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ABSTRACT
Classifying lattice walks in restricted lattices is an important prob-

lem in enumerative combinatorics. Recently, computer algebra has

been used to explore and to solve a number of difficult questions

related to lattice walks. We give an overview of recent results on

structural properties (e.g., algebraicity versus transcendence) and

on explicit formulas for generating functions of walks with small

steps in the quarter plane. In doing so, we emphasize the algorithmic

nature of the methodology, especially two important paradigms:

“guess-and-prove” and “creative telescoping”.
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1 GENERAL PRESENTATION
1.1 Prelude
Consider the following innocent-looking problem.

A tandem-walk is a path in Z2 taking steps from {↑,←,↘} only.
Show that, for any integer 𝑛 ≥ 0, the following quantities are equal:

(𝑖) the number𝑎𝑛 of tandem-walks of length𝑛 (i.e., using𝑛 steps),

confined to the upper half-plane Z × N, that start and end at (0, 0);
(𝑖𝑖) the number 𝑏𝑛 of tandem-walks of length 𝑛 confined to the

quarter planeN2, that start at (0, 0) and finish on the diagonal 𝑥 = 𝑦.

For instance, when 𝑛 = 3, this common value is 𝑎3 = 𝑏3 = 3, as

shown in the next picture, obtained by exhaustive enumeration.
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(𝑖)

(𝑖𝑖)

It appears that this problem is far from being trivial. Several

solutions exist, but none of them is elementary. One of the main

aims of the present text is to convince the reader that this problem

(and many others with a similar flavor) can be solved with the help

of a computer. More precisely, computer algebra tools can be used

to discover and to prove the following equalities

𝑎3𝑛 = 𝑏3𝑛 =
(3𝑛)!

𝑛!2 · (𝑛 + 1)!
and 𝑎𝑚 = 𝑏𝑚 = 0 if 3 ∤𝑚. (1)

It goes without saying that such a simple and beautiful expression

cannot be the result of mere chance. It turns out that closed forms

are quite rare for this kind of enumeration problem. Nevertheless,

even in the absence of nice formulas, the structural properties of

the corresponding enumeration sequences reflect the symmetries

of the step set and of the evolution domain. Equation (1) shows that

the sequences (𝑎𝑛) and (𝑏𝑛) are P-recursive, that is, they satisfy

a linear recurrence with polynomial coefficients (in the index 𝑛).

Equivalently, their generating functions

∑
𝑛≥0 𝑎𝑛𝑡

𝑛
and

∑
𝑛≥0 𝑏𝑛𝑡

𝑛

are D-finite, that is, they satisfy linear differential equations with

polynomial coefficients (in the variable 𝑡 ). On the methodological

(i.e., computer-algebraic) side, one of the main messages that will

emerge from the text is that, in the absence of closed formulas,

the (recurrence/differential) equations themselves constitute the

appropriate data structure to represent and manipulate P-recursive

sequences and D-finite functions [65]. On the application (i.e., com-

binatorial) side, the main message is that these important properties

of the enumeration sequences are intimately related to the finiteness

of a certain group, naturally attached to the step set {↑,←,↘}.

1.2 General context: walks confined to cones
Let us put the previous problem into a more general framework.

Let 𝑑 ≥ 1 be an integer (dimension), let S be a finite subset

(called step set, or model) of vectors in Z𝑑 , and 𝑝0 ∈ Z𝑑 (start-
ing point). An S -path (or, S -walk) of length 𝑛 starting at 𝑝0, is

a sequence (𝑝0, 𝑝1, . . . , 𝑝𝑛) of elements in the lattice Z𝑑 such that

𝑝𝑖+1 − 𝑝𝑖 ∈ S for all 0 ≤ 𝑖 < 𝑛. Let C be a cone of R𝑑 , that is, a
subset of R𝑑 such that 𝑟 · 𝑣 ∈ C for any 𝑣 ∈ C and 𝑟 ≥ 0, assumed

to contain 𝑝0. In combinatorics and in probability theory, one is
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Figure 1: Gessel walks: the allowed steps, and a randomwalk

interested in the (exact or asymptotic) enumeration of S -walks

confined to the cone C , potentially subject to additional constraints.

Example 1.1. Consider the model S = {→,←,↗,↙}, that is
S = {(1, 0), (−1, 0), (1, 1), (−1,−1)} (called the Gessel model) in
dimension 𝑑 = 2, with starting point 𝑝0 = (0, 0) and cone C = R2≥0
(the quarter plane). Figure 1 displays the model S (on the left), and

an S -walk of length 𝑛 = 2178 confined to C (on the right).

The main typical questions in this context are the following:

• What is the number 𝑎𝑛 of 𝑛-step S -walks contained in C ?

• For i ∈ C , what is the number 𝑎𝑛;i of such walks ending at i?
• What is the nature of their generating functions

𝐴(𝑡) =
∑︁
𝑛

𝑎𝑛𝑡
𝑛

and 𝐴(𝑡 ; x) =
∑︁
𝑛,i
𝑎𝑛;i𝑡

𝑛xi?

The answers to these questions are not simple, and heavily de-

pend on the various parameters. The aim of this text is to provide a

survey of recent results, notably classification results and closed

form expressions, obtained using Computer Algebra.

1.3 Why count walks in cones?
Lattice paths are fundamental objects in combinatorics. They have

been studied at least since the second half of the 19th century,

in connection with the so-called ballot problem [64]. Various ap-

proaches have progressively been involved in the study of lattice

walks, separately or in interaction. These methods arise from vari-

ous fields of classical mathematics (algebra, combinatorics, complex

analysis, probability theory), and more recently from computer

science. There are several reasons for the ubiquity of lattice walks,

but the main one is that they encode several important classes

of mathematical objects, in discrete mathematics (permutations,

trees, words, urns), in statistical physics (magnetism, polymers),

in probability theory (branching processes, games of chance) and

in operations research (birth-death processes, queueing theory).

Therefore, many questions from all these various fields can be re-

duced to solving lattice path problems. Several books are entirely

devoted to lattice paths and their applications (e.g., [35, 36, 59, 60]).

For more details, the reader is referred to the introduction of [3].

1.4 Blending experimental mathematics and
computer algebra

The enumeration of lattice walks is still a topical issue, with a lot

of recent activity, new and exciting results, and many open ques-

tions. Even if we only count articles published since 2000, there

are hundreds of references in this area; significant progress has

been obtained by many authors, see [9] and [48] for an extensive

bibliography. The dominating viewpoint in these works is to de-

velop uniform approaches, rather than ad-hoc solutions to specific

questions. My personal contribution is to combine an experimental
mathematics approach, as promoted in the beautiful and inspiring

books by Borwein and collaborators [2, 8], with modern tools from
the computer algebra arsenal [10, 41], in order to conjecture and
prove enumerative and asymptotic results for lattice paths.

1.5 Classification of power series
Before stating the main results, let us recall a few definitions on

(univariate and multivariate) power series.

Definition 1.2. A series 𝑆 (𝑡) = ∑∞
𝑛=0 𝑠𝑛𝑡

𝑛 ∈ Q[[𝑡]] is called:
• algebraic if it is a root of a non-trivial polynomial 𝑃 ∈ Q[𝑡,𝑇 ],
i.e., 𝑃

(
𝑡, 𝑆 (𝑡)

)
= 0; transcendental if it is not algebraic;

• D-finite (differentially finite, or holonomic) if it satisfies a non-

trivial linear differential equation with coefficients in 𝑄 [𝑡];
• hypergeometric if the sequence (𝑠𝑛)𝑛 satisfies a non-trivial linear

homogeneous recurrence of order 1 with coefficients in 𝑄 [𝑛].
An important class of hypergeometric series is that of Gauss

hypergeometric functions 2𝐹1 with parameters 𝑎, 𝑏, 𝑐 ∈ 𝑄 , 𝑐 ∉ −N:

2𝐹1

(
𝑎 𝑏

𝑐

���� 𝑡 ) = ∞∑︁
𝑛=0

(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

𝑡𝑛

𝑛!
,

where (𝑥)𝑛 = 𝑥 (𝑥 + 1) · · · (𝑥 + 𝑛 − 1) is the rising factorial. This

class contains important elementary power series such as

ln(1 − 𝑡) = −
∞∑︁
𝑛=1

𝑡𝑛

𝑛
, (1 + 𝑡)𝛼 =

∞∑︁
𝑛=0

(
𝛼

𝑛

)
𝑡𝑛, (𝛼 ∈ Q),

and less elementary ones, such as the complete elliptic integral

2𝐹1

(
1

2

1

2

1

���� 𝑡 ) = 2

𝜋

∫
1

0

𝑑𝑥√︁
(1 − 𝑥2) (1 − 𝑡𝑥2)

=

∞∑︁
𝑛=0

(
2𝑛

𝑛

)
2 ( 𝑡

16

)𝑛
. (2)

The notion of 2𝐹1 admits an obvious extension to the so-called gen-
eralized hypergeometric function 𝑝𝐹𝑞 , involving 𝑝 rising factorials

in the numerator and 𝑞 rising factorials in the denominator.

These three important classes of power series (algebraic, D-finite,

hypergeometric) are connected in the followingways.Hypergeomet-
ric series are D-finite: this is an immediate consequence of the fact

that coefficient sequences of D-finite series are exactly P-recursive

sequences [68]. Algebraic series are D-finite: this fact has been ob-

served by Abel in 1827. Algorithms for the computation of differen-

tial equations satisfied by algebraic functions were studied from the

complexity perspective by Chudnovsky and Chudnovsky [30], and

more recently by Bostan et al. [12]. Finally, understanding which

power series are simultaneously algebraic and hypergeometric is

an old and difficult question. It was solved for 2𝐹1s by Schwarz [66]

in 1873 and in general only one century later, by Beukers and Heck-

man [7]; the decision procedure is completely algorithmic.
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Similar definitions for algebraicity and D-finiteness apply to

multivariate power series. For instance, 𝑆 ∈ Q[[𝑥,𝑦, 𝑡]] is algebraic
if it is the root of a non-trivial polynomial 𝑃 ∈ Q[𝑥,𝑦, 𝑡,𝑇 ], and
it is D-finite if the set of all partial derivatives of 𝑆 spans a finite-

dimensional vector space overQ(𝑥,𝑦, 𝑡), in other words if 𝑆 satisfies
a system of linear PDEs with polynomial coefficients of the form∑︁
𝑖

𝑎𝑖 (𝑡, 𝑥,𝑦)
𝜕𝑖𝑆

𝜕𝑥𝑖
= 0,

∑︁
𝑖

𝑏𝑖 (𝑡, 𝑥,𝑦)
𝜕𝑖𝑆

𝜕𝑦𝑖
= 0,

∑︁
𝑖

𝑐𝑖 (𝑡, 𝑥,𝑦)
𝜕𝑖𝑆

𝜕𝑡𝑖
= 0.

As in the univariate case, multivariate algebraic series are D-finite [54].

1.6 Walks in the quarter plane
Let us now turn back to the general problem stated in §1.2. The

simplest possible cone is the full space C = R𝑑 . In that case, the

full generating function has the simplest possible structure: it is

rational. Indeed, a simple reasoning shows that

𝑎𝑛 = |S |𝑛 , i.e. 𝐴(𝑡) =
∑︁
𝑛≥0

𝑎𝑛𝑡
𝑛 =

1

1 − |S | 𝑡 ,

and, more precisely, 𝐴(𝑡 ; x) = ∑
𝑛,i 𝑎𝑛;ixi𝑡𝑛 = 1/(1 − 𝑡 ∑s∈S xs) .

The next case by increasing order of difficulty is when the cone

is a half-space, typically R𝑑−1 × R≥0. The full generating function
𝐴(𝑡 ; x) is generally not rational anymore, but is nevertheless still

algebraic. This result is due to Bousquet-Mélou and Petkovšek,

see [25, Theorem 13]. The main ingredient in the proof is the so-

called kernel method. A powerful generalization of this method is

presented in [23], itself a special case of Popescu’s theorem on Artin

approximation with nested conditions [63, Thm. 1.4].

Next comes the case of a cone obtained as the intersection of two

half-spaces. Up to modifying the step set by a linear transforma-

tion, one may assume that the cone is the basic orthant C = R𝑑≥0.
Quite surprisingly at first sight, generating functions for walks

constrained to evolve in an orthant need not be algebraic, and not

even D-finite. The first model of walks for which the generating

function was proved to be non-D-finite (by Bousquet-Mélou and

Petkovšek, in [26, §3]) is the so-called knight walks model: these are

walks confined to N2 that start from 𝑝0 = (1, 1) and take their steps
in S = {(2,−1), (−1, 2)}. This surprising result was the starting

point of a massive classification effort, initiated by Mishna [57],

intensified in a seminal work by Bousquet-Mélou and Mishna [24],

and continued by many researchers.

From now on, we focus on small-step walks (or nearest-neighbor
walks) in the quarter plane. These are walks in the lattice Z2, con-
fined to the cone C = R2+ (we will often say confined to N2), that
start at 𝑝0 = (0, 0) and use steps in a model S which is a fixed

subset of {↙,←,↖, ↑,↗,→,↘, ↓}. Let us denote by 𝑓𝑛;𝑖, 𝑗 the
number of walks of length 𝑛 ending at (𝑖, 𝑗). The full counting
sequence (𝑓𝑛;𝑖, 𝑗 )𝑛,𝑖, 𝑗 admits several interesting specializations:

• 𝑒𝑛 := 𝑓𝑛;0,0, the number of walks of length 𝑛 returning to (0, 0);
• 𝑓𝑛 :=

∑
𝑖, 𝑗≥0 𝑓𝑛;𝑖, 𝑗 , the number of walks with prescribed length 𝑛.

To these enumeration sequences one attaches various power

series, namely the full generating function

𝐹S (𝑡 ;𝑥,𝑦) =
∞∑︁
𝑛=0

( ∞∑︁
𝑖, 𝑗=0

𝑓𝑛;𝑖, 𝑗𝑥
𝑖𝑦 𝑗

)
𝑡𝑛 ∈ Q[𝑥,𝑦] [[𝑡]],

and its corresponding univariate specializations:

Figure 2: The 79 models of small-step walks in the quarter
plane: 74 non-sigular, 5 singular.

• 𝐹S (𝑡 ; 0, 0) :=
∑
𝑛≥0 𝑒𝑛𝑡

𝑛
, the “excursion generating function”;

• 𝐹S (𝑡 ; 1, 1) :=
∑
𝑛≥0 𝑓𝑛𝑡

𝑛
, the “length generating function”;

• 𝐹S (𝑡 ; 1, 0), resp. 𝐹S (𝑡 ; 0, 1), the generating function of walks

ending on the horizontal, resp. vertical, axis (“boundary returns”);

• “𝐹S (𝑡 ; 0,∞)” := [𝑥0] 𝐹S (𝑡 ;𝑥, 1/𝑥), the generating function of

walks ending on the diagonal 𝑥 = 𝑦 of N2 (“diagonal returns”).

(Here, and in all the text, [𝑥𝑛] denotes coefficient extraction of 𝑥𝑛 .)

The general questions formulated in §1.2 specialize to the quarter-

plane setting as follows: given the model S , what can be said

about the generating function 𝐹S (𝑡 ;𝑥,𝑦), resp. about the counting
sequence (𝑓𝑛;𝑖, 𝑗 )𝑖, 𝑗,𝑛 , and their specializations? More precise sub-

questions concern structures, explicit forms and asymptotics:

• Structures: is 𝐹S algebraic? Is it D-finite?

• Explicit forms: do 𝐹S (𝑡 ;𝑥,𝑦) and (𝑓𝑛;𝑖, 𝑗 )𝑖, 𝑗,𝑛 (or some of their

specializations) admit closed-form expressions?

• Asymptotics: how do (𝑒𝑛)𝑛 and (𝑓𝑛)𝑛 behave when 𝑛 →∞?

1.7 Small-step models of interest
Among the 2

8
models S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are trivial

(e.g., if S ⊆ {↙,←,↖,↘, ↓}, then 𝐹S (𝑡 ;𝑥,𝑦) ≡ 1), others are

intrinsic to the half-plane (therefore 𝐹S (𝑡 ;𝑥,𝑦) is algebraic), others
come in pairs by diagonal symmetry (if S and S ′ are symmetric

with respect to the diagonal of N2, then 𝐹S (𝑡 ;𝑥,𝑦) ≡ 𝐹S ′ (𝑡 ;𝑦, 𝑥)).
After discarding these cases, Bousquet-Mélou and Mishna [24]

found that there are 79 interesting distinct models of small-step

walks in the quarter plane. They are represented in Fig. 2 and are

grouped in two classes: 74 non-singular models (or genus-1 models)
and 5 singular models (or genus-0 models). Singular models are the

ones for which walks never return to the origin, that is for which

the excursions generating function is trivial 𝐹 (𝑡 ; 0, 0) ≡ 1.

Among the 79 models, a few “special” ones are considered in-

teresting enough and were sufficiently studied in order to deserve

names (as “special functions” do): Tandem: (the one in §1.1);

Pólya: ; Kreweras: ; Gessel: ; Gouyou-Beauchamps: ;
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King: . The objective is to classify all these 79 models according

to the structural properties of their generating functions.

1.8 Two nice models: Kreweras’ and Gessel’s
An interesting model in the world of quarter-plane walks is Krew-

eras’ model S = {↓,←,↗}. It is related to a version of the three-

candidate ballot problem [61] and also to an applied probabilistic

context [39] (double queue that arises when arriving customers

simultaneously place two demands handled independently by two

servers). In a long paper, Kreweras [49] obtained the following re-

sult, which was reproved using various methods in [5, 16, 20, 21, 42,

45, 50, 61]. References [16, 45] provide two different computer-aided

proofs. In what follows, we denote by 𝐾 (𝑡 ;𝑥,𝑦) = 𝐹S (𝑡 ;𝑥,𝑦) the
full generating function for Kreweras walks in the quarter plane,

and by 𝐾 (𝑡 ; 0, 0) the generating function for Kreweras excursions.

Theorem 1.3 ([49]). 𝐾 (𝑡 ; 0, 0) = 1 + 2𝑡3 + 16𝑡6 + · · · is equal to

3𝐹2

(
1

3

2

3
1

3

2
2

���� 27 𝑡3) = ∞∑︁
𝑛=0

4
𝑛
(
3𝑛
𝑛

)
(𝑛 + 1) (2𝑛 + 1) 𝑡

3𝑛 . (3)

Theorem 1.3 implies, together with the results in §1.5 (e.g. [7]) that

𝐾 (𝑡 ; 0, 0) is an algebraic power series. In fact, much more is true:

Theorem 1.4 ([21, 39, 42]). 𝐾 (𝑡 ;𝑥,𝑦) is algebraic.

The most difficult model of small-step walks in the quarter plane

is Gessel’s model S = {↗,↙,←,→}. In 2001, Ira Gessel formu-

lated two conjectures equivalent to the following statements:

Conjecture 1. The generating function 𝐺 (𝑡 ; 0, 0) = 1 + 2𝑡2 +
11𝑡4 + 85𝑡6 + 782𝑡7 + · · · of Gessel excursions is equal to

3𝐹2

(
5

6

1

2
1

5

3
2

���� 16𝑡2) = ∞∑︁
𝑛=0

( 5
6
)𝑛 ( 1

2
)𝑛

( 5
3
)𝑛 (2)𝑛

(4𝑡)2𝑛 .

Conjecture 2. The generating function 𝐺 (𝑡 ;𝑥,𝑦) is not D-finite.

Here, 𝐺 (𝑡 ;𝑥,𝑦) = 𝐹S (𝑡 ;𝑥,𝑦) for S = {↗,↙,←,→} denotes
the full generating function for Gessel walks in the quarter plane,

and𝐺 (𝑡 ; 0, 0) denotes the generating function for Gessel excursions.

1.9 Algebraic translation: functional equations
Gessel’s problem admits the following purely algebraic reformu-

lation. If 𝐺 (𝑡 ;𝑥,𝑦) ∈ Q[𝑥,𝑦] [[𝑡]] denotes the full generating func-

tion for Gessel walks in the quarter plane, then a simple inclusion-

exclusion reasoning represented pictorially in Fig. 3 implies that

𝐺 (𝑡 ;𝑥,𝑦) satisfies a functional equation called the kernel equation

𝐺 (𝑡 ;𝑥,𝑦) =1 + 𝑡
(
𝑥𝑦 + 𝑥 + 1

𝑥𝑦
+ 1

𝑥

)
𝐺 (𝑡 ;𝑥,𝑦) (4)

− 𝑡
(
1

𝑥
+ 1

𝑥

1

𝑦

)
𝐺 (𝑡 ; 0, 𝑦) − 𝑡 1

𝑥𝑦
(𝐺 (𝑡 ;𝑥, 0) −𝐺 (𝑡 ; 0, 0)).

Moreover,𝐺 (𝑡 ;𝑥,𝑦) is completely characterized by the functional

equation (4): it is its unique solution inQ[𝑥,𝑦] [[𝑡]], and even in the
ring Q[[𝑥,𝑦, 𝑡]]. Therefore, the task is simply to solve equation (4).

To any of the 79 models introduced in §1.7 is attached a very

similar functional equation. Again, this equation merely reflects a

step-by-step construction of quarter-plane walks, and is based on

themost elementary decomposition: awalk is either the emptywalk,

Figure 3: Functional equation for Gessel walks, pictorially.

or a shorter walk followed by a permissible step. This observation

is naturally translated into a generating function equation using the
inventory 𝜒S (𝑥,𝑦) :=

∑
(𝑖, 𝑗) ∈S 𝑥𝑖𝑦 𝑗 , and the kernel 𝔎S (𝑡 ;𝑥,𝑦) :=

𝑥𝑦 (1 − 𝑡 𝜒S (𝑥,𝑦)). The decomposition is translated into the kernel
equation (we omit the subscript S ):

𝔎(𝑡 ;𝑥,𝑦)𝐹 (𝑡 ;𝑥,𝑦) =𝑥𝑦 + 𝔎(𝑡 ;𝑥, 0)𝐹 (𝑡 ;𝑥, 0) (5)

+ 𝔎(𝑡 ; 0, 𝑦)𝐹 (𝑡 ; 0, 𝑦) − 𝔎(𝑡 ; 0, 0)𝐹 (𝑡 ; 0, 0) .
Observe that the last term of the right-hand side occurs only if the

step↙ belongs to the model S .

2 MAIN RESULTS
In §1.9 we saw that classifying lattice walks in the quarter plane

amounts to solving 79 equations of the form (5). In this section we

describe several classes of results that have been obtained, using

computer algebra tools, on the solutions of these 79 equations.

2.1 Algebraicity of Gessel walks
After a first attempt in [45], Gessel’s first conjecture was finally

solved in 2009 by Kauers, Koutschan and Zeilberger in [44] using

an extension of the guess-and-prove approach described in [45].

Theorem 2.1 ([44]). 𝐺 (𝑡 ; 0, 0) = 3𝐹2

(
5/6 1/2 1

5/3 2

���� 16𝑡2) .
This result implies in particular that𝐺 (𝑡 ; 0, 0) is D-finite, but has

no immediate implications concerning the D-finiteness of𝐺 (𝑡 ;𝑥,𝑦).
It came as a total surprise when Bostan and Kauers [16] proved

that Gessel’s second conjecture was false.

Theorem 2.2 ([16]). The generating function 𝐺 (𝑡 ;𝑥,𝑦) for Gessel
walks is algebraic.

Prior to this result, even the algebraicity of 𝐺 (𝑡 ; 0, 0) had been

overlooked, even though the classical results recalled in §1.5 apply.

The original discovery and proof of Theorem 2.2 was computer-

driven, and used a guess-and-prove approach, based on Hermite-
Padé approximants [16]. Note that as a byproduct of this proof, an
estimate on the size of the minimal polynomial of 𝐺 (𝑡 ;𝑥,𝑦) has
been given: it has more than 10

11
terms when written in dense

(expanded) form, for a total size of ≈ 30Gb (!). The guess-and-prove

method is a 3-step process:

(S1) compute 𝐺 (𝑡 ;𝑥,𝑦) to precision 𝑡1200 (≈ 1.5 billion coeffs!);

(S2) conjecture polynomial equations for𝐺 (𝑥, 0; 𝑡) and𝐺 (0, 𝑦; 𝑡)
(degree 24 each, coeffs. of degree (46, 56), with 80-bit digits

coeffs.), relying on the Beckermann–Labahn algorithm [4];

(S3) conclude the proof by computing multivariate resultants of

(very big) polynomials (30 pages each), using fast algorithms

for manipulating algebraic series [14].
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Several human proofs of Theorems 2.1 and 2.2 have been discovered

since the publication of [16]: the first one used complex analy-

sis [17], the second one was purely algebraic [22], the third one is

both combinatorial and analytic [28], while the more recent one is

probably the most elementary [6].

2.2 Explicit form for 𝐺 (𝑡 ;𝑥,𝑦)
An interesting refinement of Theorem 2.2 is the next result, which

contains a closed-formula for the generating function 𝐺 (𝑡 ;𝑥,𝑦).

Theorem 2.3 ([16]). Let𝑉 = 1 + 4𝑡2 + · · · be the root in𝑄 [[𝑡]] of
(𝑉 − 1) (1 + 3/𝑉 )3 = (16𝑡)2, let 𝑈 = 1 + 2𝑡2 + 16𝑡4 + 2𝑥𝑡5 + · · · be
the root in 𝑄 [𝑥] [[𝑡]] of

𝑥 (𝑉 − 1) (𝑉 + 1)𝑈 3 − 2𝑉 (3𝑥 + 5𝑥𝑉 − 8𝑉𝑡)𝑈 2

−𝑥𝑉 (𝑉 2 − 24𝑉 − 9)𝑈 + 2𝑉 2 (𝑥𝑉 − 9𝑥 − 8𝑉𝑡)= 0,

and let 𝑊 = 𝑡2 + (𝑦 + 8)𝑡4 + 2(𝑦2 + 8𝑦 + 41)𝑡6 + · · · be the root in
𝑄 [𝑦] [[𝑡]] of 𝑦 (1 −𝑉 )𝑊 3 + 𝑦 (𝑉 + 3)𝑊 2 − (𝑉 + 3)𝑊 +𝑉 − 1 = 0.

Then 𝐺 (𝑡 ;𝑥,𝑦) is equal to
64(𝑈 (𝑉+1)−2𝑉 )𝑉 3/2

𝑥 (𝑈 2−𝑉 (𝑈 2−8𝑈 +9−𝑉 ))2 −
𝑦 (𝑊 −1)4 (1−𝑊𝑦)𝑉 −3/2
𝑡 (𝑦+1) (1−𝑊 ) (𝑊 2𝑦+1)2

(1 + 𝑦 + 𝑥2𝑦 + 𝑥2𝑦2)𝑡 − 𝑥𝑦
− 1

𝑡𝑥 (𝑦 + 1) .

Again, the original discovery and proof of this result was computer-

driven, based on effective Galois theory. During the proof, a few

other remarkable facts have been noticed, namely that 𝐺 (𝑡 ;𝑥,𝑦)
can be expressed using nested radicals; for instance the length

generating function𝐺 (𝑡 ; 1, 1) = 1+ 2𝑡 + 7𝑡2 + 21𝑡3 + 78𝑡4 + · · · reads

𝐺 (𝑡 ; 1, 1) = − 1

2𝑡
+
√
3

6𝑡

√√√
𝐻 (𝑡) +

√︄
16𝑡 (2𝑡 + 3) + 2
(1 − 4𝑡)2𝐻 (𝑡)

− 𝐻 (𝑡)2 + 3 ,

where 𝐻 (𝑡) =
√︁
1 + 4𝑡1/3 (1 + 4𝑡)2/3/(1 − 4𝑡)4/3 . The proof of The-

orem 2.3 uses the minimal polynomials for 𝐺 (𝑡 ;𝑥, 0) and 𝐺 (𝑡 ; 0, 𝑦)
that were guessed and proved during the algebraicity proof. A

striking feature of Theorem 2.3 is the relative simplicity of the

closed-form expression, especially when compared to the size of

the minimal polynomial of 𝐺 (𝑡 ;𝑥,𝑦). Similarly to Theorem 2.2, the

result in Theorem 2.3 admits several recent human proofs [6, 17, 22].

2.3 Models with D-finite generating functions
The computer-driven approach that allowed Bostan and Kauers [16]

to discover and prove the properties of the puzzling generating func-

tion for Gessel walks was used as early as 2008 by the same authors

to provide a (conjecturally) exhaustive list of models having (con-

jecturally) D-finite and algebraic generating functions [15]. That re-

sulted in an experimental classification synthesized in Fig. 4, which

displays 23models of walks in the quarter plane forwhich the length

generating function 𝐹 (𝑡 ; 1, 1) was conjectured to be D-finite. The

computerized discovery used again (differential) guessing, based

on Hermite–Padé approximation. Note that the guess-and-prove

method used to prove Theorem 2.2 is robust enough to also prove

that all models in Fig. 4 are indeed D-finite (with resultant computa-

tions in (S3) replaced by differential closure algorithms). The labels

used in column “OEIS” are taken from Sloane’s On-Line Encyclo-

pedia of Integer Sequences [67]. The “alg?” column refers to the

algebraicity or transcendence of 𝐹 (𝑡 ; 1, 1): cases marked “Y” were

OEIS S alg? asymptotics OEIS S alg? asymptotics

1 A005566 N
4

𝜋
4
𝑛

𝑛
13 A151275 N

12

√
30

𝜋
(2
√
6)𝑛

𝑛2

2 A018224 N
2

𝜋
4
𝑛

𝑛
14 A151314 N

√
6𝜆𝜇𝐶5/2
5𝜋

(2𝐶 )𝑛
𝑛2

3 A151312 N

√
6

𝜋
6
𝑛

𝑛
15 A151255 N

24

√
2

𝜋
(2
√
2)𝑛

𝑛2

4 A151331 N
8

3𝜋
8
𝑛

𝑛
16 A151287 N

2

√
2𝐴7/2
𝜋

(2𝐴)𝑛
𝑛2

5 A151266 N
1

2

√︃
3

𝜋
3
𝑛

𝑛1/2 17 A001006 Y
3

2

√︃
3

𝜋
3
𝑛

𝑛3/2

6 A151307 N
1

2

√︃
5

2𝜋
5
𝑛

𝑛1/2 18 A129400 Y
3

2

√︃
3

𝜋
6
𝑛

𝑛3/2

7 A151291 N
4

3

√
𝜋

4
𝑛

𝑛1/2 19 A005558 N
8

𝜋
4
𝑛

𝑛2

8 A151326 N
2√
3𝜋

6
𝑛

𝑛1/2

9 A151302 N
1

3

√︃
5

2𝜋
5
𝑛

𝑛1/2 20 A151265 Y
2

√
2

Γ (1/4)
3
𝑛

𝑛3/4

10 A151329 N
1

3

√︃
7

3𝜋
7
𝑛

𝑛1/2 21 A151278 Y
3

√
3√

2Γ (1/4)
3
𝑛

𝑛3/4

11 A151261 N
12

√
3

𝜋
(2
√
3)𝑛

𝑛2
22 A151323 Y

√
23

3/4
Γ (1/4)

6
𝑛

𝑛3/4

12 A151297 N

√
3𝐵7/2
2𝜋

(2𝐵)𝑛
𝑛2

23 A060900 Y
4

√
3

3Γ (1/3)
4
𝑛

𝑛2/3

𝐴 = 1 +
√
2, 𝐵 = 1 +

√
3, 𝐶 = 1 +

√
6, 𝜆 = 7 + 3

√
6, 𝜇 =

√︃
4

√
6−1
19

Figure 4: Models with D-finite length generating function:
algebraicity of 𝐹S (𝑡 ; 1, 1), asymptotics of 𝑓𝑛 = [𝑡𝑛]𝐹S (𝑡 ; 1, 1).
For models 11, 13 and 15, estimates only hold for even 𝑛; for
odd 𝑛, the constants change into 18

𝜋 ,
144√
5

and 32

𝜋 [56].

conjectured algebraic (using algebraic Hermite–Padé approxima-

tion), the other cases were conjectured transcendental. For cases

1–22, these results on D-finiteness, resp. algebraicity, were con-

firmed by human proofs obtained almost simultaneously with [15]

by Bousquet-Mélou and Mishna [24], using a uniform approach.

We discussed the difficult case 23 (Gessel’s model) in §2.1 and §2.2.

Concerning the conjectural transcendence results, the first uni-

fied proof was given in [13] and it is computer-driven; this will be

discussed in §2.6. The reference [13] also contains the first proof,

again computer-driven, that the (differential / recurrence / alge-

braic) equations conjectured in [15] are indeed correct.

In addition, Bostan and Kauers demonstrated that computer al-

gebra tools are also able to produce conjectural expressions for

the asymptotics of 𝑓𝑛 = [𝑡𝑛]𝐹 (𝑡 ; 1, 1). Their results are displayed
in column “asymptotics” of Fig. 4 and have been obtained using a

combination of algorithmic tools, including Hermite–Padé approxi-

mation, constant recognition algorithms built on integer relation

detection algorithms like LLL [53] and PSLQ [37], and convergence

acceleration techniques [27]. These results have been confirmed a

few years later by human proofs by Melczer and Wilson [56], using

the theory of analytic combinatorics in several variables [62] that

extends the univariate theory from [38].

2.4 The group of a model
In order to formulate more results on the classification of lattice

walks in the quarter plane, we need to introduce an important

concept, the group of a small-step walk model S . Let us decompose

the inventory 𝜒S of S along powers of 𝑥 , resp. of 𝑦, as follows:

𝜒S (𝑥,𝑦) =
∑︁
(𝑖, 𝑗) ∈S

𝑥𝑖𝑦 𝑗 =

1∑︁
𝑖=−1

𝐵𝑖 (𝑦)𝑥𝑖 =
1∑︁

𝑗=−1
𝐴 𝑗 (𝑥)𝑦 𝑗 .

http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900
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The basic, yet fundamental, observation is that 𝜒S (𝑥,𝑦) is left
invariant under two rational transformations

𝜓 (𝑥,𝑦) =
(
𝑥,
𝐴−1 (𝑥)
𝐴+1 (𝑥)

1

𝑦

)
, 𝜙 (𝑥,𝑦) =

(
𝐵−1 (𝑦)
𝐵+1 (𝑦)

1

𝑥
,𝑦

)
,

and thus under any element of the group GS :=
〈
𝜓, 𝜙

〉
of bira-

tional transformations generated by𝜓 and 𝜙 . When it is finite, GS

is isomorphic to a dihedral group, since 𝜓 and 𝜙 are involutions.

Mishna [57] showed that for the 23 models in Fig. 4, the group is

finite, of cardinality either 4 (for models 1–16 with an axial sym-

metry), 6 (for the models 17, 18, 20, 21, 22, with a diagonal or an

anti-diagonal symmetry), or 8 (for the remaining models 19 and 23).

Bousquet-Mélou and Mishna [24] proved in addition that for all the

other 56 models, the group is infinite.

At this point, we know that the finiteness of the group for some

model implies the D-finiteness of the generating function for that

model. One important remaining question is: is the converse true?

Another important question is: in the D-finite cases, are there any

closed-form expressions for the generating functions? The next two

subsections will bring answers and completely clarify the situation.

2.5 Explicit expressions
Models 20–23 in Fig. 4 admit full generating functions that are

algebraic. Moreover, closed formulas exist for them. For the three

models 20–22 related to the Kreweras model, such formulas are

displayed in [24, §6]. The most difficult case among these four is

model 23 (Gessel’s), for which Theorem 2.3 provides a closed-form

expression. We now focus on models 1–19. The natural question

is whether closed-form expressions also exist in these cases. This

question has recently received a positive answer using computer

algebra tools in [13]: 𝐹S is uniformly expressible using iterated

integrals of hypergeometric 2𝐹1 expressions. More precisely, the

following structure result, already conjectured in [15, §3.2], holds.

Theorem 2.4 ([13]). Let S be one of the models 1–19 in Fig. 4.
Then 𝐹S (𝑡 ;𝑥,𝑦) is expressible as a finite sum of iterated integrals
of products of algebraic functions in 𝑥,𝑦, 𝑡 and of expressions of the

form 2𝐹1

(
𝑎 𝑏

𝑐

����𝑤 (𝑡)) , where 𝑐 ∈ N and𝑤 (𝑡) ∈ Q(𝑡).

Once again, the discovery and proof of this result are computer-

driven; no human proof is available yet. The proof is based, among

other tools, on creative telescoping, an efficient algorithmic tech-

nique for the symbolic integration of multivariate functions with

parameters. This powerful computer algebra tool was introduced in

the early 1990s by Zeilberger in the “hyper” setting [70, 71], vastly

generalized by Chyzak in the 2000s to the framework of holonomic

functions [31], and further enhanced by Koutschan in the 2010s [46].

Since its birth, 30 years ago, the methodology of creative telescop-

ing gained more and more popularity. To date, there are no less

than four generations of creative telescoping algorithms; examples

of 4G integration algorithms are in [18] and [11]. For more details,

we refer the reader to the surveys [29, 32, 47].

Using the kernel method, Bousquet-Mélou and Mishna showed

in [24, Prop. 8] that the generating function 𝐹S (𝑡 ;𝑥,𝑦) formodels 1–

19 can be written in terms of the positive part of a rational function,

𝐹S (𝑡 ;𝑥,𝑦) =
1

𝑥𝑦
[𝑥>] [𝑦>] 𝑁 (𝑥,𝑦)

1 − 𝑡𝑆 (𝑥,𝑦) , (6)

where 𝑁 (𝑥,𝑦) and 𝑆 (𝑥,𝑦) are certain Laurent polynomials in 𝑦

with coefficients that are rational functions in 𝑥 . By a result of Lip-

shitz [54, Thm. 2.7], Equation (6) already implies the D-finiteness of

𝐹S (𝑡 ;𝑥,𝑦). To obtain explicit differential equation for 𝐹S (𝑡 ;𝑥,𝑦)
and its specializations, the key is creative telescoping. Once a linear

differential equation is obtained, the last steps in the proof of Theo-

rem 2.4 rely on factoring differential operators [69] and on solving

second-order differential equations in terms of 2𝐹1s [43, 51].

The expressions of the generating functions 𝐹 (𝑡 ; 0, 0), 𝐹 (𝑡 ; 0, 1),
𝐹 (𝑡 ; 1, 0), 𝐹 (𝑡 ; 1, 1), 𝐹 (𝑡 ;𝑥, 0), 𝐹 (𝑡 ; 0, 𝑦) and 𝐹 (𝑡 ;𝑥,𝑦) are too large to
be displayed here, and are available on-line. It turns out that the in-

volved hypergeometric functions have a very particular form: they

are intimately related to elliptic integrals such as (2). For instance,

for King walks (model 4), the length generating function is

𝐹 (𝑡 ; 1, 1) = 1

𝑡

∫ 𝑡

0

1

(1 + 4𝑥)3
· 2𝐹1

(
3

2

3

2

2

���� 16𝑥 (1 + 𝑥)(1 + 4𝑥)2

)
𝑑𝑥 . (7)

No human proof is currently available for the structure Theorem 2.4,

and even less for the explicit expressions implied by it. However, the

book [36] probably contains the premises of the key explanation:

the kernel for models 1–19 is an elliptic curve, therefore the solution

of the kernel equation (5) should be related to elliptic integrals.

2.6 Transcendence results
As previously mentioned, models 20–23 in Fig. 4 admit full gener-

ating functions that are algebraic. What about the full generating

function 𝐹S (𝑡 ;𝑥,𝑦), and its combinatorially meaningful special-

izations 𝐹S (𝑡 ; 0, 0), 𝐹S (𝑡 ; 1, 0), 𝐹S (𝑡 ; 0, 1) and 𝐹S (𝑡 ; 1, 1) for the
models 1–19? Computer algebra is able to answer this question.

Theorem 2.5 ([13]). Let S be one of the models 1–19 in Fig. 4.
Then for any (𝛼, 𝛽) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}, the power series
𝐹S (𝑡 ;𝛼, 𝛽) is transcendental, except in the following four cases:

• S = (model 17, “Tandem”) and (𝛼, 𝛽) = (1, 1),
• S = (model 18) and (𝛼, 𝛽) ∈ {(1, 0), (0, 1), (1, 1)}.

As a consequence, 𝐹S (𝑡 ;𝑥,𝑦), 𝐹S (𝑡 ;𝑥, 0), and 𝐹S (𝑡 ; 0, 𝑦) are
transcendental for all the 19 models. Additionally, the generating
functions of the four algebraic cases are equal to:

• 𝐹 (𝑡 ; 1, 1) = 1

2𝑡2

(
1 − 𝑡 −

√︁
(1 + 𝑡) (1 − 3𝑡)

)
,

• 𝐹 (𝑡 ; 1, 1) = 𝐹 (2𝑡 ; 1, 1),

• 𝐹 (𝑡 ; 1, 0) = 𝐹 (𝑡 ; 0, 1) = (1−6𝑡 )
3/2 (1+2𝑡 )1/2−4𝑡2+8𝑡−1

32𝑡3
.

Again, the proof of Theorem 2.5 is computer-driven and heavily

relies on the use of several modern computer algebra algorithms.

Transcendence proofs had been considered in some isolated cases

only. The computer-aided proof of Theorem 2.5 was the first com-

plete and unified transcendence proof applying to all 19 models.

2.7 Non-D-finiteness results
The last question in view of the complete classification of small

step walks in the quarter plane concerns the 56 models with an

infinite group. Among them, 5 models are singular; for them, a

variant of the kernel method, called the iterated kernel method
was used by Mishna and Rechnitzer [58] (for two models) and

by Melczer and Mishna [55] (for all five models), who showed

http://specfun.inria.fr/chyzak/ssw/closed_forms.html
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Figure 5: Rotations of a scarecrow: models with zero drift
that have a non-D-finite generating function.

that the length generating function 𝐹 (𝑡 ; 1, 1), and thus also the

full generating function 𝐹 (𝑡 ;𝑥,𝑦), are non-D-finite. The remaining

question concerns the 51 non-singular models with an infinite

group: is the full generating function again non-D-finite?

Computer algebra is able to help prove the following result.

Theorem 2.6 ([19]). Let S ⊆ {0,±1}2 be any of the 51 nonsin-
gular step sets in N2 with infinite group GS . Then the generating
function 𝐹S (𝑡 ; 0, 0) of S -excursions is not D-finite. Equivalently, the
excursion sequence (𝑒𝑛)𝑛≥0 is not P-recursive.

In particular, the full generating function 𝐹S (𝑡 ;𝑥,𝑦) is not D-
finite in the 51 cases, since D-finiteness is preserved by specializa-

tion [54]. This corollary had been already obtained by Kurkova and

Raschel [52], but the approach in [19] is simpler, and at the same

time it delivers a more accurate information. This new proof com-

bines asymptotic information about the coefficients 𝑒𝑛 of 𝐹S (𝑡 ; 0, 0),
and arithmetic information about the constrained behavior of the

asymptotics of 𝑒𝑛 when 𝐹S (𝑡 ; 0, 0) is D-finite. More precisely, [19]

first makes explicit consequences of the general results by Denisov

andWachtel [34] in the case of walks in the quarter plane. This anal-

ysis implies that, when 𝑛 tends to infinity, 𝑒𝑛 behaves like 𝜅 ·𝜌𝑛 ·𝑛𝛼 ,
where 𝜅 = 𝜅 (S ) > 0 is a real number, 𝜌 = 𝜌 (S ) is an algebraic

number, and 𝛼 = 𝛼 (S ) is a real number such that 𝑐 = − cos( 𝜋
1+𝛼 )

is an algebraic number. More explicitly, 𝜌 := 𝜒 (𝑥0, 𝑦0) and

𝛼 := −1 − 𝜋

arccos(−𝑐) with 𝑐 :=

𝜕2𝜒
𝜕𝑥𝜕𝑦√︂
𝜕2𝜒

𝜕𝑥2
· 𝜕

2𝜒

𝜕𝑦2

(𝑥0, 𝑦0),

where (𝑥0, 𝑦0) is the unique solution in R2
>0

of

𝜕𝜒

𝜕𝑥
=
𝜕𝜒

𝜕𝑦
= 0.

Starting from the step set S , real approximations for 𝜌 , 𝛼 and 𝑐

can be determined to arbitrary precision. Moreover, exact min-

imal polynomials of 𝜌 and 𝑐 can be determined algorithmically,

using tools from elimination theory, namely Gröbner bases [33]. A

classical result in the arithmetic theory of linear differential equa-

tions [40] about the possible asymptotic behavior of an integer-

valued, exponentially bounded D-finite sequence, states that if such

a sequence grows like 𝜅 · 𝜌𝑛 · 𝑛𝛼 , then 𝛼 is necessarily a rational
number . For the 51 cases of nonsingular walks with infinite group,

[19] proves that the constant 𝛼 = 𝛼 (S ) is not a rational number;

the proof ultimately amounts to checking that some explicit polyno-

mials inQ[𝑡], obtained by algebraic elimination, are not cyclotomic;

this is a task that can be performed algorithmically [1].

Example 2.7. Consider the three scarecrows models depicted in

Fig. 5. For the first and the third, the approach sketched above shows

that the excursions sequence (𝑒𝑛)𝑛 = (1, 0, 0, 2, 4, 8, 28, 108, . . .)
is asymptotically∼ 𝜅 ·5𝑛 ·𝑛𝛼 , for𝛼 = −1− 𝜋

arccos(1/4) = −3.383396 . . .
The irrationality of 𝛼 prevents 𝐹S (𝑡 ; 0, 0) from being D-finite.

2.8 Summary: classification of 2D walks
Definition 2.8. The orbit sum of a quarter-plane model S with

finite group GS is the following polynomial in Q[𝑥, 𝑥−1, 𝑦,𝑦−1]:

OSS :=
∑︁

𝑔∈GS

(−1)𝑔𝑔(𝑥)𝑔(𝑦),

where for 𝑔 ∈ GS we write (−1)𝑔 for the sign of 𝑔, i.e., 1 if 𝑔 is the

product of an even number of generators 𝜙 and𝜓 , and else −1.

A simple computation shows that for exactly the four models

20–23, the orbit sum is zero. E.g., for the Kreweras model:

OS = 𝑥 · 𝑦 − 1

𝑥𝑦
· 𝑦 + 1

𝑥𝑦
· 𝑥 − 𝑦 · 𝑥 + 𝑦 · 1

𝑥𝑦
− 𝑥 · 1

𝑥𝑦
= 0.

We now state the main result of this text, obtained by combining

all previous results. It provides a complete characterization of the

non-singular small-step sets with D-finite full generating function.

The drift of a model S is defined as the sum of the vectors in S .

Theorem 2.9. Let S ⊆ {0,±1}2 be any of the 74 nonsingular
quarter-plane models in Fig. 2. The following assertions are equivalent:
(1) the full generating function 𝐹S (𝑡 ;𝑥,𝑦) is D-finite;
(2) the excursions generating function 𝐹S (𝑡 ; 0, 0) is D-finite;
(3) the sequence [𝑡2𝑛] 𝐹S (𝑡 ; 0, 0) is ∼ 𝐾 · 𝜌𝑛 · 𝑛𝛼 , with 𝛼 ∈ Q;
(4) the group GS is finite;
(5) S has either an axial symmetry, or zero drift and |S | ≠ 5.

Moreover, under (1)–(5), |GS | is equal to 2·min

{
ℓ ∈ N>0 | ℓ

𝛼+1 ∈ Z
}
.

Still under (1)–(5), 𝐹S (𝑡 ;𝑥,𝑦) is algebraic if and only if OSS = 0.
In this case, 𝐹S (𝑡 ;𝑥,𝑦) is expressible using nested radicals. Otherwise,
𝐹S (𝑡 ;𝑥,𝑦) is expressible using iterated integrals of 2𝐹1 expressions.
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