CR06: Modern Algorithms for Symbolic Summation and Integration

Alin Bostan, Bruno Salvy, Gilles Villard

Lecture 0: Introduction
Summation and Integration from Books

https://dlmf.nist.gov

Aim: automate this. As much as possible. Efficiently.

5 volumes
> 3500 pages
I. Context
Thm. (Richardson-Matiyasevich) In the class of expressions built from one variable x and the constant 1 with the operations $+,-,\times$ and composition with the functions $\sin(\cdot)$ and absolute value $|\cdot|$, recognizing 0 is undecidable.

What can we do against that?

Use algebra!
Computer Algebra

Effective mathematics: what can we compute exactly? And complexity: how fast? (also, how big is the result?)

Systems with several million users

50+ years of algorithmic progress
Equations as a Data-Structure

Example 1: \[
\frac{\sin \frac{2\pi}{7}}{\sin^2 \frac{3\pi}{7}} - \frac{\sin \frac{\pi}{7}}{\sin^2 \frac{2\pi}{7}} + \frac{\sin \frac{3\pi}{7}}{\sin^2 \frac{\pi}{7}} = 2\sqrt{7}
\]

has a simple proof using \(e^{i\pi/7} \) root of \(x^7 + 1 \) and resultants.

Example 2: \[\sin^2 + \cos^2 = 1\]

has a simple proof using \(y''' + y = 0 \).

Example 3: Mehler’s identity

\[
\sum_{n=0}^{\infty} \frac{H_n(x)H_n(y)u^n}{n!} = \exp \left(\frac{4u(xy - u(x^2 + y^2))}{1 - 4u^2} \right) \frac{1}{\sqrt{1 - 4u^2}}
\]
II. Efficiency (basic results)
One Second of Computation

With a good polynomial or integer library, 1 sec. is sufficient to

multiply two integers with 30,000,000 digits;
multiply two polynomials of degree 650,000;
multiply two matrices of size 850x850;
(but factor an integer with 42 digits only).

1 sec. is in the asymptotic regime of the algorithms
Multiplication Algorithms (1/2)

Let $M(n)$ be a bound on the number of coefficient operations needed to multiply two polynomials of degree at most n. Then,

$$M(n) = \begin{cases}
O(n^2) & \text{by the naive algorithm;} \\
O(n^{\log_2 3}) & \text{by Karatsuba's algorithm;} \\
O(n^{\log_k (2^k-1)}) & \text{by Toom-Cook's algorithm;} \\
O(n \log n) & \text{by FFT (with primitive roots of 1).}
\end{cases}$$

They all satisfy $M(n_1) + M(n_2) \leq M(n_1 + n_2)$, $M(mn) \leq m^2M(n)$.

Multiplication is almost as cheap as addition
Multiplication Algorithms (2/2)

Let $M_Z(n)$ be a bound on the number of bit operations needed to multiply two integers of at most n bits. Then,

$$M_Z(n) = \begin{cases}
O(n^2) & \text{by the naive algorithm;} \\
O(n^{\log_2 3}) & \text{by Karatsuba's algorithm;} \\
O(n^\log_k(2k-1)) & \text{by Toom-Cook's algorithm;} \\
O(n \log n) & \text{by FFT.}
\end{cases}$$

They all satisfy $M_Z(n_1) + M_Z(n_2) \leq M_Z(n_1 + n_2)$, $M_Z(mn) \leq m^2 M_Z(n)$.

Multiplication is almost as cheap as addition
Reciprocal of Power Series by Newton’s Iteration

\[\phi(y) = 1/y - a \]

\[y_{n+1} = N(y_n) := y_n + y_n(1 - ay_n) \]

No division needed!

For any \(y \),

\[y = a^{-1} + O(x^k) \implies N(y) = a^{-1} + O(x^{2k}). \]

Complexity:

\[C(N) \leq C(\lceil N/2 \rceil) + 2M(N) = O(M(N)). \]

Division is not harder than multiplication!
Euclidean Division of Polynomials

\[(A(X), B(X)) \mapsto (Q(X), R(X)) \text{ s.t. } \begin{cases} A(X) = B(X)Q(X) + R(X), \\ \deg R(X) < \deg B(X). \end{cases} \]

\[\frac{A(X)}{B(X)} = Q(X) + \frac{R(X)}{B(X)} \]

1. Compute \(\tilde{A} = T^{\deg A}A(1/T), \tilde{B} = T^{\deg B}B(1/T) \)
2. Compute \(\tilde{Q} = \tilde{A} \times \text{Inverse}(\tilde{B} + O(T^{\deg A-\deg B+1})) \)
3. Recover \(Q = T^{\deg A-\deg B} \tilde{Q}(1/T) \) (for free)
4. Deduce \(R = A - BQ \).

\text{Complexity: If } \deg A = cn \text{ & } \deg B = n, \text{ division in } O(M(n)). \]

\(T^{\deg A}A(1/T) \) and \(T^{\deg B}B(1/T) \)
Multipoint Evaluation

Input: \(P \in \mathbb{K}[X]_n, (a_1, \ldots, a_n) \in \mathbb{K}^n \)

Output: \((P(a_1), \ldots, P(a_n))\)

Step 1: construct a product-tree \(\mathcal{T}_A \)

\[
A := \prod_{i=1}^n (X - a_i)
\]

\[
A_{\ell} := \prod_{i=1}^{\lfloor n/2 \rfloor} (X - a_i)
\]

\[
A_r := \prod_{i=\lfloor n/2 \rfloor + 1}^n (X - a_i)
\]

\[
X - a_1 \quad X - a_2 \quad \ldots \quad X - a_n
\]

Step 2: use it

input: \((P, \mathcal{T}_A)\)

If \(\deg A = 1 \) return \(P \)

Else return

\[
\text{Eval}(P \pmod {A_{\ell}}, \mathcal{T}_{A_{\ell}}),
\]

\[
\text{Eval}(P \pmod {A_r}, \mathcal{T}_{A_r}).
\]

Complexity:

\[
C(n) \leq 2C(n/2) + O(M(n)) = O(M(n) \log n).
\]
Interpolation

Input: \((a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{K}^{2n}, a_i \text{ distinct.}\)

Output: \(P \in \mathbb{K}[X]_{<n}\) s.t. \(P(a_i) = b_i, i = 1, \ldots, n.\)

Principle: partial fraction decomposition gives

\[
\frac{P(X)}{A(X)} = \sum_{i=1}^{n} \frac{b_i}{A'(a_i)} \frac{1}{X - a_i}, \text{ with } A(X) = \prod_{i=1}^{n} (X - a_i).
\]

1. Compute \(A, A';\) \(\mathcal{O}(M(n)\log n)\)
2. Multipoint-evaluation \(\rightarrow (A'(a_1), \ldots, A'(a_n));\) \(\mathcal{O}(M(n)\log n)\)
3. \(c_i := b_i/A'(a_i), i = 1, \ldots, n;\) \(\mathcal{O}(n)\)
4. \(\sum c_i/(X - a_i)\) by divide-and-conquer; \(\mathcal{O}(M(n)\log n)\)
5. Return its numerator. \(\text{Total complexity: } \mathcal{O}(M(n)\log n).\)
Need for efficiency: the example of Gessel’s walks

\[G(x, y, t) := \sum_{n \geq 0} \sum_{i, j} f_{i, j; n} x^i y^j t^n \]

- 79 inequivalent step sets;
- long history of special cases;
- Gessel’s was left;
- conjectured not soln LDE.

Thm. [Bostan-Kauers 2010]

G is algebraic! (and thus soln LDE)

Computer-driven discovery and proof
Gessel’s walks

\[G(x, y, t) := \sum_{n \geq 0} \sum_{i,j} f_{i,j;n} x^i y^j t^n \]

- compute \(G \) up to \(t^{1000} \);
- conjecture LDE (with 1.5 billion coeffs!);
- check for sanity (bit size, more coeffs, Fuchsian, p-curvature);
- Oho!
- Conjecture polynomials (\(\deg \leq (45,45,25) \), 25 digit coeffs);
- \textbf{Proof} by (big) resultants.

\[\text{G is algebraic!} \]

Computer-driven discovery and proof
III. Examples of Symbolic Summation & Integration
Perimeter of an ellipse

\[p(e) = 2 \int_{-1}^{1} \sqrt{\frac{1 - e^2x^2}{1 - x^2}} \, dx = ? \]

\[e(1 - e^2)p'' + (1 - e^2)p' + ep = 0 \quad \text{(Euler 1733)} \]

\[\rightarrow p = 2\pi - \frac{\pi}{2}e^2 - \frac{3\pi}{32}e^4 + \cdots. \]
Irrationality of $\zeta(3)$

Thm. (Apéry 1978) \[\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} \notin \mathbb{Q}. \]

Ingredient in the proof:

\[a_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2 \]

satisfies

\[(n + 1)^3 a_{n+1} = (2n + 1)(17n^2 + 17n + 5)a_n - n^3 a_{n-1}. \]

Neither Cohen nor I had been able to prove (*) in the intervening two months.
A. van der Poorten
A numerical problem

Problem 6. A flea starts at \((0, 0)\) on the infinite two-dimensional integer lattice and executes a biased random walk: At each step it hops north or south with probability \(1/4\), east with probability \(1/4 + c\), and west with probability \(1/4 - c\). The probability that the flea returns to \((0, 0)\) sometime during its wanderings is 1/2. What is \(c\)?

Two quantities of interest: \[
\begin{align*}
p(c) &:= \text{Prob(\text{return to } 0)}, \\
q_n(c) &:= \text{Prob(\text{at } 0 \text{ at step } 2n)}.
\end{align*}
\]

\[\mathbb{E}(\# \text{ returns}) = \sum_{k=1}^{\infty} kp(c)^k(1 - p(c)) = \frac{p(c)}{1 - p(c)} = \sum_{n=1}^{\infty} q_n(c)\]

Key: a binomial sum

\[q_n(c) := \sum_{k=0}^{2n} \binom{2n}{2k} \binom{2k}{k} \binom{2n - 2k}{n - k} \left(\frac{1}{4} + c\right)^k \left(\frac{1}{4} - c\right)^k \left(\frac{1}{4}\right)^{2n-2k}\]

Ready for computer algebra
Conclusion: Overview of the Course

0- Introduction

1- Algorithms for polynomial matrices

2- Algorithms for recurrence and differential equations

3- Algorithms for symbolic summation and integration

Every week, at least one research result of the past 10 years.
References for this lecture

The slides are designed to be self-contained.

Here are books that I recommend if you want to learn more:

Modern Computer Algebra

Algorithmes Efficaces en Calcul Formel

Alin Bostan
Frédéric Chyzak
Marc Giusti
Romain Lebreton
Grégoire Lecerf
Bruno Salvy
Éric Schost
Feedback

Web site for the slides and references.

Questions or comments:

Alin.Bostan@inria.fr
Bruno.Salvy@inria.fr
Gilles.Villard@ens-lyon.fr