
Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Matrix and polynomial computation

9 septembre 2020

1

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Overview

Before

Starting point

Matrices

Key topic

Formal power series

Polynomials

Structured matrices

Randomization

2

Before

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 55 years

Standard bases

 ANNALS!S OF NIATnEMATICS

 Vol. 79, No. 2, March, 1964
 Printed in Japan

 RESOLUTION OF SINGULARITIES OF AN ALGEBRAIC
 VARIETY OVER A FIELD OF CHARACTERISTIC ZERO: II

 BY HEISUKE HIRONAKA

 (Part I appeared in the preceding issue of this Journal)

 CHAPTER III. EFFECTS OF PERMISSIBLE MONOIDAL TRANSFORMATIONS

 ON SINGULARITIES.

 1. The numerical characters v*(J) and v(J) of a local
 ideal J, and a standard base of J

 Let R be a regular local ring and J an ideal in R. Let M be the maximal

 ideal of R. We have defined the homogeneous ideal grm(J, R) in the
 graded R/M-algebra grm(R).1

 DEFINITION 1. Given R and J as above, we define v(i)(J), (a non-negative

 integer or infinity, co in symbol) for every positive integer i as follows:

 >(i)(J) is the maximal integer v, if it exists, such that there exists a system

 of homogeneous elements (991,92, . .,(pi-,) in grm(J, R) having the property
 that

 ((P, * * *, (i-,) grM(R) n gr (R) = gr14(J, R)

 for all p < v; and, if such v does not exist, we set >(i)(J) - co. (An empty
 system of elements generates the zero ideal.)

 LEMMA 1. Let ('p1, *, cp) be a system of homogeneous elements of

 grm(J, R) such that
 (i) grm(J, R) = (9(l * ,Pm) grm(R),
 (ii) if vi = deg pi(1 _ i < m), then v, < 2 .2< . . . < pu_ and
 (iii) for every i > 1, cpi 0 ((p, * ... *, i) grm(R) (where the empty system

 of elements generates the zero ideal). Then we have >(i)(J) - vi for 1 <
 i < m and >ii)(J) c co for all i > m.

 PROOF. Let pci = ii)(J). In view of (i) and (ii), it is clear from Defi-
 nition 1 that vi < ai for all i (1 < i < m), and also that pei = co for all
 i > m. Suppose we have i (1 ? i < m) such that fi > vi. Let i be the
 smallest integer with this property. By Definition 1, we have homo-

 geneous elements Al, . * *,i- such that

 * ,ji-) grM(R) n gr4(R) = gr4(J, R)
 for all pe < ci. We may assume that deg 1 * *< ? deg Ai-*. Then,
 for every j < i, we have

 ('i, .., ofij-1) grm(R) n gr4(R) = grj(Jy R)
 cf. ?2, Chap. II.

 205

This content downloaded from 140.77.13.151 on Tue, 08 Sep 2020 07:21:58 UTC
All use subject to https://about.jstor.org/terms

4

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 55 years

Gröbner bases

Bruno Buchberger’s PhD thesis 1965: “An algorithm for finding the basis elements of the
residue class ring of a zero dimensional polynomial ideal”

5

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 50 years
|00358||

6

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 50 years

7

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 40 years

MacheMath. Ann. 261, 515—534 (1982) Ariiwen
© Springer-Verlag 1982

Factoring Polynomials with Rational Coefficients
A. K. Lenstra1,H. W. Lenstra, Jr.2, and L. Lovâsz3
1 Mathematiseb Centrum, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands
2 Mathematisch Instituut, Universiteit van Amsterdam, Roetersstraat 15, NL-1018 WB Amsterdam,
The Netherlands
3 Bolyai Institute, A. József University. Aradi vértan6k tere 1, H-6720 Szeged, Hungary

In this paper we present a polynomial-time algorithm to solve the following
problem: given a non-zero polynomial fe Q[X] in one variable with rational
coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well
known that this is equivalent to factoring primitive polynomials fe [X] into
irreducible factors in 7L[X]. Here we call fe7L[X] primitive if the greatest common
divisor of its coefficients (the content of f) is 1.
Our algorithm performs well in practice, cf. [8]. Its running time, measured in

bit operations, is O(n12+n9(logfI)3).Here fE[X] is the polynomial to be
factored, n = deg(f) is the degree of J and

ZaiXi =

for a polynomial Za1X1with real coefficients a1.

An outline of the algorithm is as follows. First we find, for a suitable small
prime number p, a p-adic irreducible factor h of J to a certain precision. This is
done with Berlekamp’s algorithm for factoring polynomials over small finite fields,
combined with Hensel’s lemma. Next we look for the irreducible factor h0 of f in
ZL[X] that is divisible by h. The condition that h0 is divisible by h means that h0
belongs to a certain lattice, and the condition that h0 divides f implies that the
coefficients of h0 are relatively small. It follows that we must look for a “small”
element in that lattice, and this is done by means of a basis reduction algorithm. It
turns out that this enables us to determine h0. The algorithm is repeated until all
irreducible factors of f have been found.

The basis reduction algorithm that we employ is new, and it is described and
analysed in Sect. 1. It improves the algorithm given in a preliminary version of [9,
Sect. 3]. At the end of Sect. 1 we briefly mention two applications of the new
algorithm to diophantine approximation.

The connection between factors off and reduced bases of a lattice is treated in
detail in Sect. 2. The theory presented here extends a result appearing in [8,
Theorem 2]. It should be remarked that the latter result, which is simpler to prove,
would in principle have sufficed for our purpose.

0025-5831/82/0261/051 5/$04.0O

8

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 30 years

Acta Informatica vol. 28, nr. 7, pp. 693–701 (1991)

ON FAST MULTIPLICATION OF

POLYNOMIALS OVER ARBITRARY ALGEBRAS

David G. Cantor and Erich Kaltofen*

1. Introduction. In this paper we generalize the well-known Schönhage-Strassen
algorithm for multiplying large integers to an algorithm for multiplying polynomi-
als with coe�cients from an arbitrary, not necessarily commutative, not necessarily
associative, algebra A. Our main result is an algorithm to multiply polynomials
of degree < n in O(n log n) algebra multiplications and O(n log n loglog n) algebra
additions/subtractions (we count a subtraction as an addition). The constant im-
plied by the “O” does not depend upon the algebra A. The parallel complexity of
our algorithm, i.e., the depth of the corresponding arithmetic circuit, is O(log n).

When division by 2 is possible, then the Schönhage-Strassen [13] integer multipli-
cation algorithm can be easily reformulated as a polynomial multiplication proce-
dure (c.f. [11]). Schönhage [12] investigated the polynomial multiplication problem
for arbitrary fields of characteristic 2, in which the standard 2k-point Discrete Fast
Fourier Transform algorithm (DFT) cannot be used because it requires division
by 2.

The fields over which the DFT is used do not necessarily contain the primitive
roots of unity necessary for the computation of the Discrete Fast Fourier Transform
and, to use it, such roots must be adjoined to the ground field. It is this which
increases the complexity from O(n log n) to O(n log n loglog n). Schönhage’s algo-
rithm for fields of characteristic 2 uses a 3k-point Fourier transform. When division
by 3 is possible, he obtains again an algorithm of complexity O(n log n loglog n).
His approach does not appear to generalize to sk transforms, even when s = 5.

Here, we exhibit an alternate method that works for order sk for any integer
s � 2. By applying this method for two relatively prime values of s, we obtain a
method not requiring division. As a result our method is valid for any algebra A:
Specifically the algebra A must be an Abelian group under “+” and have a binary
operation “·” satisfying the distributive law

(u + v) · (x + y) = u · x + u · y + v · x + v · y

for all u, v, x, y in A. In this generality, multiplication of two polynomials
�m

i=0 aixi

and
�n

j=0 bjxj means the computation of all of the terms of the product, i.e.,
computation of all terms of the form ck =

�
i aibk�i.

Thus our method may be used for multiplying “string polynomials” [8], 4.6.1,
exercises 17 and 18, or for multiplying matrix polynomials.

Key words and phrases. multiplication, fast, polynomials, algorithm.

*The authors would like to acknowledge the partial support of NSA Grant MDA-904-88-H-2031

and NSF Grant Nr. CCR-87-05363.

Typeset by AMS-T

E

X

1

9

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 25 years

PDWKHPDWLFV� RI� FRPSXWDWLRQ
YROXPH� ����QXPEHU� ���
MDQXDU\� ������SDJHV� �������

62/9,1*�+202*(1(286�/,1($5�(48$7,216�29(5�*)���
9,$�%/2&.�:,('(0$11�$/*25,7+0

'21�&233(560,7+

$EVWUDFW�� :H�SURSRVH� D� PHWKRG� RI� VROYLQJ� ODUJH� VSDUVH� V\VWHPV� RI� KRPRJH�
QHRXV� OLQHDU� HTXDWLRQV� RYHU� *)����� WKH� ILHOG�ZLWK� WZR� HOHPHQWV�� :H�PRGLI\
DQ� DOJRULWKP� GXH� WR� :LHGHPDQQ�� $�EORFN� YHUVLRQ� RI� WKH� DOJRULWKP� DOORZV� XV
WR� SHUIRUP� ���PDWUL[�YHFWRU� RSHUDWLRQV� IRU� WKH� FRVW�RI� RQH�� 7KH� UHVXOWLQJ� DOJR�
ULWKP� LV�FRPSHWLWLYH� ZLWK� VWUXFWXUHG� *DXVVLDQ� HOLPLQDWLRQ� LQ� WHUPV� RI� WLPH� DQG
KDV� PXFK� ORZHU� VSDFH� UHTXLUHPHQWV�� ,W�PD\� EH�XVHIXO� LQ� WKH� ODVW� VWDJH� RI� LQWHJHU
IDFWRUL]DWLRQ�

���,QWURGXFWLRQ

:H� DGGUHVV� KHUH� WKH� SUREOHP� RI� VROYLQJ� D� ODUJH� VSDUVH� V\VWHP� RI� KRPRJH�
QHRXV�OLQHDU� HTXDWLRQV� RYHU� *)����� WKH� ILHOG�ZLWK�WZR�HOHPHQWV�� 2QH�LPSRUWDQW
DSSOLFDWLRQ�� ZKLFK� PRWLYDWHV� WKH� SUHVHQW� ZRUN�� DULVHV� LQ� LQWHJHU� IDFWRUL]DWLRQ�
'XULQJ� WKH� ODVW� VWDJH�RI�PRVW� LQWHJHU� IDFWRUL]DWLRQ� DOJRULWKPV�� ZH�DUH�SUHVHQWHG
ZLWK� D� ODUJH� VSDUVH� LQWHJHU� PDWUL[� DQG� DUH� DVNHG� WR� ILQG� OLQHDU� FRPELQDWLRQV
RI� WKH� FROXPQV� RI� WKLV� PDWUL[� ZKLFK� YDQLVK� PRGXOR� ���)RU� H[DPSOH� >�@�� WKH
PDWUL[� PD\� KDYH� �������� FROXPQV�� ZLWK� DQ� DYHUDJH� RI� ���QRQ]HUR� HQWULHV� SHU
FROXPQ��)RU� WKLV� DSSOLFDWLRQ� ZH�ZRXOG� OLNH�WR� REWDLQ� VHYHUDO� VROXWLRQV�� EHFDXVH
D� JLYHQ� VROXWLRQ� ZLOO� OHDG� WR� D� QRQWULYLDO� IDFWRUL]DWLRQ� ZLWK� SUREDELOLW\� ����
ZLWK� Q� LQGHSHQGHQW� VROXWLRQV�� RXU� SUREDELOLW\� RI� ILQGLQJ� D� IDFWRUL]DWLRQ� ULVHV
WR� ���� ����

6WUXFWXUHG� *DXVVLDQ� HOLPLQDWLRQ� FDQ�EH�XVHG� >�@��EXW� DV�SUREOHPV� JHW�ODUJHU�
LW� PD\� EHFRPH� LQIHDVLEOH� WR� VWRUH� WKH� PDWULFHV� REWDLQHG� LQ� WKH� LQWHUPHGLDWH
VWDJHV� RI� *DXVVLDQ� HOLPLQDWLRQ�� 7KH� :LHGHPDQQ� DOJRULWKP� >��� �@� KDV� VPDOOHU
VWRUDJH� UHTXLUHPHQWV� �RQH� QHHG� RQO\� VWRUH� D� IHZ� YHFWRUV� DQG� DQ� HQFRGLQJ� RI� D
VSDUVH� PDWUL[�� QRW� D� GHQVH� PDWUL[� DV� RFFXUV� LQ� *DXVVLDQ� HOLPLQDWLRQ� DIWHU� ILOO�
LQ��� DQG� LW� PD\� KDYH� IHZHU� FRPSXWDWLRQDO� VWHSV� �VLQFH� RQH� WDNHV� DGYDQWDJH� RI
WKH� VSDUVHQHVV� RI� WKH� PDWUL[��� %XW� LWV� HIILFLHQF\� LV� KDPSHUHG� E\� WKH� IDFW� WKDW
WKH� DOJRULWKP� DFWV� RQ� RQO\� RQH� ELW� DW� D� WLPH�� ,Q� WKH� SUHVHQW� SDSHU� ZH� ZRUN
ZLWK� EORFNV� RI� YHFWRUV� DW� D� VLQJOH� WLPH�� %\� WUHDWLQJ� ��� YHFWRUV� DW� D� WLPH� �RQ� D
PDFKLQH� ZLWK� ���ELW� ZRUGV��� ZH�FDQ� SHUIRUP� ���PDWUL[�YHFWRU� SURGXFWV� DW� RQFH�
WKXV� FRQVLGHUDEO\� GHFUHDVLQJ� WKH�FRVW�RI�LQGH[LQJ�� 7KLV�FDQ�EH�YLHZHG�DV�D�EORFN
:LHGHPDQQ� DOJRULWKP�

7KH�PDLQ� WHFKQLFDO� GLIILFXOW\�LV�LQ�REWDLQLQJ� WKH� FRUUHFW� JHQHUDOL]DWLRQ� RI� WKH
%HUOHNDPS�0DVVH\� DOJRULWKP� WR� D� EORFN� YHUVLRQ�� QDPHO\�� D� PXOWLGLPHQVLRQDO
YHUVLRQ� RI� WKH� H[WHQGHG� (XFOLGHDQ� DOJRULWKP�

5HFHLYHG�E\�WKH�HGLWRU� 1RYHPEHU����� �����DQG�� LQ�UHYLVHG�IRUP�� -XO\����� �����
�����0DWKHPDWLFV�6XEMHFW�&ODVVLILFDWLRQ��3ULPDU\���$�����,<�����������������

������ $PHULFDQ� 0DWKHPDWLFDO� 6RFLHW\
������������� ������� ����� SHU�SDJH

���

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

10

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 25 years

SIAM J. MATRIX ANAL. APPL.
Vol. 15, No. 3, pp. 804-823, July 1994

() 1994 Society for Industrial and Applied Mathematics
OO7

A UNIFORM APPROACH FOR THE FAST COMPUTATION OF
MATRIX-TYPE PAD] APPROXIMANTS

BERNHARD BECKERMANNt AND GEORGE LABAHN$

Abstract. Recently, a uniform approach was given by B. Beckermann and G. Labahn [Numer.
Algorithms, 3 (1992), pp. 45-54] for different concepts of matrix-type Pad4 approximants, such as
descriptions of vector and matrix Pad4 approximants along with generalizations of simultaneous and
Hermite Pad approximants. The considerations in this paper are based on this generalized form of
the classical scalar Hermite Pad approximation problem, power Hermite Padd approximation. In
particular, this paper studies the problem of computing these new approximants.

A recurrence relation is presented for the computation of a basis for the corresponding linear
solution space of these approximants. This recurrence also provides bases for particular subprob-
lems. This generalizes previous work by Van Barel and Bultheel and, in a more general form, by
Beckermann. The computation of the bases has complexity O(a2), where a is the order of the de-
sired approximant and requires no conditions on the input data. A second algorithm using the same
recurrence relation along with divide-and-conquer methods is also presented. When the coefficient
field allows for fast polynomial multiplication, this second algorithm computes a basis in the super-
fast complexity O(a log). In both cases the algorithms are reliable in exact arithmetic. That is,
they never break down, and the complexity depends neither on any normality assumptions nor on
the singular structure of the corresponding solution table. As a further application, these methods
result in fast (and superfast) reliable algorithms for the inversion of striped Hankel, layered Hankel,
and (rectangular) block-Hankel matrices.

Key words, vector Pad6 approximant, Hermite Pad6 approximant, simultaneous Pad6 approx-
imant, matrix Pad6 approximant, Hankel matrices

AMS subject classifications. 65D05, 41A21, CR: G.1.2

1. Introduction. Let F (fl,..., fro)T (with m >_ 2) be an m-tuple of formal
power series with coefficients from a field]K (typically a subfield of either the real
or complex numbers) and n (nl,...,nm) an m-tuple of integers, n _> -1. A
Hermite Padd approximant for F of type n is a nontrivial tuple P (P1,..., Pm) of
polynomials P over]K having degrees bounded by the n such that

zN+(1) P(z). F(z) Pi(z)f(z) + + Pm(z)fm(Z) CNZN + CN+ +’’’,

with N n +... T nm T rn 1.
The Hermite Padd approximation problem was introduced in 1873 by Hermite

and has been studied widely by several authors (for a bibliography, see, e.g. [2]-[4] or
[25]). Note that when rn- 2, F (f,-1)T, Eq. (1) is the same as

P(z)f(z) P2(z) O (znl+n2+l)
and hence as a special case we have the classical Pad4 approximation problem for a
power series f. Hermite Pad4 approximation also includes other classical approxima-
tion problems such as algebraic approximants (F (1, f, f2,..., f,-l)T) (e.g. [23]
for the special case rn- 2) and G3j approximants (m- 3, F (f’, f, 1)T). We refer
the reader to [1, pp. 32-40] for additional examples. More generally, there is the

Received by the editors April 16, 1992; accepted for publication (in revised form) February 25,
1993.

Laboratoire d’Analyse Numrique et d’Optimisation, UFR IEEA-M3, Universit des Sciences
et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France.

Department of Computing Science, University of Waterloo, Waterloo, Ontario, Canada
(glabahn@daisy. waterloo, edu).

8O4

11

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 20 years

A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5)

Jean-Charles Faugère
Ver 1.2

SPACES/LIP6/CNRS/Université Paris VI/INRIA
case 168, 4 pl. Jussieu, F-75252 Paris Cedex 05

E-mail: jcf@calfor.lip6.fr

ABSTRACT
This paper introduces a new efficient algorithm for computing Gröbner
bases. We replace the Buchberger criteria by an optimal criteria.
We give a proof that the resulting algorithm (called F5) generates
no useless critical pairs if the input is a regular sequence. This a
new result by itself but a first implementation of the algorithm F5
shows that it is also very efficient in practice: for instance previ-
ously untractable problems can be solved (cyclic 10). In practice
for most examples there is no reduction to zero. We illustrate this
algorithm by one detailed example.

1. INTRODUCTION
Solving polynomial systems is an important part of Computer Al-
gebra since a lot of practical problems (cryptography, robotics, ce-
lestial mechanics, error correcting codes, signal theory, . . .) can
be solved with these algorithms. Among all available methods
for solving polynomial systems, computation of Gröbner bases re-
mains one of the more powerful. Historically, the Buchberger al-
gorithm was the first algorithm for computing such Gröbner bases.

It may eventually be possible to suggest two improvements for the
Buchberger algorithm [3, 4, 5]. The first improvement is concerned
with strategies: during a Gröbner computation, several choices can
be made (select a critical pair, choose a reductor) this aspect of the
problem is not directly studied in this paper, but is implemented in
other algorithms (F4 [6] for instance). The other open issue was
to remove useless computations: since 90% of the time is spent in
computing zero it is a very challenging question to have a more
powerful criterion to remove useless critical pairs. This is precisely
the goal of this paper to give a theoretical and practical answer.

In [9] the link between the computation of a Gröbner basis of F
f1 fm and linear algebra is done: the Buchberger algorithm
can be considered as a triangularisation of a submatrix of the sylvester
matrix. The reduction of a polynomial to zero can be interpreted as
a linear dependence of the rows of this matrix. Since each row of
the matrix is a product t f where t is a term and f F , a linear

dependence is ∑λ t f 0 or by grouping terms: ∑mi 1 gi fi 0. In
other words, g1 gm is a syzygy.

Several papers investigate those issues: Buchberger [4] proposes
two criteria to remove a lot of useless critical pairs; staggered lin-
ear bases are used in [7]; the idea of [10] is to compute simulta-
neously a Gröbner basis and a basis of the module of syzygies: a
critical pair is not considered if the corresponding syzygy is a linear
combination of some elements of the current basis of the module of
syzygies. They have in all in common to use implicitly or explicitly
the trivial sysygies fi f j f j fi. Another common point is that all
the algorithms are nearly Buchberger’s algorithm except that some
reductions are avoided. The efficiency of those algorithms is not
yet satisfactory in theory and practice because a lot of useless crit-
ical pairs are not removed. For instance we quote from [10] that
“many useless pairs are discovered, but it involves a lot of extra
computation, so the execution time is increased”. Another approch
is involutive bases [11] which is based on the concept of involutive
monomial division: some reductions are forbidden and so some
computations are not considered.

The strategy in this paper is to take into account only the trivial
syzygies fi f j f j fi 0 but not to compute the module of syzy-
gies. This imply (see section 2 and 4) two major differences with
the standard Buchberger algorithm or the F4 algorithm: first we
need to compute all the Gröbner basis of the following ideals fm ,
fm 1 fm , . . . , f1 fm . The second difference is that some
reductions are not allowed; as a result the reduction of one polyno-
mial by a list of polynomials may be several polynomials. A con-
sequence of the restriction to trivial syzygies is that, in worst cases,
the algorithm does not avoid all the useless pairs: for instance if we
have two times the same polynomial in the original equations there
is a reduction to zero. However we give the proof (see corollary 3)
that if the input system is a regular sequences then there is no re-
duction to zero. Moreover, in practice, for most systems there is
no reduction to zero (experimental evidences are given in 9.1). An-
other important point is that the new algorithm does not improve
the theoretical worst case complexity for computing Gröbner bases
but experimentally (see section 9.2 for some some CPU timings
and comparison with other algorithms), the F5 is faster than all the
previously implemented algorithms. The limited length of the pa-
per impose us to make some choices: we give a full description of
the algorithm and a detailed example but the proofs of correctness
and termination are only sketched. For the same reason the experi-
mental section 9 is minimal. A full paper describing the algorithm
in the most general case is in preparation.

12

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 20 years

13

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 10 years

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c� 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 1767–1802

FAST POLYNOMIAL FACTORIZATION AND MODULAR
COMPOSITION⇤

KIRAN S. KEDLAYA

† AND CHRISTOPHER UMANS

‡

Abstract. We obtain randomized algorithms for factoring degree n univariate polynomials over

Fq requiring O(n1.5+o(1)
log

1+o(1)q + n1+o(1)
log

2+o(1)q) bit operations. When log q < n, this is

asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput.
Complexity, 2 (1992), pp. 187–224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179–

1197]; for log q � n, it matches the asymptotic running time of the best known algorithms. The

improvements come from new algorithms for modular composition of degree n univariate polynomials,

which is the asymptotic bottleneck in fast algorithms for factoring polynomials over finite fields.

The best previous algorithms for modular composition use O(n(!+1)/2
) field operations, where !

is the exponent of matrix multiplication [R. P. Brent and H. T. Kung, J. Assoc. Comput. Mach.,
25 (1978), pp. 581–595], with a slight improvement in the exponent achieved by employing fast

rectangular matrix multiplication [X. Huang and V. Y. Pan, J. Complexity, 14 (1998), pp. 257–

299]. We show that modular composition and multipoint evaluation of multivariate polynomials

are essentially equivalent, in the sense that an algorithm for one achieving exponent ↵ implies an

algorithm for the other with exponent ↵+o(1), and vice versa. We then give two new algorithms that

solve the problem near-optimally: an algebraic algorithm for fields of characteristic at most no(1)
, and

a nonalgebraic algorithm that works in arbitrary characteristic. The latter algorithm works by lifting

to characteristic 0, applying a small number of rounds of multimodular reduction, and finishing with

a small number of multidimensional FFTs. The final evaluations are reconstructed using the Chinese

remainder theorem. As a bonus, this algorithm produces a very e�cient data structure supporting

polynomial evaluation queries, which is of independent interest. Our algorithms use techniques that

are commonly employed in practice, in contrast to all previous subquadratic algorithms for these

problems, which relied on fast matrix multiplication.

Key words. modular composition, multivariate multipoint evaluation, multimodular reduction,

polynomial factorization

AMS subject classifications. 11Y16, 13P05, 68W30, 68W40

DOI. 10.1137/08073408X

1. Introduction. Polynomial factorization is one of the central problems in
computer algebra. Milestones in the development of polynomial-time algorithms for
factoring in Fq[X] are the algorithms of Berlekamp [B70], Cantor and Zassenhaus
[CZ81], von zur Gathen and Shoup [vzGS92], and Kaltofen and Shoup [KS98]. See
the surveys [vzGP01, K03, vzG06]. Presently, there are practical algorithms that fac-
tor degree n polynomials over Fq using a quadratic number of operations (ignoring for
a moment the dependence on q), and subquadratic algorithms that rely on fast matrix
multiplication [KS98]. E�cient algorithms for factoring polynomials over other do-
mains (e.g., Q, Z, algebraic number fields) and for factoring multivariate polynomials
in turn depend on factoring in Fq[X].

⇤
Received by the editors September 2, 2008; accepted for publication (in revised form) June 19,

2009; published electronically December 22, 2011. The material in this paper appeared in conferences

as [U08] and [KU08].

http://www.siam.org/journals/sicomp/40-6/73408.html

†
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

(kedlaya@mit.edu). This author’s research was supported by NSF DMS-0545904 (CAREER) and a

Sloan Research Fellowship.

‡
Department of Computer Science, California Institute of Technology, Pasadena, CA 91125

(umans@cs.caltech.edu). This author’s research was supported by NSF CCF-0346991 (CAREER),

CCF-0830787, BSF 2004329, and a Sloan Research Fellowship.

1767

D
ow

nl
oa

de
d

12
/2

1/
12

 to
 1

32
.2

06
.2

7.
25

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

14

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ 5 years
ar

X
iv

:1
40

1.
77

14
v1

 [
cs

.D
S]

 3
0

Ja
n

20
14

Powers of Tensors and Fast Matrix Multiplication

François Le Gall
Department of Computer Science

Graduate School of Information Science and Technology
The University of Tokyo

legall@is.s.u-tokyo.ac.jp

Abstract

This paper presents a method to analyze the powers of a given trilinear form (a special kind of
algebraic constructions also called a tensor) and obtain upper bounds on the asymptotic complexity
of matrix multiplication. Compared with existing approaches, this method is based on convex opti-
mization, and thus has polynomial-time complexity. As an application, we use this method to study
powers of the construction given by Coppersmith and Winograd [Journal of Symbolic Computation,
1990] and obtain the upper bound � < 2.3728639 on the exponent of square matrix multiplication,
which slightly improves the best known upper bound.

1 Introduction

Matrix multiplication is one of the most fundamental tasks in mathematics and computer science. While
the product of two n�n matrices over a field can naturally be computed in O(n3) arithmetic operations,
Strassen showed in 1969 that O(n2.81) arithmetic operations are enough [14]. The discovery of this
algorithm for matrix multiplication with subcubic complexity gave rise to a new area of research, where
the central question is to determine the value of the exponent of square matrix multiplication, denoted �,
and defined as the minimal value such that two n � n matrices over a field can be multiplied using
O(n!+�) arithmetic operations for any � > 0. It has been widely conjectured that � = 2 and several
conjectures in combinatorics and group theory, if true, would lead to this result [1, 6, 7, 8]. However, the
best upper bound obtained so far is � < 2.38, as we explain below.

Coppersmith and Winograd [8] showed in 1987 that � < 2.3754770. Their approach can be de-
scribed as follows. A trilinear form is, informally speaking, a three-dimensional array with coefficients
in a field F. For any trilinear form t one can define its border rank, denoted R(t), which is a positive
integer characterizing the number of arithmetic operations needed to compute the form. For any trilinear
form t and any real number � � [2, 3], one can define a real number V�(t), called the value of the trilin-
ear form. The theory developed by Schönhage [12] shows that, for any m � 1 and any � � [2, 3], the
following statement hold: �

V�(t
�m)

�
1/m � R(t) =� � � �. (1)

Here the notation t�m represents the trilinear form obtained by taking the n-th tensor power of t. Cop-
persmith and Winograd presented a specific trilinear form t, obtained by modifying a construction given
earlier by Strassen [15], computed its border rank R(t), and introduced deep techniques to estimate
the value V�(t). In particular, they showed how a lower bound Ṽ�(t) on V�(t) can be obtained for any
� � [2, 3] by solving an optimization problem. Solving this optimization problem, they obtained the
upper bound � < 2.3871900, via Statement (1) with t = t and m = 1, by finding the smallest � such
that Ṽ�(t) � R(t). They then proceeded to study the tensor power t�2 and showed that, despite several
new technical difficulties, a similar approach can be used to reduce the computation of a lower bound
Ṽ�(t�2) on V�(t�2) to solving another optimization problem of several variables. They discovered that
Ṽ�(t�2) > [Ṽ�(t)]2, due to the fact that the analysis of t�2 was finer, thus giving a better upper bound

1

15

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

⇡ Yesterday

Integer multiplication in time O(n log n)

David Harvey and Joris van der Hoeven

Abstract. We present an algorithm that computes the product of two n-bit

integers in O(n log n) bit operations.

1. Introduction

Let M(n) denote the time required to multiply two n-bit integers. We work in
the multitape Turing model, in which the time complexity of an algorithm refers
to the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [34]. The main results of this paper also hold in
the Boolean circuit model [40, Sec. 9.3], with essentially the same proofs. We write
f(n) = O(g(n)) (respectively f(n) = �(g(n))) to indicate that there exist constants
C > 0 and n0 such that f(n) � Cg(n) (respectively f(n) � Cg(n)) for all n � n0,
and f(n) = �(g(n)) to mean that both f(n) = O(g(n)) and f(n) = �(g(n)) hold.

Schönhage and Strassen conjectured in 1971 that the true complexity of integer
multiplication lies in �(n log n) [39], and in the same paper established their famous
upper bound M(n) = O(n log n log log n). In 2007 their result was sharpened by
Fürer to M(n) = O(n log n K log� n) [12, 13] for some unspecified constant K > 1,
where log⇤ n denotes the iterated logarithm, i.e., log⇤ x := min{k � 0 : log�k x � 1}.
Prior to the present work, the record stood at M(n) = O(n log n 4log� n) [22].

The main result of this paper is a verification of the upper bound in Schönhage
and Strassen’s conjecture, thus completely closing the remaining 4log� n gap:

Theorem 1.1. There is an integer multiplication algorithm achieving

M(n) = O(n log n).

If the Schönhage–Strassen conjecture is correct, then Theorem 1.1 is asymp-
totically optimal. Unfortunately, no super-linear lower bound for M(n) is known.
Perhaps the best available evidence in favour of the conjecture is the �(n log n)
lower bound [6, 35] that has been proved for the “on-line” variant of the problem,
in which the k-th bit of the product must be written before the (k + 1)-th bits of
the multiplicands are read. Again, the true complexity of on-line multiplication is
not known: currently, the best known upper bound is O(n log n exp(C

�
log log n))

for C =
�

2 log 2 + o(1) [29].
Theorem 1.1 has many immediate consequences, as many computational prob-

lems may be reduced to integer multiplication. For example, the theorem implies
that quotients and k-th roots of real numbers may be computed to a precision of n
significant bits in time O(n log n), and that transcendental functions and constants
such as ex and � may be computed to precision n in time O(n log2 n) [5].

Harvey was supported by the Australian Research Council (grant FT160100219).

1

16

Starting point

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

A 2 Kn⇥n

2

666666666666666666664

1 0 3 3 5 6 8 8

3 4 4 9 9 2 5 2

8 10 9 3 6 5 6 5

7 4 9 3 0 1 3 7

2 9 7 5 3 6 8 2

3 5 8 6 2 5 4 4

5 2 1 1 7 10 6 5

0 10 0 4 1 7 4 1

3

777777777777777777775

!

2

666666666666666666664

1 0 3 3 5 6 8 8

0 4 6 0 5 6 3 0

0 0 3 1 3 8 6 7

0 0 0 10 0 1 2 4

0 0 0 0 8 6 1 4

0 0 0 0 0 8 4 5

0 0 0 0 0 0 1 4

0 0 0 0 0 0 0 4

3

777777777777777777775

Size O(n2
) unchanged after triangularization

Model : algebraic computation, finite field, (floating point)

18

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

A 2 Z[x, y, z], example 8⇥ 8, 2⇥ 2 submatrix:
2

4
50 x2y � 22 y3 � 7 y2z + 67 yz � 53 �xy2 � 43 xyz � 39 z3 + 34 yz + 56 z2 � 68

7 x2y + 97 xyz � 78 xy + 53 xz � 50 yz � 83 y �2 x2z � 26 xz2 � 72 y3 + 67 z3 � 69 z2 + 51

3

5

Some coefficient after triangularization:

9483760 x14y + 33303556 x13y2 � 13474656 x13yz � 52220480 x13z2 � 514110020 x12y3 + . . .

Increased bit size and polynomial degrees: ex from 5 ko to 360 ko

19

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Models

Algorithms: Algebraic Random Access Machine (RAM)

I CPU, I/O medium, address and data memory, test and branching, etc.

Arithmetic circuits

Straight-Line Program (SLP)

P = (I, O, S, C)

I Input and Output variables
I A set of Scalars
I Computation sequence of length l: vi vj � vk for � 2 {+,�,⇥, /}

20

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Models

Algorithms: Algebraic Random Access Machine (RAM)

I CPU, I/O medium, address and data memory, test and branching, etc.

Arithmetic circuits

Straight-Line Program (SLP)

P = (I, O, S, C)

I Input and Output variables
I A set of Scalars
I Computation sequence of length l: vi vj � vk for � 2 {+,�,⇥, /}

20

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Complexity bounds

Algebraic model over an abstract field (or ring)

I Algebraic operations cost 1

Bit complexity

Integers a, b with at most n bits (lengths, say ⇡ log |a| and log |b|)
I Product in O(n2

) bit operations
I O(n log n) bit operations [Harvey & van der Hoeven 2019]

Polynomial multiplication

Univariate polynomial p, q 2 K[x] with degree at most n
I Product in O(n2

) arithmetic operations
I Over arbitrary algebras : O(n log n log log n) [Cantor & Kaltofen 1991]

21

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Complexity bounds

Algebraic model over an abstract field (or ring)

I Algebraic operations cost 1

Bit complexity

Integers a, b with at most n bits (lengths, say ⇡ log |a| and log |b|)
I Product in O(n2

) bit operations
I O(n log n) bit operations [Harvey & van der Hoeven 2019]

Polynomial multiplication

Univariate polynomial p, q 2 K[x] with degree at most n
I Product in O(n2

) arithmetic operations
I Over arbitrary algebras : O(n log n log log n) [Cantor & Kaltofen 1991]

21

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Soft 0 notation for hidding polylogarithmic factors

Ex: O(n(log n)i
(log log n)j

) =

˜O(n)

22

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

NC: decision problems decidable in polylogarithmic time on a parallel computer

The polynomial gcd problem in K[x] is in NC

Hint: via structured linear algebra (see later in the course)

Open problem

Is the integer problem in NC or P-complete?

Hint(?): The iterated mod problem [Karloff & Ruzzo 1989]

23

Matrices

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Algebraic complexity model

A, B 2 Kn⇥n, compute A⇥ B?

Feasible exponent: there exists an algorithm using O(n✓
) arithmetic operations

Exponent of matrix multiplication: ! = inf { ✓ | ✓ feasible }

By abuse we will use the notation ! for feasible exponents

25

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

[Vassilevska Williams 2019] Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication

[Le Gall & Urrutia 2018] Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd tensor

[Le Gall 2014]

A, B 2 Kn⇥n, compute A⇥ B?

Algebraic Complexity Theory and Matrix Multiplication
[Handout for the Tutorial]

François Le Gall
Department of Computer Science

Graduate School of Information Science and Technology
The University of Tokyo

legall@is.s.u-tokyo.ac.jp

1 Introduction

Algebraic complexity theory is the study of computation using algebraic models. One of the main
achievements of this field has been the introduction of methods to prove lower bounds on the computa-
tional complexity, in algebraic models of computation, of concrete problems. Another major achieve-
ment has been the development of powerful techniques to construct fast algorithms for computational
problems with an algebraic structure.

This tutorial will give an overview of the main algorithmic applications of algebraic complexity the-
ory, focusing on the construction of bilinear algorithms for computational problems from linear algebra.
Our presentation will be systematically illustrated by showing how these ideas from algebraic complex-
ity theory have been used to design asymptotically fast (although not necessarily practical) algorithms
for matrix multiplication, as summarized in Table 1. We will show in particular how the techniques de-
scribed in this tutorial can be applied to construct an algorithm that multiplies two n � n matrices over
a field using O(n2.38) arithmetic operations, which is the best known upper bound on the asymptotic
complexity of square matrix multiplication and was first obtained by Coppersmith and Winograd [3].

Table 1: History of the main improvements on the exponent of square matrix multiplication.

Upper bound Year Reference Notes
� � 3 Trivial algorithm
� < 2.81 1969 Strassen [11]
� < 2.79 1979 Pan [6] Not discussed in this tutorial
� < 2.78 1979 Bini et al. [1]
� < 2.55 1981 Schönhage [9]
� < 2.53 1981 Pan [7] Not discussed in this tutorial
� < 2.52 1982 Romani [8] Not discussed in this tutorial
� < 2.50 1982 Coppersmith and Winograd [2] Not discussed in this tutorial
� < 2.48 1986 Strassen [12] Not discussed in this tutorial
� < 2.376 1987 Coppersmith and Winograd [3]
� < 2.373 2010 Stothers [10] (see also [4])
� < 2.3729 2012 Vassilevska Williams [13]
� < 2.3728639 2014 Le Gall [5]

1

26

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Dense linear algebra

A =

2

66666666666666666666666666664

42 10 24 12 18 10 26 15 19 15

8 41 37 32 39 31 40 9 17 35

38 27 7 4 11 30 49 6 27 47

6 38 16 29 20 18 41 1 8 51

10 12 50 12 16 12 33 5 51 47

5 46 33 27 42 18 49 12 19 1

6 17 44 38 33 23 28 15 26 2

15 18 45 36 8 31 43 8 19 16

20 18 5 4 23 19 3 45 35 36

3 42 24 29 39 34 4 7 44 46

3

77777777777777777777777777775

27

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Triangularization

2

66666666666666666666666666664

42 10 24 12 18 10 26 15 19 15

0 29 40 7 28 19 30 44 26 17

0 0 11 9 43 42 17 51 24 33

0 0 0 9 23 8 7 7 35 46

0 0 0 0 47 30 1 31 41 46

0 0 0 0 0 15 27 12 24 37

0 0 0 0 0 0 7 49 7 37

0 0 0 0 0 0 0 45 40 41

0 0 0 0 0 0 0 0 17 29

0 0 0 0 0 0 0 0 0 44

3

77777777777777777777777777775

28

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Determinant

2

66666666666666666666666666666664

42 10 24 12 18 10 26 15 19 15

0 29 40 7 28 19 30 44 26 17

0 0 11 9 43 42 17 51 24 33

0 0 0 9 23 8 7 7 35 46

0 0 0 0 47 30 1 31 41 46

0 0 0 0 0 15 27 12 24 37

0 0 0 0 0 0 7 49 7 37

0 0 0 0 0 0 0 45 40 41

0 0 0 0 0 0 0 0 17 29

0 0 0 0 0 0 0 0 0 44

3

77777777777777777777777777777775

det A =

Qn
i=1 aii if e.g row transformations of determinant 1 have been used

29

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Row echelon form and rank

Pivot index: index of first non zero entry in the row

Echelon: pivot indices are strictly increasing

30

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Theorem of linear algebra

A 2 Kn⇥n

In ˜O(n!
) arithmetic operations one can compute:

I the determinant det A
I the inverse A�1 is A is invertible (A�1A = AA�1

= I)
I the characteristic polynomial of A
I the rank of A and an echelon form of A
I for any b 2 Kn, a solution to Ax = b or detect that no solution exist
I a kernel basis (Ax = 0)

31

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2

6666666666664

a1,1 ⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

3

7777777777775

I Possibly, pivoting for having a1,1 6= 0
I rowi rowi � (ai,1/a1,1) row1

32

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2

6666666666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤ ⇤

0 ⇤ ⇤ ⇤ ⇤ ⇤

3

7777777777775

I Possibly, next entries zero in second column

33

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2

6666666666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

0 0 a2,3 ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

3

7777777777775

I Possibly, next entries zero in second column
I rowi rowi � (ai,3/a2,3) row2

34

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2

6666666666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

0 0 0 ⇤ ⇤ ⇤

0 0 0 0 ⇤ ⇤

0 0 0 0 0 0

0 0 0 0 0 0

3

7777777777775

I (Row) Echelon form
I rank A = 4

Matrix factorization:

T = Un ⇥ . . .⇥ U2 ⇥ A

35

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2

6666666666664

⇤ ⇤ ⇤ ⇤ ⇤ ⇤

0 0 ⇤ ⇤ ⇤ ⇤

0 0 0 ⇤ ⇤ ⇤

0 0 0 0 ⇤ ⇤

0 0 0 0 0 0

0 0 0 0 0 0

3

7777777777775

I (Row) Echelon form
I rank A = 4

Matrix factorization:

T = Un ⇥ . . .⇥ U2 ⇥ A

35

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Exercise

A 2 Kn⇥n, splitting with (n/2)⇥ (n/2) invertible blocks

M =

"
A B

C D

#

" I 0

�CA�1 I

#"
A B

C D

#"
I �A�1B

I

#
=

" A 0

0 D � CA�1B

#

M�1 = R ·

2

4
A�1 0

0 S�1

3

5 · L

Show that an algorithm in O(n!
) for the multiplication gives an algorithm in O(n!

) for
the inversion (2  !  3)

36

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Matrix multiplication Basic linear algebra

Matrix multiplication
?
! Basic linear algebra

37

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Matrix multiplication Basic linear algebra

Matrix multiplication
?
! Basic linear algebra

37

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Determinant versus matrix multiplication ?

[Baur & Strassen 1983]
[Chen, Kayal & Wigderson 2010] Partial Derivatives in Arithmetic Complexity and Beyond

SLP or arithmetic circuit model

a

*

b

*

c

+
/ (a + b)/c2 2

With input gates x1, . . . , xn, computes a rational function f 2 K(x1, . . . , xn)

38

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Theorem: Given a circuit of size s for f 2 K(x1, . . . , xn), one can compute a circuit of
size O(s) for the n first-order partial derivatives of f

Hint: proceed inductively backwards from the output using Leibniz’s rule

Ex: p(x) = (x� 1)(x� 2) . . . (x� n), evaluate p0
(x) =

Pn
i=1

Q
j 6=i(x� j)?

p(x) q(x)⇥ (x� n) gives p0
(x) q0

(x)⇥ (x� n) + q(x)

39

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Rough sketch

Circuit gates: x1, . . . , xn, g1, . . . , gl

�l(x1, . . . , xn, g1, . . . , gl)

@�l

@gl
= 1

gl = ↵gi + �gj

40

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

ig gj

gl

41

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

ig gj

igα jg+β

42

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Rough sketch

Circuit gates: x1, . . . , xn, g1, . . . , gl

�l(x1, . . . , xn, g1, . . . , gl)

@�l

@gl
= 1

gl = ↵gi + �gj

�l�1 = (x1, . . . , xn, g1, . . . , ↵gi + �gj)

k 6= i, j :

@�l�1

@gk
⌘

@�l

@gk

@�l�1

@gi
⌘

@�l

@gi
+ ↵

@�l

@gl

43

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

1. DETERMINANT =) INVERSION

[Cramer]

A�1
=

1
det A

CT, with the comatrix Cij = (�1)i+j
det A #i,j

[Laplace]

det A =

nX

i=1

aijCij

 @ det A
@aij

= Cij

44

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

1. DETERMINANT =) INVERSION

[Cramer]

A�1
=

1
det A

CT, with the comatrix Cij = (�1)i+j
det A #i,j

[Laplace]

det A =

nX

i=1

aijCij

 @ det A
@aij

= Cij

44

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

2. In an algorithmic sense, inversion is as hard as multiplication:

[Winograd]

2

664

I A 0

0 I B

0 0 I

3

775

�1

=

2

664

I �A A⇥ B

0 I �B

0 0 I

3

775

45

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

[Baur & Strassen 1983]

Open problem

“... shows that the determinant has roughly the same complexity as matrix
multiplication or inversion. It would be interesting to have a similar result
for solving a system of linear equations.”

46

Key topic

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Fundamental problems in linear algebra over a field are in some way equivalent.

What about polynomial and integer matrices?

48

Formal power series

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Formal power series

Over a commutative⇤ ring R: R[[x]]
a(x) = a0 + a1x + a2x2

+ . . . =

P
i�0 aixi

I addition, multiplication

I multiplicative inverse
if a(x) = 1 + x b(x), then a(x)⇥

�
1� x b(x) + x2 b2

(x)� x3 b3
(x)

�
= 1

R[[x]] is a commutative ring, an element is invertible iff a0 is invertible

50

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Formal power series

I Truncation
a(x) mod xn

= a0 + a1x + a2x2
+ . . . + an�1xn�1

Costs
Series operations modulo xn: O(M(n)) =

˜O(n) operations in R

Note: the division by 1 + x b(x) requires no division

51

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Can division help when computing polynomials?

I For matrix multiplication ?

I For computing the determinant ?

52

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Can division help when computing polynomials?

[Strassen 1973] [Kaltofen 1988]

Theorem: If f 2 K[x1, . . . , xm] of degree n can be computed by a program of
length L, then f can be computed by a program of length O(L M(n)) =

˜O(nL)

without divisions.

(Here: SLP model, K infinite)

Consequence: divisions do not help for matrix multiplication.

Note: ! can depend only (if at all) on the characteristic of the field

53

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Elimination of divisions

54

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

"
1 + x a(x) x b(x)

x c(x) 1 + x d(x)

#

!
"

1 + x a(x) x b(x)

0 1 + x d(x) + x2 e(x)

#

row2 row2 �
⇣
(x c(x)) · (1 + x a(x))�1

⌘
row1

row2 row2 � x f (x) row1

55

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

"
1 + x a(x) x b(x)

x c(x) 1 + x d(x)

#
!

"
1 + x a(x) x b(x)

0 1 + x d(x) + x2 e(x)

#

row2 row2 �
⇣
(x c(x)) · (1 + x a(x))�1

⌘
row1

row2 row2 � x f (x) row1

55

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Gaussian elimination without divisions

I Elimination with input I + x B(x) modulo xk requires no divisions

Determinant of A?

I Determinant of M(x) = I + x (A� I) modulo xn+1 requires no division

I
det M(x) has degree at most n: �(x) = det M(x) =

�
det M(x) mod xn+1�

I �(1) gives det A

Theorem: The determinant can be computed in O(n! M(n)) =

˜O(n!+1
) ring

operations.

56

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Gaussian elimination without divisions

I Elimination with input I + x B(x) modulo xk requires no divisions

Determinant of A?

I Determinant of M(x) = I + x (A� I) modulo xn+1 requires no division

I
det M(x) has degree at most n: �(x) = det M(x) =

�
det M(x) mod xn+1�

I �(1) gives det A

Theorem: The determinant can be computed in O(n! M(n)) =

˜O(n!+1
) ring

operations.

56

Before Starting point Matrices Key topic Formal power series Polynomials Structured matrices Randomization

Open problem

Can the determinant be computed in ˜O(n!
) without divisions?

Note: best known exponent ⌘(!, ⇣) ⇡ 2.7 < 3.373 [Kaltofen & Villard 2005]

Rule of thumb:

cost  arithmetic cost ⇥ output degree

57

	Before
	

	Starting point
	Matrices
	
	

	Key topic
	Formal power series
	

	Polynomials
	Structured matrices
	

	Randomization

