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~ 55 years

Standard bases

ANNALS OF MATHEMATICS
Vol. 79, No. 2, March, 1964
Printed in Japan

RESOLUTION OF SINGULARITIES OF AN ALGEBRAIC
VARIETY OVER A FIELD OF CHARACTERISTIC ZERO: II

BY HEISUKE HIRONAKA
(Part 1 appeared in the preceding issue of this Journal)

CHAPTER III. EFFECTS OF PERMISSIBLE MONOIDAL TRANSFORMATIONS
ON SINGULARITIES.
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Grobner bases

Bruno Buchberger’s PhD thesis 1965: “An algorithm for finding the basis elements of the
residue class ring of a zero dimensional polynomial ideal”
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= 50 years

Numer. Math. 13, 354—356 (1969)

Gaussian Elimination is not Optimal
VOLKER STRASSEN*

Received December 12, 1968

1. Below we will give an algorithm which computes the coefficients of the
product of two square matrices A and B of order # from the coefficients of A4
and B with less than 4.7 - n°¢7 arithmetical operations (all logarithms in this
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~ 50 years

Actes, Congrés intern. Math., 1970. Tome 3, p. 269 & 274.

THE ANALYSIS OF ALGORITHMS

by Donald E. KNUTH

Some general aspects of algorithmic analysis are illustrated by discussing Euclid’s algo-
rithm. Euclid’s method is extended in such a way that the ged of two n digit numbers
can be found in 0 (n(log n)° (log log n)) steps as n = <.
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Math. Ann. 261, 515-534 (1982)

Mathematische
Annalen

© Springer-Verlag 1982

Factoring Polynomials with Rational Coefficients

A. K. Lenstra!, H. W. Lenstra, Jr.?, and L. Lovasz®
1 Mathematisch Centrum, Krulslaan 413, NL-1098 SJ Amsterdam, The Netherlands '
isch Instituut, Uni van A Roetersstraat 15, NL-1018 WB Amsterdam,

The Netherlands
3 Bolyai Institute, A. Jozsef University, Aradi vértanik tere 1, H-6720 Szeged, Hungary

In this paper we present a polynomial-time algorithm to solve the following
problem: given a non-zero polynomial fe Q[X] in one variable with rational
coefficients, find the decomposition of f into irreducible factors in Q[X7]. It is well
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Acta Informatica vol. 28, nr. 7, pp. 693-701 (1991)

ON FAST MULTIPLICATION OF
POLYNOMIALS OVER ARBITRARY ALGEBRAS

DAvID G. CANTOR AND ERICH KALTOFEN*

1. Introduction. In this paper we generalize the well-known Schénhage-Strassen
algorithm for multiplying large integers to an algorithm for multiplying polynomi-
als with coefficients from an arbitrary, not necessarily commutative, not necessarily
associative, algebra A. Our main result is an algorithm to multiply polynomials
of degree < n in O(nlogn) algebra multiplications and O(nlogn loglog n) algebra
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MATHEMATICS OF COMPUTATION
VOLUME 62, NUMBER 205
JANUARY 1994, PAGES 333-350

SOLVING HOMOGENEOUS LINEAR EQUATIONS OVER GF(2)
VIA BLOCK WIEDEMANN ALGORITHM

DON COPPERSMITH

ABSTRACT. We propose a method of solving large sparse systems of homoge-
neous linear equations over GF(2), the field with two elements. We modify
an algorithm due to Wiedemann. A block version of the algorithm allows us
to perform 32 matrix-vector operations for the cost of one. The resulting algo-
rithm is competitive with structured Gaussian elimination in terms of time and
has much lower space requirements. It may be useful in the last stage of integer
factorization.
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SIAM J. MATRIX ANAL. AP © 1994 Society for Industrial and Applied Mathematics
Vol. 15, No. 3, pp. 804-823, July 1994 007

A UNIFORM APPROACH FOR THE FAST COMPUTATION OF
MATRIX-TYPE PADE APPROXIMANTS *

BERNHARD BECKERMANN! AND GEORGE LABAHN*

Abstract. Recently, a uniform approach was given by B. Beckermann and G. Labahn [Numer.
Algorithms, 3 (1992), pp. 45-54] for different concepts of matnx-type Pade approxlmants, such as
descriptions of vector and matrix Padé ap along with of si and
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A new efficient algorithm for computing Grébner bases
without reduction to zero (F5)
Jean-Charles Faugere
Ver 1.2
SPACES/LIP6/CNRS/Université Paris VI/INRIA
case 168, 4 pl. Jussieu, F-75252 Paris Cedex 05
E-mail: jcf@calfor.lip6.fr
ABSTRACT dependence is 3 Atf =0 or by grouping terms: YL, g;f; = 0. In
This paper introduces a new efficient algorithm for computing Grobner ~ other words, (g, ---,&n) is a syzygy.
bases. We replace the Buchberger criteria by an optimal criteria.
We give a proof that the resulting algorithm (called Fy) generates Several papers investigate those issues: Buchberger [4] proposes



Before

O00@000

~ 20 years
High-order lifting and integrality certification

Arne Storjohann

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
N2L 3G1

Abstract

Reductions to polynomial matrix multiplication are given for some classical prob-
lems involving a nonsingular input matrix over the ring of univariate polynomials
with coefficients from a field. High-order lifting is used to compute the determinant,
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~ 10 years

SIAM J. COMPUT. @© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1767-1802

FAST POLYNOMIAL FACTORIZATION AND MODULAR
COMPOSITION*

KIRAN S. KEDLAYAT AND CHRISTOPHER UMANS!

Abstract. We obtain randomized algorithms for factoring degree n univariate polynomials over
Fy requiring O(n!-5+0() Jogte(lg 4 plto(1) 1og2+o(1)g) bit operations. When logg < n, this is
asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput.
Complexity, 2 (1992), pp. 187-224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179
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Powers of Tensors and Fast Matrix Multiplication

Frangois Le Gall
Department of Computer Science
Graduate School of Information Science and Technology
The University of Tokyo
legall@is.s.u-tokyo.ac. jp

Abstract

This paper presents a method to analyze the powers of a given trilinear form (a special kind of
algebraic constructions also called a tensor) and obtain upper bounds on the asymptotic complexity
of matrix multiplication. Compared with existing approaches, this method is based on convex opti-
mization, and thus has polynomial-time complexity. As an application, we use this method to study
powers of the construction given by Coppersmith and Winograd [Journal of Symbolic Computation,
1990] and obtain the upper bound w < 2.3728639 on the exponent of square matrix multiplication,
which slightly improves the best known upper bound.

30 Jan 2014
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Integer multiplication in time O(n logn)

Davip HARVEY AND JORIS VAN DER HOEVEN

ABSTRACT. We present an algorithm that computes the product of two n-bit
integers in O(nlogn) bit operations.

1. INTRODUCTION

Let M(n) denote the time required to multiply two n-bit integers. We work in
the multitape Turing model, in which the time complexity of an algorithm refers
to the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [34]. The main results of this paper also hold in
the Boolean circuit model [40, Sec. 9.3], with essentially the same proofs. We write
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0@00000
A c Kn><n

rl 0 3 3 5 6 8 8 1 rt o 3 3 5 6 8 81
3 4 4 9 9 2 5 2 0 4 6 0 5 6 3 0
8 0 9 3 6 5 6 5 0o 0 3 1 3 8 6 7
7 4 9 3 0 1 3 7 0O 0 0 10 0 1 2 4

—

2 9 7 5 3 6 8 2 0o 0 O 0 8§ 6 1 4
3 5 8§ 6 2 5 4 4 0o 0 0 0 0o 8 4 5
5 2 1 17 0 6 5 0o 0 0 0 o o0 1 4

L 0 0 0 4 1 7 4 1 1 LO 0 O 0 o o o0 4.

Size O(n?) unchanged after triangularization

Model : algebraic computation, finite field, (floating point)
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A € Z[x,y, 7], example 8 x 8, 2 x 2 submatrix:
502y —22y3 — 73z + 67yz — 53 —x? — 43xyz — 392 4 34yz + 5622 — 68

752y 4 97 xyz — T8xy + 533z — 50yz — 83y —2x%z — 263> — 720 4+ 672 — 6927 + 51

Some coefficient after triangularization:

9483760 x'*y + 33303556 113y — 13474656 x'3yz — 52220480 1377 — 514110020 %% + . ..

Increased bit size and polynomial degrees: ex from 5 ko to 360 ko




Starting point
000@000

Models

Algorithms: Algebraic Random Access Machine (RAM)

> CPU, I/O medium, address and data memory, test and branching, etc.
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Models

Algorithms: Algebraic Random Access Machine (RAM)

> CPU, I/O medium, address and data memory, test and branching, etc.

Arithmetic circuits

Straight-Line Program (SLP)

P=(I,0,8,C)
> Input and Output variables
> A set of Scalars
» Computation sequence of length I: v; < vjo v foro € {+,—, x, /}
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Complexity bounds

Algebraic model over an abstract field (or ring)

> Algebraic operations cost 1
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Complexity bounds

Algebraic model over an abstract field (or ring)

> Algebraic operations cost 1

Bit complexity

Integers a, b with at most n bits (lengths, say = log |a| and log |b|)
> Product in O(n?) bit operations
> O(nlogn) bit operations [Harvey & van der Hoeven 2019

Polynomial multiplication

Univariate polynomial p, g € K|x] with degree at most n
> Product in O(n?) arithmetic operations
> Over arbitrary algebras : O(nlognloglogn) [Cantor & Kaltofen 1991]
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Soft 0 notation for hidding polylogarithmic factors

Ex: O(n(logn)(loglogn)) = O(n)
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NC: decision problems decidable in polylogarithmic time on a parallel computer

The polynomial gcd problem in Klx] is in NC

Hint: via structured linear algebra (see later in the course)

Open problem

Is the integer problem in NC or P-complete?

Hint(?): The iterated mod problem [Karloff & Ruzzo 1989]
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Algebraic complexity model

A,B € K™, compute A X B?

Feasible exponent: there exists an algorithm using 0(n?) arithmetic operations

Exponent of matrix multiplication: w =inf{ 6 | 0 feasible }

By abuse we will use the notation w for feasible exponents




Matrices
0O0@0000

[Vassilevska Williams 2019] Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication
[Le Gall & Urrutia 2018] Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd tensor
[Le Gall 2014]

A,B € K" compute A x B?

Table 1: History of the main improvements on the exponent of square matrix multiplication

Upper bound Year | Reference

w<3

w <281 1969 | Strassen [11]

w < 2.79 1979 | Pan [6]

w < 2.78 1979 | Binietal. [1]

w < 2.55 1981 | Schonhage [9]

w < 2.53 1981 | Pan [7]

w < 2.52 1982 | Romani [8]

w < 2.50 1982 | Coppersmith and Winograd [2]
w < 248 1986 | Strassen [12]

w < 2.376 1987 | Coppersmith and Winograd [3]
w < 2.373 2010 | Stothers [10] (see also [4])

w < 2.3729 2012 | Vassilevska Williams [13]

w < 2.3728639 | 2014 | Le Gall [5]
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Dense linear algebra
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Triangularization
[42 10 24 12 18 10 2 15 19 15
0 29 40 7 28 19 30 4 26 17
0 0 11 9 43 42 17 51 24 33
0 0 0 9 23 8 7 1 35 46
0 0 0 0 47 30 1 31 41 46
0o 0 0 0 0 15 27 12 24 37
o 0 0 0 0 0 7 49 71 37
0 0 0 0 0 0 0 45 40 4l
o 0 0 0 0 0 0 0 17 29
Lo o o 0 0 0 0 0 0 44
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Determinant

0 0 0 0 47 30 1 31 41 46

0 0 0 0 0 0 0 45 40 41

det A = [T, ay if e.g row transformations of determinant 1 have been used
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Row echelon form and rank

r[42] 10 24 12 18 10 26 15 19 15 q
0 0 7 28 19 30 44 26 17
0 0 0 0 0 17 51 24 33
00 0 0 0 0 735 46
0 0 0 0 0 0 O 41 46
0 0 0 0 O 0 O 0 O
0 0 0 0 0 0O 0 0 0 0
0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0O 0 0 0 0

Lo o o o o o o o0 o0 o ]

Pivot index: index of first non zero entry in the row

Echelon: pivot indices are strictly increasing
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Theorem of linear algebra
A c Kn><n

In O(n*) arithmetic operations one can compute:

the determinant det A

the inverse A~ is A is invertible (A71A = AA~! =1)

the characteristic polynomial of A

the rank of A and an echelon form of A

for any b € K", a solution to Ax = b or detect that no solution exist
a kernel basis (Ax = 0)

vVvyVvyVvVvyyvyy
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[ a * * * * *
* * % ok k%
* * % ok k%
* I
* * * * * *

L * * * * * *

> Possibly, pivoting for having a; 1 # 0

> row; < row; — (a;,1/ai,1) row;
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(=] (=} [=1 f=1 (=]
*
*
*
*
*

> Possibly, next entries zero in second column
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(=} [=} f=1 (=] [=)
f=} f=} < (=] (=)
*

*

*

*

> Possibly, next entries zero in second column

> row; <— row; — (a;3/az3) row;
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0 0 * % *x x
0 0 0 % * x
0O 0 0 0 *x =
o 0 0 0 0 O
o 0 0 0 0 O

»> (Row) Echelon form
> rankA =4
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0 0 * % *x %
0 0 0 % * x
0O 0 0 0 *x =
o 0 0 0 0 O
o 0 0 0 0 O

»> (Row) Echelon form
> rankA =4

Matrix factorization:
T=U,X...xUpxA
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Exercise

A € K< splitting with (n/2) x (n/2) invertible blocks

Show that an algorithm in O(n*) for the multiplication gives an algorithm in O(n*) for
the inversion (2 < w < 3)
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Matrix multiplication ~~ Basic linear algebra
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Matrix multiplication ~~ Basic linear algebra

?
Matrix multiplication s Basic linear algebra
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Determinant versus matrix multiplication ?

[Baur & Strassen 1983]

[Chen, Kayal & Wigderson 2010] Partial Derivatives in Arithmetic Complexity and Beyond

SLP or arithmetic circuit model

(1) @%p?)e

With input gates xi, . .., x,, computes a rational function f € K(xy, ..., x,)
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Theorem: Given a circuit of size s for f € K(x, ..., x»), One can compute a circuit of
size O(s) for the n first-order partial derivatives of f

Hint: proceed inductively backwards from the output using Leibniz’s rule

Ex:p(x) = (x —1)(x —2) ... (x — n), evaluate p'(x) = >_I_, [T (x—1)?

p(x) <= q(x) x (x —n) gives p'(x) <= ¢'(x) x (x —n) +q(x)
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Rough sketch

Circuit gates: xi,...,%n, 81,---,8&
Aj(xt, . Xn, 81,5 81)
OJAN}

Og

[u—

g1 = agi + Bg;
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Rough sketch

Circuit gates: xy, ..., X1, 81,---,8
Al(xly"'v-xﬂ7g17"'7gl)

o,
Ogi
g1 =agi+Bg
App = (X1, o5 Xn, 815+ -+ 81 + Bg))
ki 2o 2 94
Ogk Ogx
OBy _ 0B 0N
0gi 0gi Og
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1. DETERMINANT = INVERSION

[Cramer]

1
det A

ATl = CT,  with the comatrix Cj = (—1)"" det A |,

[Laplace]

n
detA = Za,-jCl-j

i=1
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1. DETERMINANT = INVERSION

[Cramer]

1
det A

ATl = CT,  with the comatrix Cj = (—1)"" det A |,

[Laplace]

n
detA = Za,-jCl-j

i=1
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2. In an algorithmic sense, inversion is as hard as multiplication:

[Winograd]

I A O
0 I B =0 I —B
0 0
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[Baur & Strassen 1983]

Open problem

“... shows that the determinant has roughly the same complexity as matrix
multiplication or inversion. It would be interesting to have a similar result
for solving a system of linear equations.”
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Fundamental problems in linear algebra over a field are in some way equivalent.

What about polynomial and integer matrices?
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Formal power series
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Formal power series

Over a commutative* ring R: R{[x]]
a(x) = ap + arx +a +... = s ax

> addition, multiplication

> multiplicative inverse
ifa(x) =1+ xb(x), then a(x) x (1 —xb(x) +x2b*(x) — b (x)) =1

R[[x]] is a commutative ring, an element is invertible iff q, is invertible
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Formal power series

> Truncation
a(x) mod x" = ag + ajx + axx® + ... + ap_1x""!

Costs
Series operations modulo x*: O(M(n)) = O(n) operations in R

Note: the division by 1 + x b(x) requires no division
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Can division help when computing polynomials?

» For matrix multiplication ?

> For computing the determinant ?
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Can division help when computing polynomials?

[Strassen 1973] [Kaltofen 1988]

Theorem: If f € K[xy, ..., xn»] of degree n can be computed by a program of

length L, then f can be computed by a program of length O(LM(n)) = O(nL)
without divisions.

(Here: SLP model, K infinite)
Consequence: divisions do not help for matrix multiplication.

Note: w can depend only (if at all) on the characteristic of the field
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Elimination of divisions




topic  Formal power series  Polyn

ed matrices Random

1+ xa(x) xb(x)

xc(x) 1+ xd(x)
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1+ xa(x) xb(x) ]
—)
xc(x) 1+ xd(x)

1+ xa(x) xb(x) ]
0 1+ xd(x) + 27 e(x)

oW, — row, — ((xc(x)) (1 +xa(x))_]) row

rowy <— rowy — xf(x) row;
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Gaussian elimination without divisions

» Elimination with input 7 + x B(x) modulo x* requires no divisions

Determinant of A?

> Determinant of M(x) = I + x (A — I) modulo x"*! requires no division
> det M(x) has degree at most n:  §(x) = det M(x) = (det M(x) mod x"+1)
> (1) gives det A

Theorem: The determinant can be computed in O(n M(n)) = O(n*+!) ring
operations.
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[e]e] o]

Gaussian elimination without divisions

» Elimination with input 7 + x B(x) modulo x* requires no divisions

Determinant of A?

> Determinant of M(x) = I + x (A — I) modulo x"*! requires no division
> det M(x) has degree at most n:  §(x) = det M(x) = (det M(x) mod x"+1)
> (1) gives det A

Theorem: The determinant can be computed in O(n M(n)) = O(n*+!) ring
operations.
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Open problem

Can the determinant be computed in O(n) without divisions?

Note: best known exponent n(w, ¢) & 2.7 < 3.373  [Kaltofen & Villard 2005]

Rule of thumb:

cost < arithmetic cost x output degree
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