+3t3—1)

> PL:=expand ((t"3+1)73-2);

P 4+3104+38 -1



Application of the application:
3/ 3 _ 3 1 3 g 3 é
- -

Ifa=+v2and b= \3/; then RHS is bc where ¢ = 1 —a+a?, LHS is (a — 1)%,
and resultants provide (equal) annihilating polynomials for RHS and LHS

> Pc:=resultant(a~3-2, x-(1-a+a"2), a);

x> —3x24+9x—9

> PR:=resultant (Pc, numer(9*(t/x)"3-1), x);

729 (t9+3t6+3t3—1)

> PL:=expand ((t"3+1)73-2);

43104381
> Why is this a proof? Ve



Application of the application: p
3/ 3 _ 3 1 3 g 3 é
- -

Ifa=+v2and b= \3/; then RHS is bc where ¢ = 1 —a+a?, LHS is (a — 1)%,
and resultants provide (equal) annihilating polynomials for RHS and LHS

> Pc:=resultant(a~3-2, x-(1-a+a"2), a);

¥ -3x24+9x-9

> PR:=resultant (Pc, numer(9*(t/x)"3-1), x);

729 (t9+3t6+3t3—1)

> PL:=expand ((t"3+1)73-2);

¥ +3t5+38 1
> Why is this a proof? Hint: The above polynomial has one single real root .
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sinz-7-" B sin 7 sin3-7-" 7
- 231 = 2271 + - 27T :
sin” % sin® &F sin® 7

>Ifa= /7 and x = €, then ¥/ = —1 and sin(ka) = xkEfik

10 /28



sinz-7-" B sin 7 sin3-7-" 27,

ia2 37 s 2271 27
sin® 2% sin® &L sin® %
— 1 . k_—k
>1Ifa=m/7 and x = ¢/, then v’ = —1 and sin(ka) = * =5

> Since x € Q, any rational expression in the sin(ka) is in Q(x), thus in Q
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Bonus: another be

21 s T 3

sin¥  sinf  sinF o7
sin? 3% sin? 2% sin? 2 '
7 7 7
. . Kk
>Ifa=7/7 and x = €, then x” = —1 and sin(ka) = *¥

> Since x € Q, any rational expression in the sin(ka) is in Q(x), thus in Q

N(x)

> In particular our LHS F(x) = bl is an algebraic number

> f:=sin(2*a)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a)"2:
> expand(convert (f,exp)):
> F:=normal (subs(exp(I*a)=x,%)):

2i(x16+5x14+12x12+x11 +20x10 439 +23x8 4327 42040 + 25 + 1254 +5x2+1)
x(@2-1) (2 +1)2 (¥t +22+1)°
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Bonus: another beautiful identi

21 s T 3

sin¥t  sin% sin =% W
sin? 3% sin? 2 sin? 2 .
7 7 7
. . k_ ok
>1Ifa=m/7 and x = ¢/, then v’ = —1 and sin(ka) = * >7

> Since x € Q, any rational expression in the sin(ka) is in Q(x), thus in Q
> In particular our LHS F(x) = IE\)IE g is an algebraic number

> f:=sin(2*a)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a)"2:
> expand(convert (f,exp)):
> F:=normal (subs(exp(I*a)=x,%)):

2i(x16+5x14+12x12+x“ +20x10 +3x% 42318 +3x7 42040 4+ x5 1244 +512+1)
x(x2-1) (X2+1>2 (x4+xz+l)2

> Get R in Q[t] with root F(x), via resultant Res,(x” + 1, D(x)—N(x))

> R:=factor(resultant (x~7+1,t*denom(F)-numer (F),x));

1274 (t2 - 28)3
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1. Prove that

\/11~|—2\/E+\/16—2\/2_94—2\/55—10\/2_: V5+1/22+25
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1. Prove that

\/11+2x/@+\/16—2@4—2\/55—10\/2_: V5+1/22+25

2. Prove that for any m, n in N

\/\/m_—H1+\/E+\/\/m_+n+m—\/ﬁ+2\/m (V¥ - vi)

=Vm+\2Vm+n+2ym
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1. Prove that

\/11~|—2\/E+\/16—2@4—2\/55—10\/2_: V5+1/22+25

2. Prove that for any m, n in N

\/\/m——l—n+\/ﬁ+\/\/m—+n+m—\/ﬁ+2\/m (V¥ - vi)

=Vm+\2Vm+n+2ym

> Exercise!
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Definition: A series f € K[[x]] is D-finite (differentially finite), or holonomic, if
its derivatives generate a finite-dimensional vector space over K(x), i.e.

gs(x)f) (x) + 41 () fC 7V (2) + - + qo(x) f(x) = 0.
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http://oeis.org/
http://www.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf

Dot Series & Precusve Sequences

Definition: A series f € K][x]] is D-finite (differentially finite), or holonomic, if
its derivatives generate a finite-dimensional vector space over K(x), i.e.

gs(x)f) (x) + 41 () fC 7V (2) + - + qo(x) f(x) = 0.

Definition: A sequence (1) € KN is P-recursive (polynomially recursive) if its
shifts (4, tty11, . . . ) generate a finite-dimensional vector space over K(n), i.e.

pr(m)unr + pr_1(M)ttyip1 + -+ -+ po(n)uy, =0, n > 0.
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http://oeis.org/
http://www.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf

D-finite Series & P-recursive Sequences -

Definition: A series f € K][x]] is D-finite (differentially finite), or holonomic, if
its derivatives generate a finite-dimensional vector space over K(x), i.e.

gs(x)f) (x) + 41 () fC 7V (2) + - + qo(x) f(x) = 0.

Definition: A sequence (1) € KN is P-recursive (polynomially recursive) if its
shifts (4, tty11, . . . ) generate a finite-dimensional vector space over K(n), i.e.

pr(m)tnsr + pr-1(n)ty -1+ + po(n)un =0, n > 0.
25% of Sloane’s encyclopedia (OEIS) and 60% of Abramowitz & Stegun's HMF

[NCY('.ZLT{)PEDIA Examples: exp, log, sin, cos, sinh,
INTEGER cosh, arccos, arccosh, arcsin, arcsinh, L&
SEQUENCES arctan, arctanh, arccot, arccoth, arccsc, PO NonoD,
arccsch, arcsec, arcsech, ,F; (includes
Bessel J, Y, I and K, Airy Ai and
Bi and polylogarithms), Struve, Weber
and Anger functions, the large class of
algebraic functions,...



http://oeis.org/
http://www.math.ubc.ca/~cbm/aands/abramowitz_and_stegun.pdf

Teaser 1: D-finite series and P-recursive seqs can be expanded optimally
— O(N) ops. for first N coeffs.
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Teasers

Teaser 1: D-finite series and P-recursive seqs can be expanded optimally
— O(N) ops. for first N coeffs.

Teaser 2: D-finite series and P-recursive seqs are ubiquitous in applications
— combinatorics, physics, applied maths

Teaser 3: Equations (recurrence, or differential) form a good data structure
for their (infinite/transcendental) solutions
— sin(x) encoded by y’ +y = 0,y(0) =0,y'(0) =1

Teaser 4: Their closure properties are effective: analogous of effective closure
properties for algebraic numbers via resultants — f+8 f-g

Teaser 5: Algorithms on D-finite series and P-recursive seqs allow for the

automatic proof of identities — sin(x)% 4+ cos(x)? =1

14/ 28
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S(t) = Lo gsat" € Q[[t]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
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S(t) = Lo gsat" € Q[[t]] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU)(£) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n).
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S(1) = £ sut” € Q] is

> algebraic if P(t,5(t)) = 0 for some P(x,y) € Z[x,y] \ {0};
& D-finite if ¢, (£)SU) (1) + - - -+ co(£)S(t) = 0 for some ¢; € Z[t], not all zero;

> hypergeometric if *1 € Q(n). E.g.,

1 ngn. [L x n . _ = — —
1_7()15:2,(”, (1+1) —Z(n>t,rer In(l—t)=—}) —.

n>0 n>0



differentially algebraic
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differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = rg} On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic

ab
21:1<C

— v @n(b)n t" _
t) = rg} On al’ where (a), =a(a+1)---(a+n-1).
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differentially algebraic

tan(t)

ab
21:1<C

— v @n(b)n t" _
t) = rg} On al’ where (a), =a(a+1)---(a+n-1).
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Link D-fini

Theorem: A power series f € K][[x]] is D-finite if and only if the sequence f;
of its coefficients is P-recursive

Proof (idea): xd <+ nand x~! <+ S, provide a ring isomorphism between
]K[x,x_l,a] and ]K[Sn,S;l,n].

Snobbish way of saying that the equality f = Y_,>( fnx" implies

(") xf'(x) = nfa, and  [X"]x7Hf(x) = fupa.

> Both conversions implemented in gfun: diffeqtorec and rectodiffeq
> Differential operators of order r and degree d give rise to recurrences of

order < d + r and coefficients of degree < r
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Theorem
(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
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Theorem

(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

Proof by linear algebra: If
u,(x)f(’)(x) + - +ap(x)f(x) =0, bs(x)g(s) (x)+---+bp(x)g(x) =0, then

f(é) € VeCt]K(x) (fl flr s rf(r_l)) ’ g(é) S VeCtIK(x) (g, g/, .. .,g(s_l)) ,

sothat (f+)") € Vectyry) (£, £ 07, 8,80 807Y),
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Clo:

Theorem

(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

Proof by linear algebra: If
u,(x)f(’)(x) + - +ap(x)f(x) =0, bs(x)g(s) (x)+---+bp(x)g(x) =0, then

f([) € VeCt]K(x) (fl fll s rf(r_l)) ’ g(é) S VeCtIK(x) (g, g/, .. .,g(s_l)) ,
sothat (f+)") € Vectyry) (£, £ 07, 8,80 807Y),

and (fg)¥) € Vecty ) (f(i)g(i), i<r j< s).

18 /28



Theorem

(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

Proof by linear algebra: If
ar(x) f (x) + - +ag(x)f(x) =0, bs(x)gl¥) (x) +- - +bo(x)g(x) =0, then

£ € Vet (£, fonf07V), g1 € Veetyy (58085,
sothat (f+)") € Vectyry) (£, £ 07, 8,80 807Y),

and (fg)(é) € Vectyy) (f(i)g(i), i<r, j< s).
So, f + g satisfies LDE of order < (r+s) and fg satisfies LDE of order < (rs).
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Theorem

(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

Proof by linear algebra: If
ar(x) f (x) + - +ag(x)f(x) =0, bs(x)gl¥) (x) +- - +bo(x)g(x) =0, then

f([) € VeCt]K(x) (fl fll s rf(r_l)) , g(é) S VeCtIK(x) (g, g/, .. .,g(s_l)) ,
sothat  (f+g)") € Vectyy) (£, frr f77V, 8,8 857Y),

and (fg)(é) € Vectyy) (f(i)g(i), i<r, j< s).
So, f + g satisfies LDE of order < (r+s) and fg satisfies LDE of order < (rs).

Corollary: D-finite series can be multiplied mod xV in linear time O(N).
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Closure properti

Theorem

(i) D-finite series in K[[x]] form an algebra closed under Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

Proof by linear algebra: If
ar(x) f (x) + - +ag(x)f(x) =0, bs(x)gl¥) (x) +- - +bo(x)g(x) =0, then

f([) € VeCt]K(x) (fl fll s rf(r_l)) s g(é) S VeCtIK(x) (g, g/, .. .,g(s_l)) ,
sothat  (f+g)") € Vectyy) (£, frr f77V, 8,8 857Y),

and (fg)¥) € Vecty ) (f(i)g(i), i<r j< s).
So, f + g satisfies LDE of order < (r+s) and fg satisfies LDE of order < (rs).
Corollary: D-finite series can be multiplied mod xV in linear time O(N).
> Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct,

rec+rec, rec*rec, cauchyproduct
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Theorem
(i) D-finite series in K[[x]] form a K-algebra closed by Hadamard product.
(ii) P-recursive seqs in KN form an algebra closed under Cauchy product.

> Previous proof is effective: it contains algorithms.
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Closure properties

Theorem
(i) D-finite series in K[[x]] form a K-algebra closed by Hadamard product.
(ii) P-recursive seqgs in KN form an algebra closed under Cauchy product.

> Previous proof is effective: it contains algorithms.

> To find explicit differential (resp., recurrence) equations for ® € {+, X, x}:

© compute derivatives (or, shifts) of 1 := f ® g, and express them on a
system of generators by using the input equations

© compute enough such derivatives, or shifts (at most: order of output)

© form a (rational function) matrix whose rows contain coordinates of
successive derivatives (resp., shifts)

© compute a non-trivial element in its kernel, and output the
corresponding equation



> series(sin(x) " 2+cos(x)"2,x,4);

1+0(x)
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~ Applcation: Proofof dendties 0

> series(sin(x) " 2+cos(x)"2,x,4);
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Applic

> series(sin(x) " 2+cos(x)"2,x,4);

1+0(x%)
This proves sin(x)? + cos(x)? = 1. Why?

(1) sin and cos satisfy a 2nd order LDE: y"" +y = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE;
(3) the constant —1 satisfies a 1st order LDE: i/ = 0;
(4) = sin? + cos? —1 satisfies a LDE of order at most 4;
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Application:

> series(sin(x) " 2+cos(x)"2,x,4);

1+0(x%)
This proves sin(x)? + cos(x)? = 1. Why?

(1) sin and cos satisfy a 2nd order LDE: y"" +y = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE;

(3) the constant —1 satisfies a 1st order LDE: i/ = 0;

(4) = sin? + cos? —1 satisfies a LDE of order at most 4;

(5) Since it is not singular at 0, Cauchy’s theorem concludes.
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Application: Proof of Iden

> series(sin(x) " 2+cos(x)"2,x,4);

1+0(x)
This proves sin(x)? + cos(x)? = 1. Why?

(1) sin and cos satisfy a 2nd order LDE: y"" +y = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE;

(3) the constant —1 satisfies a 1st order LDE: i/ = 0;

(4) = sin? + cos? —1 satisfies a LDE of order at most 4;

(5) Since it is not singular at 0, Cauchy’s theorem concludes.

> Cassini's identity (same idea): F> — F, 1 F,_1 = (—1)"*!

for n to 8 do
fibonacci(n) "2-fibonacci(n+1)*fibonacci(n-1)+(-1) "n
od;

0,0,0,0,0,0,0,0



Let’s compute an explicit differential equation satisfied by sin? + cos? —1
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Let’s compute an explicit differential equation satisfied by sin® + cos? —1

(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:

i

@ z= yZ’ Z/ — Zyyl/ Z// — zyy// + 2y12 — zylz o 2y2’ Z/// — 4y Y — 4yy/ — _Syy/
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Let’s compute an explicit differential equation satisfied by sin® + cos? —1

(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:

i

@ z= yZ’ Z/ — Zyyl/ Z// — zyy// + 2y12 — 2y/2 o 2y2’ Z/// — 4y Y — 4yy/ — _Syy/
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0 0 2 0
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~ Applcation: Proofof endties 10

Let’s compute an explicit differential equation satisfied by sin® + cos? —1

(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= y2, 2 =2yy, 2" =2yy’ + 2y12 _ 2y/2 _ 2]/2, 2" = 4y'y" — dyy' = —8yy'
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=]10 2 0 -8
0o 0 2 0

@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
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Applic

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1

(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= y2, 2 =2yy, 2" =2yy’ + 2y12 _ 2y/2 _ 2]/2, 2" = 4y'y" — dyy' = —8yy'
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=]10 2 0 -8
0o 0 2 0

@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;
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Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
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@ matrix
1 0 -2 0
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@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T

® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;
(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;



Applicatio

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl 2 =2y, 2 =2y + zyIZ _ 2y/2 _ 2y2’ 2" = d4y'y" — dyy’ = —8yy
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=]0 2 0 -8
0 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;

(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;
° U= Z+C ul :Z/_,’_Cl — ZI ul/ — Z// ull/ — Z//I — _4ZI ulNl — _4ZII



Application:

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl P Zyy’, - Zyy” + zyIZ — 2y/2 _ 2’_‘/2, - 4y/y// _ 4yy/ — —Syy/
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=]0 2 0 -8
0 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;

(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;
° U=z +C, ul — Zl +Cl — Z’, ul/ — Z”, ull/ — Z//I — _4ZI’ ulNl — _4ZII
@ systems of generators: {z,z/,z",c}




Application:

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl P Zyy’, - Zyy” + zyIZ — 2y/2 _ 2’_‘/2, - 4y/y// _ 4yy/ — —Syy/
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=|0 2 0 -8
0o 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;
(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;

° U=z + C, ul — Z/ + C/ — Z,, ul/ — Z”, u/l/ — Z//I — _421’ ulNl — _42/1
@ systems of generators: {z,z/,z",c}
@ matrix

1 0 0 O 0

o1 0 -4 0

0 0 1 0 —4

1 0 0 0 0



Application: P

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1

(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl P Zyy’, - Zyy” + zyIZ — 2y/2 _ 2’_‘/2, - 4y/y// _ 4yy/ — —Syy/
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=|0 2 0 -8
0o 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢/ = 0;
(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;

° U=z + C, ul — Z/ + C/ — Z,, ul/ — Z,/, u/l/ — Z//I — _421’ ul/// — _42/1
@ systems of generators: {z,z/,z",c}
@ matrix

1 0 0 O 0

o1 0 -4 0

0 0 1 0 —4

1 0 0 0 0

@ kernel generated by [04010]7



Application: Proof

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl P Zyy’, - Zyy” + zyIZ — zyxz _ 2y2’ - 4y/y// _ 4yy/ — —Syy/
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=|0 2 0 -8
0o 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢’ = 0;
(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;

° U=z + C, ul — Z/ + Cl — Z,, u// — Z//’ u/// — Z//I — _421’ ul/// — _42/1
@ systems of generators: {z,z/,z",c}
@ matrix

1 0 0 O 0

o1 0 -4 0

0 0 1 0 —4

1 0 0 0 0

@ kernel generated by [04010]7
® output equation satisfied by u = sin(x)? + cos(x)? — 1is v +4u’' =0



Application: Proof of I

Let’s compute an explicit differential equation satisfied by sin? 4 cos? —1
(1) sin and cos satisfy a 2nd order LDE: i/ + vy = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE:
@ z= yzl P Zyy’, - Zyy” + zy/z — zyxz _ 2y2’ - 4y/y// _ 4yy/ — —Syy/
@ systems of generators: {12, vy, i}

@ matrix
1 0 -2 0
M=|0 2 0 -8
0o 0 2 0
@ kernel ker(M) = {v| Mv = 0} generated by v = [04 0 1]T
® output equation satisfied by z = sin(x)? + cos(x)? is 2/ + 42’ =0
(3) the constant ¢ = —1 satisfies a 1st order LDE: ¢’ = 0;
(4) = sin® + cos? —1 = z + ¢ satisfies a LDE of order at most 4;

° U=z + C, ul — Z/ + c/ — Z,, u// — Z//’ u/// — Z//I — _421’ ul/// — _4Z”
@ systems of generators: {z,z/,z",c}
@ matrix

1 0 0 0 0

o1 0 -4 0

0 0 1 0 —4

1 0 0 0 0

@ kernel generated by [04010]7
® output equation satisfied by u = sin(x)? + cos(x)? — 1is v +4u’' =0
(5) Since u(0) = u’(0) = u”(0) = 0, Cauchy’s theorem concludes u(x) =0. . ..

P-recursive sequences and D-finite series



Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite,
i.e., they satisfy linear differential equations with polynomial coefficients.
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Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite,
thus, their coefficients satisfy linear recurrences with polynomial coefficients.
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Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let f(t) € Q[[t]] such that P(¢t, f(t)) = 0, with P € Q[t,y] irreducible.
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Differentiate w.r.t. t:

Pt f(0) + F(OR (1 F(H) =0 —> f’=—£—;(t,f(t))-
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Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
Proof: Let f(t) € Q[[t]] such that P(¢, f(t)) = 0, with P € Q[t,y] irreducible.

Differentiate w.r.t. t:

Pt f(0) + F(OR (1 F(H) =0 —> f’=—£—;(t,f(t))-

Extended ged: ged(P,Py) =1 = UP+VP, =1, for U,V cQ(t)[y]

= fl=- (PtV mod P) (t,f) € Vectgy (1,f,f2,...,fdegy(P)_1) .
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Alg

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
Proof: Let f(t) € Q[[t]] such that P(¢, f(t)) = 0, with P € Q[t,y] irreducible.

Differentiate w.r.t. t:
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By induction, f(*) € Vectqy) (1,f,f2, .. ,fdegy(P)_l), for all 4. O



Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite
Proof: Let f(t) € Q[[t]] such that P(¢, f(t)) = 0, with P € Q[t,y] irreducible.

Differentiate w.r.t. t:

Pt f(0) + F(OR (1 F(H) =0 —> f'=—§—;<t,f<t>>.

Extended ged: ged(P,Py) =1 = UP+VP, =1, for U,V cQ(t)[y]

= fl=- (PtV mod P) (t,f) € Vectgy (1,f,f2,...,fdegy(P)_1) .

By induction, f(*) € Vectqy) (1,f,f2, .. ,fdegy(P)_l), for all 4. O

> Implemented, e.g., in maple’s package gfun algeqtodiffeq, diffeqtorec



Algebraic ser

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite

Proof: Let f(t) € Q[[t]] such that P(¢, f(t)) = 0, with P € Q[t,y] irreducible.

Differentiate w.r.t. t:

Pt f(0) + F(OR (1 F(H) =0 —> f'=—§—;<t,f<t>>.

Extended ged: ged(P,Py) =1 = UP+VP, =1, for U,V cQ(t)[y]

= fl=- (PtV mod P) (t,f) € Vectgy (1,f,f2,...,fdegy(P)_1) .

By induction, f(*) € Vectqy) (1,f,f2, .. ,fdegy(P)_l), for all 4. O

> Implemented, e.g., in maple’s package gfun algeqtodiffeq, diffeqtorec
> Generalization: ¢ D-finite, f algebraic — g o f D-finite algebraicsubs



Theorem 12 in [Le Gall & Riera, 2018] amounts to showing the following:
Let F(z) = % + 449@2 — %zz + - - - be the unique solution in C|[[z]] of

(2F(z) —1)4/F(z) + 14 2F(2)*? = V6.

Then, for n > 1, the nth coefficient u(n) of F = }_,,5 u(n)z" is equal to:

( 1) nn2n 1 F(Bn_l)
(3f) 22 +1n+21_7(—%).

23 /28


https://arxiv.org/abs/1812.09097

Theorem 12 in [Le Gall & Riera, 2018] amounts to showing the following:
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> Original proof is tricky and uses several non-trivial mathematical facts.
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Theorem 12 in [Le Gall & Riera, 2018] amounts to showing the following:
Let F(z) = % + 449@2 — %zz + - - - be the unique solution in C|[[z]] of

(2F(z) — 1)y/F(z) + 1 +2F(2)*? = V6 2.

Then, for n > 1, the nth coefficient u(n) of F = }_,,5 u(n)z" is equal to:

( 1) nn2n 1 1—-(3n_1)
(3f) 22 +1n+2—1"() .

> Original proof is tricky and uses several non-trivial mathematical facts.

> Here is a short proof based on D-finiteness.


https://arxiv.org/abs/1812.09097

Applic

Let F(z) = 1 + 44752 — 222+ -+ be the unique solution in R{[z]] of

(2F(z) — 1)y/F(z) + 1+ 2F(2)*? = V6 2.

Then, for n > 1, the nth coefficient u(n) of F = },> u(n)z" is equal to:

(_1)n+1

n!

-

(3\/5)—n22n+1 i r(g)

Step 0. Find a polynomial equation for F:

> P:= resultant(F-G~2, resultant((F+1)-H"2,
(2%F-1) ¥*H+2*G~3-sqrt (6) *z,H) ,G) ;

—96 322 +36z* +36 Fz2 4+ 9F2 — 1222 —6F +1



Let F(z) = % + 449@2 - %22 + - -+ be the unique solution in R[[z]] of
(2F(z) — 1)y/F(z) +1+2F(2)*? = V6 2.
Then, for n > 1, the nth coefficient u(n) of F = }_,,5 u(n)z" is equal to:

ry -1

(G Dl 1) 2
(3\/_) 22+1n+2 %)

Step 1. Find a linear differential equation for F:

> deqF:=algeqtodiffeq(P,F(z));

(182" —322) ;—;F(z) +(182° - 62) %F(z) +(6-82%) F(z) =2
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Appl

Let F(z) = % + 4‘Tﬁz — 3224 - - be the unique solution in R[[z]] of
(2F(z) — 1)y/F(z) +1+2F(2)*? = V62,
Then, for n > 1, the nth coefficient u(n) of F =} ,;5 u(n)z" is equal to:

réy -1

(G i ) no2n
v +2 (%)

Step 2. Find a linear recurrence for (the coefficients of) F:

> recF:=diffeqtorec(deqF, F(z), u(n))[1];

20Bn=2)Bn+2)u(n)=3 n+4) (n+1)u(n+2)

B RENNEN ... soquences and Dfinie seris



Application

Let F(z) = § + %z — 3224 - - be the unique solution in R[[z]] of

(2F(z) — 1)y/F(z) + 1+ 2F(2)*? = V6 2.

Then, for n > 1, the nth coefficient u(n) of F = },5 u(n)z" is equal to:

( )n+1 nn2n 1 1"(2’1 _1)
(3[) 22 +1n7+213(7%)

Step 3. Check that the result satisfies the same recurrence, and the same
initial conditions:

> res := n-> (-1)"(n+1)/n! * (3*sqrt(2))"(-n) * 27 (2*n+1)/(n+2) *

GAMMA (3*n/2-1) /GAMMA (n/2) :
> simplify(coeff (recF, u(n))*res(n) + coeff(recF, u(n+2))*res(n+2));
> res(1), res(2);

2
2, -%
9
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Anewrcsefornextwesk

Prove the identity

) ( )2 E k! x2k+2
arcsin(x)” = ,
) (k1) &2
by performing the following steps:
@ Show that y = arcsin(x) can be represented by the differential equation
(1 —x2)y"” — xy’ = 0 and the initial conditions y(0) = 0, y'(0) = 1.
@ Compute a linear differential equation satisfied by z(x) = y(x)2.
@ Deduce a linear recurrence relation satisfied by the coefficients of z(x).
@ Conclude.



