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One of Euler’s most profound discoveries, the Pentagonal Number Theorem {7], has been
beautifully described by André Weil:

Playing with series and products, he discovered a number of facts which to him looked
quite isolated and very surprising. He looked at this infinite product

(I-x)(1-xH)(1=x*)---

and just formally started expanding it. He had many products and series of that kind; in some
cases he got something which showed a definite law, and in other cases things seemed to be
rather random. But with this one, he was very successful. He calculated at least fifteen or
twenty terms; the formula begins like this:

HA-x")=1-x—-x*+x>+x"—x2?—x" ...

where the law, to your untrained eyes, may not be immediately apparent at first sight. In
modern notation, it is as follows:

o0 + 00
O (1-g")= X (-1)"q "2 (1
1 -

where I've changed x into ¢ since ¢ has become the standard notation in elliptic function-theory
since Jacobi. The exponents make up a progression of a simple nature. This became im-
mediately apparent to Euler after writing down some 20 terms; quite possibly he calculated
about a hundred. He very reasonably says, “this is quite certain, although I cannot prove it;”
ten years later he does prove it. He could not possibly guess that both series and product are
part of the theory of elliptic modular functions. It is another tie-up between number-theory and

elliptic functions [22, pp. 97-98].

G. Polya [16, pp. 91-98] provides a more extensive account of Euler’s wonderful discovery
together with a translation of Euler’s own description [6].

The numbers n(3n — 1)/2 are called “pentagonal numbers” because of their relationship to
pentagonal arrays of points. FIGURE 1 illustrates this. Legendre {14, pp. 131-133] observed that
purely formal multiplication of the terms on the left side of (1) produces the term =+ ¢” precisely
as often as N is representable as a sum of distinct positive integers; the “-+” is taken when there is
an even number of summands in the representation and the “—"" when the number of summands
is odd. For example,

o
n=1 n=2 n=3 n=4
FiGURE 1. The first four pentagonal numbers are 1, 5, 12, 22.
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(1-9)(0=¢*)(1-¢)(1-4g*)---
=1—q—ql_q3_q4+q1+2+q1+3+q1+4+q2+3
q1+3+4_q2+3+4+q|+2+3+4+ cen

The term partition is usually used to describe the representation of a positive integer as the sum of
positive integers. In this article, we are concerned with unordered partitions; two such partitions
are considered the same if the terms in the sum are the same, e.g,, 1 +2 and 2 + 1 are considered
as the same partition of 3. Thus Legendre’s observation may be matched up with the actual
infinite series expansion (1) as follows.

+q2+4+q3+4_q1+2+3_q1+2+4_

THEOREM. Let p.(n) denote the number of partitions of n into an even number of distinct
summands. Let p,(n) denote the number of partitions of n into an odd number of distinct summands.
Then

pe(n)=p ()= { (D I =iCr= /2 @)

0 otherwise.

The impact of Euler’s Pentagonal Number Theorem and Legendre’s observations on subse-
quent developments in number theory is enormous. Both (1) and (2) are justly famous. Indeed, F.
Franklin’s purely arithmetic proof of (2) [10] (see also [21, pp. 261-263]) has been described by H.
Rademacher as the first significant achievement of American mathematics. Franklin’s proof is so
elementary and lovely that it has been presented many times over in elementary algebra and
number theory texts [5, pp. 563-564], [11], [12, pp. 206—207], [13, pp. 286-287], [15, pp. 221-222].

It is, however, interesting to note that Euler’s proof of (1) alluded to by Weil remains almost
unknown. In recent years only Rademacher’s book has contained an exposition of it [17, pp.
224-226]. This book and earlier books [4, pp. 23-24] have presented it more or less as Euler did.
While the idea behind Euler’s proof is ingenious (as one would expect), the mathematical notation
of Euler’s day hides the fact that other results of significance are either transparent corollaries of
Euler’s proof or lie just below the surface. The remainder of this article is devoted to a long
overdue modern exposition of Euler’s proof and an examination of its consequences.

To begin, we define a function of two variables:

f(x,q)=1- i (1-xq)(1 = xg*)--- (1—x¢"~")x""'q". (3)

n=1

(Absolute convergence of all series and products considered is ensured by || < 1, |x| <|q|™'). We
first note that

[>2]

f,g)=TI(1-4q". (4)

n=1
This is because we may easily establish the identity
N N
=Y (1-g)(1-¢*) - (1-¢"")g"=T1(1-4") (5)
n=1 n=

by mathematical induction on N (a nice exercise for the reader). Thus (4) is the limiting case of (5)
as N — oo.

The main step in Euler’s proof is essentially the verification of the following functional
equation:

f(x,9)=1-x’q— x’¢*f(xq, q). (6)
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Actually Euler does equation (6) over and over, first with x = 1, then x = g, then x = g2, and so on
[7, pp. 473-475]; page 473 of his paper in Opera Omnia is shown on the next page. This repetition
of special cases of (6) tends to hide what exactly is happening. To prove (6), we take the defining
equation (3) through a sequence of algebraic manipulations:

f(x,9)=1-x%~- ;2(1 —xq)(1=xg?) -+ (1= xq"" ") x"* 1"

o0
=1-x%— Y (1-x¢)(1-x¢*)--- (1—xg")x"*?q""!
n=1

=1-x%— X (1-x¢*)--- (1-xg")x""?¢"" (1 - xq)

n=1

—1-xg= T (1=5g7) - (1= xg) 5"

n=1

o0
+ Z (1 _qu) (1 — xq )xn+3 n+2

n=1

0
=1 _x2q_x3q2_ Z (1 _qu) - (1 _an)xn+2qn+l

n=2

)
+ Z (1 _ qu) . (1 _ an)xn+3qn+2

n=1

©
=1_x2q_x3q2_ Z (l_xq2) (l_an+1) n+3qn+2

n=1
oo
+ Z (l_qu) (l—xq )xn+3 n+2
n=1
=1_x2q_x3q2_ Z (1 _qu).”(l_an)xn+3qn+2<(1_an+l)_1>
n=1

00
=1 _x2q_x3q2{1 _ Z (1 _qu)._ (1 _an)xn+lq2n+l}

n=1

=1-x’q—x’¢’f(xq, q).
If you followed the above sequence of steps carefully, you see how at each stage things seem to
fit together magically at just the right moment. Also you can appreciate the complication of
repeated presentation of the same steps first with x = 1, then x = ¢, then x = ¢2, etc. However, the

empirical discovery of (6) by Euler must have come precisely in this repetitive manner.
The rest of Euler’s proof is now almost mechanical. Equation (6) is repeatedly iterated; thus

f(x,q)=1-xq—x*¢*(1 - x°¢> = x’¢°f (xq°, q))
=1-x%-x*¢*+x°¢° + x°¢ (1 - *¢° = x’¢*f (x4, q))

(7)
N—-1
=1+ Z (_1)"(x3n——lqn(3n——l)/2+x3nqn(3n+1)/2)
n=1
+(- I)N 3IN—1 N(3N 1)/2_._( 1) 3N N(3N+I)/2f(qu’q)’
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47—48] EVOLUTIO PRODUCTI INFINITI (1— z)(1 — z2)(1—2%(1 — %) ete. 418

2. Quoniam hi termini omnes factorem habent communem 1—gz, eo
evoluto singuli termini discerpentur in binas partes, quas ita repraesentemus

A = g5+ a*(l — 22) + 2*(1 — 22) (1 — 2*) + 2°(1 — 22) (1 — 2*) (1 — 2*) + ete.
—a' =g (1 —22)— 2*(1 — z2)(1 — 2% — 2°(1 — 22) (1 — 2 (1 — 2*) — etc.

Hinc iam binae partes eadem potestate ipsius z affectae in unam contrahan-
tur ac resultabit pro 4 sequens forma

A =25 —2*— (1 — za) — 2°(1 — z2)(1 —2*) — 2" (1 — 2*)(1 — 2°)(1 — z*) —ete.,
ubi duo termini primi sz —z°® jam sunt evoluti; sequentes autem procedunt
per has potestates o7, 2°, 2", 2%, 2%, quarnm exponentes binario crescunt.

3. Ponamus nunc simili modo ut ante

A=zz—2*— B,
ita ut sit :

B=2"(1—z2)+ 2*1 —z2)(1 —2*) + &1 — ax)(1 — 2°) (1 — &*) + ete.,

cuius omnes termini habent factorem communem 1 — zz, quo evoluto singuli
termini in binas partes discerpantur, uti sequitur,

B=g'+ 22(1 —2%)+ 2"(1 — 2°)(1.— 2*) + 2'*(1 — %) (1 — ) (1 — 2°) + etc.

1171

— g — a1 — 2% — 21 — ) (1 — 2") — 2®(1 — ) (1 — 2*) (1 — 2F) — ete.

Hic iterum bini termini, qui eandem. potestatem ipsius x habent praefixam,
in unam colligantur et prodibit

B=g"—g"— a*(1 — %) — 2"(1 — 2%)(1 — ") — 2" (1 —2*)(1 — 2*)(1 — o) —ete.
ubi iam potestates ipsius z crescunt ternario.

4. Statuatur nunc porro

B=2—1"—C,

ita ut sit
C= a1 — 2% + &™(1 — &) (1 — 2) + (1 — &%) (1 — 2 (1 — ) -+ etc,
Lzoxuarm Euvrsm Opera omnia I3 Commentationes arithmeticae 60

another fine exercise in mathematical induction on N. In the limit as N — co we find

[e¢]
f(x,q)= 1+ Z (_1)"(x3n—1qn(3n—l)/2+x3nqn(3n+1)/2). (8)

n=1

Therefore by (4) and (8),

[e¢] [ee]
I_I (1 _qn) f(l,q)= 14+ Z (_1)"(qn(3n—l)/2+qn(3n+1)/2)

n=1 n=1

io: (_1)"qn(3n+l)/2,

n= —o

which completes the proof of (1).

It should be noted that several authors (L. J. Rogers [18, pp. 334-335], G. W. Starcher [19], and
N. J. Fine [9]) also found formula (8) essentially in the way we have; however, none has noted that
he was, in fact, rediscovering Euler’s proof in simpler clothing. M. V. Subbarao [20] has also
shown the connection between (8) and Franklin’s arithmetic proof [10].
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Now the reader may naturally ask: Was anything gained in this general formulation of Euler’s
proof besides simplicity of presentation? Is any new information available that was hidden before?
We can answer a resounding YES just by setting x = — 1 in (3) and (8). This substitution gives the
equation

1+ 3 (14g)(1+g2) - 1+ ) (=1)"g"
(9)

o0
=f(-1,9)=1+ ) (—q"(3"—1)/2 + qn(3n+1)/2).
n=1

Equation (9) yields a corollary as appealing as Legendre’s Theorem. It implies that the product
(1+g)(1+4%) - (1+¢"")g"

when multiplied out produces the term q~ exactly as often as N can be partitioned into distinct
summands with largest part equal to n. For example, when n = 4,

(1 +q)(1 +q2)(1 +q3)q4=q4+q4+1 Fgit2 4 gt g gt
gttt g gteat2 g paede2e

Hence the series on the left side of (9) when expanded out yields the term + g” for each partition
of N into distinct summands; the “+4” occurs if the largest summand is even, and the “—"’ occurs
if the largest summand is odd. In the same manner that (1) yielded Legendre’s Theorem, we see
that (9) yields the following equally elegant but little publicized result found by N. J. Fine [8]
more than 118 years after Legendre’s observation.

THEOREM. Let 7.(n) denote the number of partitions of n with distinct summands the largest of
which is even. Let m,(n) denote the number of partitions of n with distinct summands the largest of
which is odd. Then

1 ifn=j(3j+1)/2,
m(n) —m(n)=1 -1 ifn=j(3j-1)/2,
0 otherwise.

Let us check out the theorems with an example. The partitions of #» = 12 into distinct parts are:
12, 11+1, 10+2, 9+3, 9+2+1, 8+4, 8+3+1, 7+5, T+4+1, 7T+3+2, 6+5+1,
6+4+2,6+3+24+1,5+4+3,5+4+2+ 1. The partitions enumerated by each of p.(12),
2,(12), m,(12) and 7,(12) are listed in the following table:

r.(12) p,(12) 7 (12) 7,(12)
11+1 12 12 11+1
10 +2 9+2+1 10+2 9+3
9+3 8+3+1 8+4 9+2+1
8+4 T+4+1 8+3+1 7+5
7+5 T+3+2 6+5+1 T+4+1
6+3+2+]1 6+5+1 6+4+2 T+3+2
5+4+2+1 6+4+2 6+3+2+1 5+4+3

5+4+3 5+4+2+1,

Thus p.(12) — p,(12)=7 - 8= ~1 and 7.(12) —7,(12)=7 — 8 = —1, as predicted by our theo-
rems.

Beyond this immediate pleasant discovery that Euler’s approach, properly modernized, yields
Fine’s Theorem, we may ask: Are there interesting extensions of Euler’s method that yield more
than equation (8)? Here again the answer is positive. L. J. Rogers [18, p. 334], apparently unaware
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of how Euler’s proof worked, showed in almost precisely the way we proved (8) that

& (1-a)(l—aq)---(1—ag" ')t" 1-at
1+n§1 (1-b)(1—bg)--- (1-bg"™") ~ 11

2 n
w (1—a)(1—ag)--- (1 —aq"_‘)(l ——c—%g)(l _Q{bﬂ_)___ (1 —gg—)b"t"q"z_”(l —atg®™)

El (1-0)(1—-bg)--- (1=bg")(1—=1)(1—1g)--- (1 —1tg"*")

+

(10)

Rogers in fact showed that if f(a, b, t) denotes the left side of (10), then

f(a,b,t)= 111‘;[ +t(1(1__a,z()?l__a:‘)1)f(aq,bq, 1q). (11)

This result and deeper extensions of it that require much more than Euler’s method have had a
major impact in the theory of partitions [1, Secs. 3 and 4], [2, Ch. 7], [3, Ch. 3]. N. J. Fine [9] also
independently rediscovered (10).

Surely the story unfolded here emphasizes how valuable it is to study and understand the
central ideas behind major pieces of mathematics produced by giants like Euler. The discoveries of
theorems as appealing as the two we have described would not be separated by 118 years if
students of additive number theory had followed this advice.

This paper was partially supported by National Science Foundation Grant MCS-8201733.
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