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A short proof of a non-vanishing result by
Conca, Krattenthaler and Watanabe

ALIN BOSTAN (%)

In their paper Regular sequences of symmetric polynomials [CKWO09],
Aldo Conca, Christian Krattenthaler and Junzo Watanabe needed to prove,
as an intermediate result, the fact that for any h > 1, the rational number

Lhz/?d (_l)hfb <h _ b) <2>b
= h-b 2b 3
is non-zero, except for h = 3. The proof in [CKWO09, Appendix, pp. 190-199]

performs a (quite intricate) 3-adic analysis. In this note, we propose a shorter
and elementary proof, based on the following observation.

Theorem 1. For any h > 1, consider the polynomials

Lh/3] h—b
O i A
= h—b( 2 )U < Q]

and sp, := h - ap. Then, the sequence (sp)p>1 satisfies the linear recurrence
(1) Sn+3 +28pao + Spe1 =U sy, foralln>1.
PrOOF. Using h/(h—b) =1+b/(h—b) and 2b- ("},%) = (h—b) - ("3,>3")

2b—1
yields the additive decomposition s, = pp + qn, where
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phi= Y (=1) ( o) )lf and g = g > (-1) o1 U

b=0 b=0

It is thus enough to prove that both (pp)n>1 and (gi)n>1 satisfy recurrence (1).
We prove this for (py)n>1, the proof for (gn)n>1 being similar. Extracting the
coefficient of U™ on both sides of (1) with (s ) replaced by (py) is equivalent to

h+3—n _q h+2—-n n h+1-n) [(h+1-n
2n 2n 2n \ 2n-2
and this identity is an immediate consequence of the Pascal triangle rule. [

(*) Indirizzo dell’A.: Inria, Université Paris-Saclay, France. E-mail: alin.bostan@inria.fr
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Corollary 2. For any h > 1, the rational number
L%J (_1)h7b (h _ b) (2>b
= h—1b 2b 3

s mon-zero, except for h = 3.

ProOF. With previous notation, we need to prove that ap(2/3) = 0 if and
only if h = 3. By Theorem 1, the sequence

— h—1 . . = (— —_
(up)p>1 = (3 h ah(z/s))th (—1,3,0,-45,324,...)
satisfies the linear recurrence relation
(2) Upt3 + 6Upio +9upr1 = 18u,, foralln > 1.

It is clearly enough to prove that u, = 0 if and only if h = 3. First, the terms
u, are all integers, by induction. Recurrence (2) shows that u,+3 and u,4+1
have the same parity for all n > 1; since ug = 3, this implies that us, is an odd
integer, and in particular it is nonzero, for all n > 1. It remains to consider
the odd subsequence (vj)n>1 = (u2n—1)n>1 = (—1,0,324,5508,2916,...).
From (2) it follows that the sequence (vp)p>1 satisfies the recurrence relation

(3) Unts — 18 Upao +297v,41 = 324 v, foralln > 1.

The same recurrence is also satisfied with (vp),>1 replaced by the sequence
(wn)n>1 = (vn/4)n>3 = (81,1377,729, —369603, . . .). In particular, w43 and
Wp+1 have the same parity for all n > 1, hence wy, is odd for any h > 1. It
follows that vy is nonzero for all h > 3, which concludes the proof. O

Remark 3. An equivalent, equally simple, but slightly more “conceptual” proof
of Theorem 1 is expressed in terms of generating functions. One starts with
the Pascal triangle rule in the equivalent form 3=, , (3)U%2z* = 1/(1—(14U)z2),
then extracts odd and even parts from it,

a 1—=z a—1 Uz?
Z sza _ Z ( )sza —
_ 2 U2’ _ — 2 (.2’
b <2b> (1-2)2-Uz o3 2b—1 (1-2)2-Uz
and finally substitutes successively a < h — b, z < —z, U + Uz; this yields

spalt = ——— — -, _ 1
h>1 " (1+2)2-Uz 2 (142)2-Uz (1+42)2-Uz

Recurrence (1) is now read off the denominator of the last rational function.
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Remark 4. We leave it as an open problem to prove that the polynomials
an(U) and s, (U) are irreducible in Q[U] for all h > 1. (We checked this for
h < 5000.) If true, this would imply a generalization of Corollary 2.
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