Alternative to Gaussian elimination

September 23rd, 2020

Overview

Matrix polynomials

Minimal bases

New elimination

Matrix polynomials

 $A \in \mathsf{K}[x]^{n \times n}$ of degree d

$$\det A(x) = \sum_{\sigma} \prod_{i=1}^{n} A_{\sigma(i),i}$$

 $\deg \det A \leq nd$

 $A \in \mathbb{Z}[x]^{n \times n}$ with entries of absolute values less than b

$$\det A = \prod_{i=1}^{n} \|A_j^*\| \le \prod_{i=1}^{n} \|A_j\| \le b^n n^{n/2}$$

For input size β :

$$\log \det A \le n\beta + O(n\log n)$$

- Hadamard's conjecture
 - $a_{i,j} \in \{1, -1\}$ and the rows of A are mutually orthogonal
 - A Hadamard matrix of dimension n exists for every n multiple of 4