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Abstract. We show that the generating function of labelled trees is not D∞-finite.

Résumé. Nous montrons que la série génératrice des arbres étiquetés n’est pas D∞-finie.
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Version française abrégée

Nous montrons que la série génératrice exponentielle des arbres étiquetés, T (x) = ∑
n≥1

nn−1

n! xn ,
n’est pas D∞-finie. En particulier, cela implique que, bien que T (x) vérifie des équations différen-
tielles non-linéaires, ces dernières ne peuvent pas être « trop simples ». En particulier, T (x) n’est
pas un quotient de deux fonctions D-finies (vérifiant des équations différentielles à coefficients
polynomiaux), et plus généralement, T (x) ne vérifie aucune équation différentielle linéaire à co-
efficients des fonctions D-finies. La preuve repose ultimement sur un résultat de théorie de Ga-
lois différentielle. Plusieurs questions ouvertes sont proposées, dont une sur la nature de la série
génératrice ordinaire des arbres étiquetés,

∑
n≥1 nn−1xn .

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.108
mailto:Alin.Bostan@inria.fr
mailto:ajpastor@risc.uni-linz.ac.at
https://specfun.inria.fr/chyzak/DeRerumNatura/
https://comptes-rendus.academie-sciences.fr/mathematique/


1006 Alin Bostan and Antonio Jiménez-Pastor

1. Context and main result

A formal power series f (x) = ∑
n≥0 an xn in C[[x]] is called differentially finite, or simply D-

finite [23], if it satisfies a linear differential equation with polynomial coefficients in C[x]. Many
generating functions in combinatorics and many special functions in mathematical physics are
D-finite [2, 9].

DD-finite series and more generally Dn-finite series are larger classes of power series, recently
introduced in [13]. DD-finite power series satisfy linear differential equations, whose coefficients
are themselves D-finite power series. One of the simplest examples is tan(x), which is DD-finite
(because it satisfies cos(x) f (x)−sin(x) = 0), but is not D-finite (because it has an infinite number
of complex singularities, a property which is incompatible with D-finiteness). Another basic
example is the exponential generating function of the Bell numbers Bn , which count partitions
of {1,2, . . . ,n}, namely:

B(x) := ∑
n≥0

Bn

n!
xn . (1)

Indeed, it is classical [9, p. 109] that B(x) = eex−1, therefore B(x) is DD-finite. On the other hand,
B(x) is not D-finite: this can be proved either analytically (using the too fast growth of B(x) as
x →∞), or purely algebraically (using [22], and the fact that the power series ex is not algebraic).

More generally, given a differential ring R, the set of differentially definable functions over R,
denoted by D(R), is the differential ring of formal power series satisfying linear differential
equations with coefficients in R. In particular, D(C[x]) is the ring of D-finite power series,
D2(C[x]) := D(D(C[x])) is the ring of DD-finite power series, and Dn(C[x]) := D(Dn−1(C[x])) is
the ring of Dn-finite power series. We say that a power series f (x) ∈ C[[x]] is D∞-finite if there
exists an n such that f (x) is Dn-finite.

It is known [14] that Dn-finite power series form a strictly increasing sequence of sets and
that any D∞-finite power series is differentially algebraic, in short D-algebraic, that is, it satisfies
a differential equation, possibly non-linear, with polynomial coefficients in C[x]. This class, as
well as its complement (of D-transcendental series), are quite well studied [11, 21].

Let now (tn)n≥0 = (0,1,2,9,64,625,7776, . . .) be the sequence whose general term tn counts
labelled rooted trees with n nodes. It is well known that tn = nn−1, for any n ≥ 1. This beautiful
and non-trivial result is usually attributed to Cayley [6], although an equivalent result had been
proved earlier by Borchardt [4], and even earlier by Sylvester, see [3, Ch. 4]. Due to the importance
of the combinatorial class of trees, and to the simplicity of the formula, Cayley’s result has
attracted a lot of interest over the time, and it admits several different proofs, see e.g., [16, §4]
and [1, §30]. One of the more conceptual proofs goes along the following lines (see [9, §II. 5.1] for
details). Let

T (x) := ∑
n≥0

tn

n!
xn (2)

be the exponential generating function of the sequence (tn)n . The class T of all rooted labelled
trees is definable by a symbolic equation T = Z ? SET(T ) reflecting their recursive definition,
where Z represents the atomic class consisting of a single labelled node, and ? denotes the la-
belled product on combinatorial classes. This symbolic equation provides, by syntactic transla-
tion, an implicit equation on the level of exponential generating functions:

T (x) = x eT (x), (3)

which can be solved using Lagrange inversion

tn = n! · [xn]T (x) = n! ·
(

1

n
[zn−1](ez )n

)
= nn−1. (4)
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From (3), it follows easily that T (x) is D-algebraic and satisfies the non-linear equation

x(1−T (x))T ′(x) = T (x),

and from there, that the sequence (tn)n≥0 satisfies the non-linear recurrence relation

tn+1 = n +1

n
·

n∑
i=1

(
n

i

)
ti tn−i+1, for all n ≥ 1.

This recurrence can also be proved using (4), by taking y = n, x = w = 1 in Abel’s identity [12]

(x + y)n =
n∑

k=0

(
n

k

)
x(x +wk)k−1(y −wk)n−k ,

and then by isolating the term k = n in the resulting equality.
On the other hand, it is known that the power series T (x) is not D-finite, see [10, Thm. 7],

or [8, Thm. 2]. This raises the natural question whether T (x) is DD-finite, or Dn-finite for some
n ≥ 2. Our main result is that this is not the case:

Theorem 1. The power series T (x) =∑
n≥1

nn−1

n! xn in (2) is not D∞-finite.

To our knowledge, this is the first explicit example of a natural combinatorial generating
function which is provably D-algebraic but not D∞-finite. In particular, Theorem 1 implies that
T (x) is not equal to the quotient of two D-finite functions, and more generally, that it does not
satisfy any linear differential equation with D-finite coefficients.

2. Proof of the main result

Our proof of Theorem 1 builds upon the following recent result by Noordman, van der Put
and Top.

Theorem 2 ([18]). Assume that u(x) ∈ C[[x]] \C is a solution of u′ = u3 −u2. Then u is not D∞-
finite.

The proof of Theorem 2 is based on two ingredients. The first one is a result by Rosenlicht [20]
stating that any set of non-constant solutions (in any differential field) of the differential equation
u′ = u3 −u2 is algebraically independent over C (see also [18, Prop. 7.1]); the proof is elementary.
The second one [18, Prop. 7.1] is that any non-constant power series solution of an autonomous
first-order differential equation with this independence property cannot be D∞-finite; the proof
is based on differential Galois theory.

Proof of Theorem 1. We will use Theorem 2 and a few facts about the (principal branch of the)
Lambert W function, satisfying W (x) ·eW (x) = x for all x ∈C.

Recall [7] that the Taylor series of W around 0 is given by

W (x) =
∞∑

n=1

(−n)n−1

n!
xn = x −x2 + 3

2 x3 − 8
3 x4 + 125

24 x5 −·· · .

In other words, our T (x) and W (x) are simply related by W (x) =−T (−x).
The function defined by this series can be extended to a holomorphic function defined on

all complex numbers with a branch cut along the interval (−∞,− 1
e ]; this holomorphic function

defines the principal branch of the Lambert W function.
We can substitute x 7→ ex+1 in the functional equation for W (x) obtaining then

W (ex+1)eW (ex+1) = ex+1,

or, renaming Y (x) = W (ex+1), we have a new functional equation: Y (x)eY (x)−1 = ex . From this
equality it follows by logarithmic differentiation that Y ′(x) · (1+Y (x)) = Y (x).

C. R. Mathématique, 2020, 358, n 9-10, 1005-1009
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Take now U (x) := 1
1+Y (x) = 1

2 − 1
8 x + 1

64 x2 + 1
768 x3 +·· · . We have that

U ′(x) = −Y ′(x)

(1+Y (x))2 = −Y (x)

(1+Y (x))3 =U (x)3 −U (x)2.

By Theorem 2, U (x) is not D∞-finite. By closure properties of D∞-finite functions (see [14,
Thm. 4] and [13, §3]), it follows that Y (x) is not D∞-finite either.

To conclude, note that by definition, for real x in the neighborhood of 0, we have W (x) =
Y (log(x)−1), and by Theorem 10 in [14], it follows that W (x) and T (x) are not D∞-finite either,
proving Theorem 1. �

3. Open questions

The class of D-finite power series is closed under Hadamard (term-wise) product. This is false
for D∞-finite power series; for instance, Klazar showed in [15] that the ordinary generating
function

∑
n≥0 Bn xn of the Bell numbers is not differentially algebraic, contrary to its exponential

generating function (1), which is DD-finite.
Moreover, it was conjectured by Pak and Yeliussizov [19, Open Problem 2.4] that this is an

instance of a more general phenomenon.

Conjecture 3 ([19, Open Problem 2.4]). If for a sequence (an)n≥0 both ordinary and exponential
generating functions

∑
n≥0 an xn and

∑
n≥0 an

xn

n! are D-algebraic, then both are D-finite. (Equiva-
lently, (an)n≥0 satisfies a linear recurrence with polynomial coefficients in n.)

This conjecture has been recently proven for large (infinite) classes of generating functions [5].
However, the very natural example of the generating function for labelled trees escapes the
method in [5].

We therefore leave the following as an open question.

Open question 4. Is the power series
∑

n≥1 nn−1xn D∞-finite? Is it at least differentially algebraic?

According to Conjecture 3, the answer should be “no” for both questions in Open question 4.

Another natural question concerns the generating function for partition numbers:∑
n≥0

pn xn := ∏
n≥1

1

1−xn = 1+x +2 x2 +3 x3 +5 x4 +7 x5 +11 x6 +·· · ,

which is known to be differentially algebraic [17].

Open question 5. Is it true that
∑

n≥0 pn xn is not D∞-finite?

One may also ask for the nature of the exponential variant of the generating function for
partition numbers.

Open question 6. Is the power series
∑

n≥0
pn
n! xn D∞-finite, or at least differentially algebraic?
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