
these cases. We must  weigh the apparent  security pur- 
chased by requiring predicative definitions against the 
burden of  having to abandon in many cases what  we, as 
mathematicians, consider  natural definitions. 

2. It is unclear exactly what  objects we are committed to 
when we are commit ted to Peano Arithmetic. There are 
plenty of  problems in number  theory whose proofs use 
analytic means, for instance. Does commitment  to Peano 
Arithmetic entail commitment  to whatever  objects are 
needed for these proofs? More generally, does commit- 
ment  to a mathematical  theory mean commitment  to any 
objects needed for solving problems of  that theory? If 
so, then GSdel's incompleteness  theorems suggest that 
it is open what objects commitment  to Peano Arithmetic 
entails. 

3. As Feferman admits, it is unclear  how to account  pre- 
dicatively for some mathematics  used in currently ac- 
cepted scientific practice, for instance, in quantum me- 
chanics. In addition, I think that Feferman would not 
want  to make the s tronger claim that all future scien- 
tifically applicable mathematics  will be accountable for 
by predicative means. However, the claim that currently 
scientifically applicable mathematics  can be accounted 
for predicatively seems too t ime-bound to play an im- 
portant  role in a foundat ion of  mathematics.  Though it 
is impossible to predict  all future scientific advances, it 
is reasonable to aim at a foundation of  mathematics  that 
has the potential to support  these advances. Whether or 
not predicativity is such a foundation should be studied 
critically. 

4. Whether the use of  impredicative sets, and the un- 
countable more generally, is needed for ordinary finite 
mathematics,  depends on whether  by "ordinary" we 
mean "current." If so, then this is subject to the same 
worry  I raised for (3). It also depends on where we draw 
the line on what  counts  as finite mathematics.  If, for in- 
stance, Goldbach's  conjecture counts  as finite mathe- 
matics, then we have a s tatement  of  finite mathematics  
for which it is completely open whether  it can be proved 
predicatively or  not. 

In emphasizing the degree to which concerns  about  
predicativism shape this book, I should not  overempha- 
size it. There is much besides predicativism in this book, 
as I have tried to indicate. In fact, Feferman advises that 
we not read his predicativism too strongly. In the pref- 
ace, he describes his interest in predicativity as con- 
cerned with seeing how far in mathematics  we can get 
without  resorting to the higher infinite, whose justifica- 
tion he thinks can only be platonic. It may turn out that  
uncountable  sets are needed for doing valuable mathe- 
matics, such as solving currently unsolved problems. In 
that case, Feferman writes, we "should look to see where 
it is necessary to use them and what  we can say about  
what  it is we know when we do use them" (p. ix). 

Nevertheless, Feferman's  commit ted anti-platonism 
is a crucial influence on the book. For  mathematics  right 
now, Feferman thinks, "a little bit goes a long way," as 
one of  the essay titles puts it. The full universe of  sets 

admitted by the platonist is unnecessary, he thinks, for 
doing the mathematics  for which we must  currently ac- 
count. Time will tell if future developments will support  
that  view, or whether, like Brouwer 's  view, it will re- 
quire the alteration or outright rejection of  too much 
mathematics  to be viable. Fefernlan's book  shows that, 
far f rom being over, work  on the foundations of  mathe- 
matics is vibrant and continuing, perched deliciously but 
precariously between mathematics  and philosophy. 

REFERENCES 
[BHS] A. Blass, J. Hirst, and S. Simpson, "Logical analysis of some 

theorems of combinatorics and topological dynamics," in Logic and 

Combinatorics (ed. S. Simpson), AMS Contemporary Mathematics 
vol. 65, 1987, pp. 125-156. 

[F] S. Feferman, "Systems of Predicative Analysis," Journal of Symbolic 

Logic 29, no. 1 (1964), 1-30. 
[P] H. Poincare, The Value of Science (1905), in The Foundations of 

Science, ed. and trans. G. Halsted, The Science Press, 1946. 

Department of Philosophy 
Kansas State University 
Manhattan, KS 66506 
USA 
e-mail: aarana@alumni.trinity.edu 

The SIAM l O0-Dicjit Challenge: A Study 
in High-Accuracy Numerical Computing 
by Folkmar Bornemann, Dirk Laurie, Stan Wagon, 

and JSrg Waldvogel 

SIAM, PHILADELPHIA, PA, USA 2004, XI1+306 PP. SOFTCOVER, ISBN 0-89871 561-X, 

US$57.00 

REVIEWED BY JONATHAN M. BORWEIN 

L ists, challenges, and competi t ions have a long and pri- 
marily lustrous history in mathematics.  This is the story 

of  a recent  highly successful challenge. The book  under  re- 
view makes it clear that  with the continued advance of  com- 
puting power  and accessibility, the view that "real mathe- 
maticians don' t  compute" has little traction, especially for 
a newer  generation of  mathematicians who may readily 
take advantage of  the maturat ion of  computat ional  pack- 
ages such as Maple, Mathematica, and MATLAB. 

Numerical Analysis Then and Now 
George Phillips has accurately called Archimedes the first nu- 
merical analyst [2, pp. 165-169]. In the process of  obtaining 
his famous estimate 3 + 10/71 < ~r < 3 + 1/7, he had to mas- 
ter notions of  recursion without  computers,  interval analy- 
sis without zero or  positional arithmetic, and tr igonometry 
without  any of  our modern analytic scaffolding . . . .  Two 
millennia later, the same estimate can be obtained by a 
computer  algebra system [3]. 
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Example  1. A modern computer algebra system can tell 
one that 

f ~ ( 1  - x)4x 4 22 
(1.1) 0 <  1 - + ~  d x -  7 ~' 

since the integral may be interpreted as the area under a 
positive curve. 

This leaves us no wiser as to why! If, however, we ask 
the same system to compute the indefinite integral, we are 
likely to be told that 

1 2t0t   �9 = t 7 - ~- + - t a + 4t - 4 arctan (t). 

Then (1.1) is now rigorously established by differentiation 
and an appeal to Newton's Fundamental theorem of cal- 
culus. [~ 

While there were many fine arithmeticians over the next 
1500 years, this anecdote from Georges Ifrah reminds us 
that mathematical culture in Europe had not sustained 
Archimedes's level up to the Renaissance. 

A wealthy (15th-century) German merchant, seeking to 
provide his son with a good business education, con- 
sulted a learned man as to which European institution 
offered the best training. "If you only want him to be 
able to cope with addition and subtraction," the expert 
replied, "then any French or German university will 
do. But i f  you are intent on your son going on to mul- 
tiplication and divis ion--assuming that he has suffi- 
cient gifts--then you will have to send him to Italy. 1 

By the 19th century, Archimedes had finally been out- 
stripped both as a theorist and as an (applied) numerical 
analyst, see [7]. 

In 1831, Fourier's posthumous work on equations 
showed 33 figures of solution, got with enormous 
labour. Thinking this a good opportunity to illustrate 
the superiority of the method of W. G. Homer, not yet 
known in France, and not much known in England, I 
proposed to one of my  classes, in  1841, to beat Fourier 
on this point, as a Christmas exercise. I received sev- 
eral answers, agreeing with each other, to 50 places 
of decimals. In 1848, I repeated the proposal, request- 
ing that 50 places might be exceeded: I obtained an- 
swers of 75, 65, 63, 58, 57, and 52 places. (Augustus 
De Morgan 2) 

De Morgan seems to have been one of the first to mis- 
trust William Shanks's epic computations of Pi-- to 527, 
607, and 727 places [2, pp. 147-161], noting there were too 
few sevens. But the error was only confirmed three quar- 
ters of a century later in 1944 by Ferguson with the help of 

a calculator in the last pre-computer calculations of ~--- 
though until around 1950 a "computer" was still a person 
and ENIAC was an "Electronic Numerical Integrator and 
Calculator" [2, pp. 277-281] on which Metropolis and Reit- 
wiesner computed Pi to 2037 places in 1948 and confirmed 
that there were the expected number of sevens. 

Reitwiesner, then working at the Ballistics Research 
Laboratory, Aberdeen Proving Ground in Maryland, starts 
his article [2, pp. 277-281] with 

Early in June, 1949, Professor JOHN VON NEUMANN ex- 
pressed an interest in the possibility that the ENIAC 
might sometime be employed to determine the value of 
r and e to m a n y  decimal places with a view toward 
obtaining a statistical measure of the randomness of 
distribution of the digits. 

The paper notes that e appears to be too random this 
is now proven--and ends by respecting an oft-neglected 
"best-practice": 

Values of the auxiliary numbers arccot 5 and arccot 
239 to 2 0 3 5 D . . .  have been deposited in the library of 
Brown University and the UMT fi le of MTAC. 

The 20th century's "Top T e n "  

The digital computer, of course, greatly stimulated both the 
appreciation of and the need for algorithms and for algo- 
rithmic analysis. At the beginning of this century, Sullivan 
and Dongarra could write, "Great algorithms are the poetry 
of computation," when they compiled a list of the l0 algo- 
rithms having "the greatest influence on the development 
and practice of science and engineering in the 20th cen- 
tury". 3 Chronologically ordered, they are: 

#1. 1946: The Metropolis Algorithm for Monte Carlo. 
Through the use of random processes, this algorithm 
offers an efficient way to stumble toward answers to 
problems that are too complicated to solve exactly. 

#2. 1947: Simplex Method for Linear Programming. 
An elegant solution to a common problem in planning 
and decision making. 

#3. 1950: Krylov Subspace Iteration Method. A tech- 
nique for rapidly solving the linear equations that 
abound in scientific computation. 

#4. 1951: The Decompositional Approach to Matrix 
Computations. A suite of techniques for numerical lin- 
ear algebra. 

#5. 1957: The Fortran Optimizing Compiler. Turns 
high-level code into efficient computer-readable code. 

#6. 1959: QR Algorithm for Computing Eigenvalues.  
Another crucial matrix operation made swift and prac- 
tical. 

1 From page 577 of The Universal History of Numbers: From Prehistory to the Invention of the Computer, translated from French, John Wiley, 2000. 
2Quoted by Adrian Rice in "What Makes a Great Mathematics Teacher?" on page 542 of The American Mathematical Monthly, June-July 1999. 

3From "Random Samples," Science page 799, February 4, 2000. The full article appeared in the January/February 2000 issue of Computing in Science & Engineering. 
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#7. 1962: Qu ickso r t  Algor i thms fo r  Sort ing.  For the ef- 
ficient handling of large databases. 

#8. 1965: F a s t  F o u r i e r  T rans fo rm.  Perhaps the most 
ubiquitous algorithm in use today, it breaks down 
waveforms (like sound) into periodic components. 

#9. 1977: I n t e g e r  Rela t ion  Detec t ion .  A fast method for 
spotting simple equations satisfied by collections of 
seemingly unrelated numbers. 

#10. 1987: F a s t  Mul t ipole  Method.  A breakthrough in 
dealing with the complexity of n-body calculations, 
applied in problems ranging from celestial mechanics 
to protein folding. 

I observe that eight of these ten winners appeared in the 
first two decades of serious computing, and that Newton's 
method was apparently ruled ineligible for consideration. 4 
Most of the ten are multiply embedded in every major math- 
ematical computing package. 

Just as layers of software, hardware, and middleware 
have stabilized, so have their roles in scientific, and espe- 
cially mathematical, computing. When I first taught the sim- 
plex method thirty years ago, the texts concentrated on 
"Y2K"-like tricks for limiting storage demands. Now seri- 
ous users and researchers will often happily run large-scale 
problems in MATLAB and other broad-spectrum packages, 
or rely on NAG library routines embedded in Maple. 

While such out-sourcing or commoditization of scien- 
tific computation and numerical analysis is not without its 
drawbacks, I think the analogy with automobile driving in 
1905 and 2005 is apt. We are now in possession of ma tu re - -  
not to be confused with "error-free"--technologies. We can 
be fairly comfortable that Mathematica is sensibly handling 
round-off or cancelation error, using reasonable termina- 
tion criteria and the like. Below the hood, Maple is opti- 
mizing polynomial computations using tools like Homer ' s  
rule, running multiple algorithms when there is no clear 
best choice, and switching to reduced complexity (Karat- 
suba or FVF-based) multiplication when accuracy so de- 
mands. Wouldn't it be nice, though, if all vendors allowed 
as much peering under the bonnet as Maple does! 

Example  2. The number of additive partit ions of n, p(n),  
is generated by 

(1.2) P(q) = 1 + ~ p ( n ) q  n = 1-[ (1 - qn)-l. 
n > l  n > l  

Thus p(5) = 7, because 

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1  
= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 ,  

as we ignore "0" and permutations. Additive partitions are 
less tractable than multiplicative ones, for there is no ana- 
logue of unique prime factorization nor the correspond- 
ing structure. Partitions provide a wonderful example of 

why Keith Devlin calls mathematics  "the science of pat- 
terns." 

Formula (1.2) is easily seen by expanding (1 - qn)-1 and 
comparing coefficients. A modern computational tempera- 
ment leads to 

Question: How hard is p(n) to compute- - in  1900 (for 
MacMahon the "father of combinatorial analysis") or in 
2000 (for Maple or Mathematica)? 

Answer." The computation of p(200) = 3972999029388 took 
MacMahon months and intelligence. Now, however, we can 
use the most naive approach: Computing 200 terms of the se- 
ries for the inverse product in (1.2) instantly produces the 
result, using either Mathematica or Maple. Obtaining the re- 
sult p(500)= 2300165032574323995027 is not much more 
difficult, using the Maple code 

N : =500, coeff(series(i/product 

(l-q^n,n=l..N+I) ,q,N+l) ,q,N) ; 

Euler's Pentagonal number theorem 
Fifteen years ago computing P(q) in Maple, was very slow, 
while taking the series for the reciprocal Q(q) = 1Jn_>l(1 -- 
q'O was quite manageable! Why? Clearly the series for Q 
must have special properties. Indeed it is lacunary: 

Q(q) = 1 - q - q2 + q5 + q7 _ q12 _ q15 + q22 + q26 

_ q35 _ q40 + q51+ q57 _ q70 _ q77 + q92 + O(ql00) .  (1.3) 

This lacunarity is now recognized automatically by Maple, 
so the platform works much better, but we are much less 
likely to discover Euler's gem: 

I ~  (1 -- qn)  = ~ ,  ( _ l ) n q n ( 3 n + i ) / 2 .  
n - 1  n -zc 

If we do not immediately recognize these pentagonal num- 
bers, then Sloane's online Encyclopedia of Integer Sequences 5 
immediately comes to the rescue, with abundant references 
to boot. 

This sort of mathematical computation is still in its rea- 
sonably early days, but the impact is palpable--and no 
more so than in the contest and book under review. 

&bout  t h e  C o n t e s t  
For a generation Nick Trefethen has been at the van- 

guard of developments in scientific computation, both 
through his own research, on topics such as pseudo-spec- 
tra, and through much thoughtful and vigorous activity in 
the community. In a 1992 essay "The Definition of Numer- 
ical Analysis ''6 Trefethen engagingly demolishes the con- 
ventional definition of Numerical Analysis as "the science 
of rounding errors." He explores how this hyperbolic view 
emerged, and finishes by writing, 

I believe that the existence of f inite algorithms for cer- 
tain problems, together wi th other historical forces, has 

4It would be interesting to construct a list of the ten most influential earlier algorithms. 

5A fine model for of 21st-century databases, it is available at www.research.att.com/-njas/sequences 

6SIAM News, November 1992. 
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distracted us for  decades f r o m  a balanced view of  nu- 
merical analysis. Rounding errors and instabili ty are 
important, and numerical  analysts will always be the 
experts in  these subjects and at pains  to ensure that 
the unwary  are not tripped up by them. But  our cen- 
tral miss ion  is to compute quantities that are typically 
uncomputable, f r o m  an analytical point of  view, and 
to do it wi th  lightning speed. For guidance to the fu-  
ture we should study not Gaussian el imination and 
its beguiling stability properties, but the diabolically 
fas t  conjugate gradient iteration, or Greengard and 
Rokhlin's O(N) multipole algorithm for  particle s imu-  
lations, or the exponential convergence of  spectral 
methods for  solving certain PDEs, or the convergence 
in  O(N) iterations achieved by mult igrid methods for  
m a n y  kinds of  problems, or even Borwein and Bor- 
wein's  7 magical AGM iteration for  determining 
1,000,000 digits of  ~r in  the blink of  an eye. That is the 
heart  of numerical  analysis. 

In the January  2002 issue of SIAMNews,  Nick Trefethen, 
by then of  Oxford University, presented ten diverse prob- 
lems used in teaching modern graduate numerical analysis 
students at Oxford University, the answer  to each being a 
certain real number. Readers were challenged to compute  
ten digits of  each answer, with a $100 prize to be awarded 
to the best  entrant. Trefethen wrote, "If anyone gets 50 dig- 
its in total, I will be impressed." 

And he was. A total  of  94 teams, represent ing 25 dif- 
ferent  nations, submit ted  results. Twenty  of  these teams 
received a full 100 points  (10 cor rec t  digits for each prob- 
lem). They included the late John  Boersma,  working with 
Fred Simons and others;  Gaston Gonnet  (a Maple 
founder)  and Rober t  Israel; a t eam containing Carl De- 
yore; and the authors  of  the b o o k  under  review variously 
working alone and with others.  These results were  much  
bet ter  than expected,  but  an originally anonymous  donor,  
William J. Browning,  provided  funds for  a $100 award  to 
each of  the twenty  perfec t  teams. The present  author,  
David Bailey, s and Greg Fee entered,  but failed to qual- 
ify for  an award. 9 

The ten challenge problems 
The purpose of  computing is insight, not numbers. 
(Richard Hamming 1~ 

The ten problems are: 
#1. What is lim~_~0 f~ x -1 cos(x -1 log x)dx? 
#2. A photon  moving at speed 1 in the x-y plane starts at 

t = 0 at (x,y) = (1/2, 1/10) heading due east. Around 
every integer lattice point  (i, 3) in the plane, a circu- 
lar mirror of  radius 1/3 has been erected. How far f rom 
the origin is the photon  at t = 10? 

#3. The infinite matrix A with entries al l  = 1, a12 = 1/2, 

a21 = 1/3, a13 = 1/4, a22 = 1/5, a 3 1 - - 1 / 6 ,  etc., is a 
bounded operator  on e 2. What is 1~41]? 

#4. What is the global minimum of the function 
exp(sin(50x)) + sin(60e y) + sin(70 sin x) + 
sin(sin(80y)) - sin(10(x + y))  + (x 2 + y2)/4? 

#5. Le t f ( z )  = 1/F(z), where F(z) is the gamma function, 
and let p(z) be the cubic polynomial that best  ap- 
proximates f ( z )  on the unit disk in the supremum 
norm I]" I1~. What is I I f -  PH~ ? 

#6. A flea starts at (0,0) on the infinite 2-D integer lattice 
and executes a biased random walk: At each step it 
hops north or  south with probability 1/4, east  with 
probability 1/4 + e, and west  with probability 1/4 - e. 
The probability that the flea returns to (0,0) sometime 
during its wanderings is 1/2. What is e? 

#7. Let A be the 20000 x 20000 matrix whose  entries are 
zero everywhere except  for the primes 2, 3, 5, 7, �9 �9 �9 
224737 along the main diagonal and the number  1 in 
all the positions aij with li - Jl = 1, 2, 4, 8, �9 �9 �9 16384. 
What is the (1,1) entry of  A - l ?  

#8. A square plate [ -1 ,1 ]  x [ -1 ,1 ]  is at t empera tu re  
u -- 0. At time t = 0 the t empera tu re  is increased  to 
u = 5 along one of  the four  sides while being held 
at u -- 0 along the o ther  three  sides, and heat  then 
f lows into the plate  accord ing  to ut = An. When 
does  the tempera ture  reach  u = 1 at the center  of  
the plate? 

#9. The integral I(a) = f2 [2 + sin(10a)]x ~ sin(a/(2 - x)) 
dx depends on the parameter  a. What is the value a E 
[0,5] at which I(a) achieves its maximum? 

#10. A particle at the center  of  a 10 x 1 rectangle under- 
goes Brownian motion (i.e., 2-D random walk with in- 
finitesimal step lengths) till it hits the boundary. What 
is the probability that it hits at one of  the ends rather 
than at one of  the sides? 

Answers correct to 40 digits to the problems are avail- 
able at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/ 
hundred.html 

Quite full details on the contest  and the now substantial 
related literature are beautifully recorded on Bornemann's  
Web site 

h t t p : / /www-m8 .ma . tum.de /m3 /bo rnemann /cha l l enge  
booW 
which accompanies The SIAM l O0-digit Challenge: A Study 
In High-accuracy Numerical Computing, which, for brevity, 
I shall call The Challenge. 

About the Book and Its Authors 
Success in solving these problems requires a broad knowl- 
edge of mathematics and numerical analysis, together with 

7As in many cases, this eponym is inaccurate, if flattering: it really should be Gauss-Brent-Salamin. 

8Bailey wrote the introduction to the book under review. 

9We took Nick at his word and turned in 85 digits! We thought that would be a good enough entry and returned to other activities. 
1~ Numerical Methods for Scientists and Engineers, 1962. 
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significant computational effort, to obtain solutions and en- 
sure correctness of the results. The strengths and limita- 
tions of Maple, Mathematica, MATLAB (The 3Ms), and other 
software tools such as PARI or GAP, are strikingly revealed 
in these ventures. Almost all of the solvers relied in large 
part on one or more of these three packages, and while 
most solvers attempted to confirm their results, there was 
no explicit requirement for proofs to be provided. In De- 
cember 2002, Keller wrote: 

To the Editor. 
Recently, SIAM News published an interesting article 
by Nick Trefethen (July~August 2002, page 1) pre- 
senting the answers to a set of problems he had pro- 
posed previously (January/February 2002, page 1). 
The answers were computed digits, and the clever 
methods of computation were described. 
I found it surprising that no proof of the correctness 
of the answers was given. Omitting such proofs is the 
accepted procedure in scientific computing. However, 
in a contest for calculating precise digits, one might 
have hoped for more. 

Joseph B. Keller, Stanford University 

In my view Keller's request for proofs as opposed to 
compelling evidence of correctness is, in this context, 
somewhat unreasonable, and even in the long term counter- 
productive [3, 4]. Nonetheless, the authors of The Challenge 
have made a complete and cogent response to Keller and 
much much more. The interest generated by the contest 
has with merit extended to The Challenge, which has al- 
ready received reviews in places such as Science, where 
mathematics is not often seen. 

Different readers, depending on temperament, tools, and 
training, will find the same problem more or less interest- 
ing and more or less challenging. The book is arranged so 
the ten problems can be read independently. In all cases 
multiple solution techniques are given; background, math- 
ematics, implementation details--variously in each of the 
3Ms or otherwise--and extensions are discussed, all in a 
highly readable and engaging way. 

Each problem has its own chapter with its own lead 
author. The four authors, Folkmar Bornemann, Dirk Lau- 
rie, Stan Wagon, and J6rg Waldvogel, come from four 
countries on three continents and did not know each 
other as they worked on the book, though Dirk did visit 
J6rge and Stan visited Folkmar as they were finishing 
their manuscript. This illustrates the growing power of 
the collaboration, networking, and the grid--both human 
and computational. 

Some high spots 
As we saw, Joseph Keller raised the question of proof. On 

careful reading of the book, one may discover proofs of 
correctness for all problems except for #1, #3, and #5. For 
problem #5, one difficulty is to develop a robust interval 
implementation for both complex number computation 
and, more importantly, for the Gamma function. While er- 
ror bounds for #1 may be out of reach, an analytic solution 
to #3 seems to this reviewer tantalizingly close. 

The authors ultimately provided 10,000-digit solutions to 
nine of the problems. They say that this improved their 
knowledge on several fronts as well as being "cool." When 
using Integer Relation Methods, ultrahigh precision com- 
putations are often needed [3]. One (and only one) prob- 
lem remains totally intractable]l--at press time, getting 
more than 300 digits for #3 was impossible. 

Some surprises 
According to the authors, 12 they were surprised by the fol- 
lowing, listed by problem: 
#1. The best algorithm for 10,000 digits was the trusty 

trapezoidal rule--a not uncommon personal experi- 
ence of mine. 

#2. Using interval arithmetic with starting intervals of size 
smaller than 10 -5~176176 one can still find the position of 
the particle at time 2000 (not just time ten), which 
makes a fine exercise for very high-precision interval 
computation. 

#4. Interval analysis algorithms can handle similar prob- 
lems in higher dimensions. As a foretaste of future 
graphic tools, one can solve this problem using current 
adaptive 3-D plotting routines which can catch all the 
bumps. As an optimizer by background, this was the 
first problem my group solved using a damped Newton 
method. 

While almost all canned optimization algorithms failed, 
differential evolution, a relatively new type of evolu- 
tionary algorithm, worked quite well. 
This problem has an almost-closed form in terms of el- 
liptic integrals and leads to a study of random walks 
on hypercubic lattices, and Watson integrals [3, 4, 5]. 
The maximum parameter is expressible in terms of a 
MeijerG function. While this was not common knowl- 
edge among the contestants, Mathematica and Maple 
both will figure this out. This is another measure of the 
changing environment. It is usually a good idea--and 
not at all immoral--to data-mine 13 and find out what 
your favourite one of the 3Ms knows about your cur- 
rent object of interest. For example, Maple tells one 
that: 

#5. 

#6. 

#9. 

l~lf only by the authors' new gold standard of 10,000 digits. 
12Start Wagon, private communication. 

~SBy its own count, WaI-Mart has 460 terabytes of data stored on Teradata mainframes, made by NCR, at its Bentonville headquarters. To put that in perspective, the 

Intemet has less than half as much data . . . .  " Constance Hays, "What WaI-Mart Knows About Customers' Habits," New York Times, Nov. 14, 2004. Mathematicians 
also need databases. 
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The Meijer G function is defined by 

Laplace transform 

MeijerG([as,bs] , [cs,ds],z) 

/ 

Y . . . . . . . . .  ! . . . . . . . .  [ - . 9 ~ - - ( - L - - a - s - + - Y - L - - - ~ . ~ - ! - s  z dy 
2 P i  I 0 GAMMA(bs-y )  G A M M A ( 1 - d s + y )  F 

/ 

L 
where 

as = [al,...,am], 

bs = [bl,... ,bn], 

cs: [cl,'. ",cp], 

ds : [dl,.. "dq], 

the inverse 

GAMMA(I-as+y) = GAMMA(I-aI+y) �9 . �9 GAHHA(I-am+y) 

GAMMA (bs-y) = GAMMA (bl-y) �9 �9 �9 GAMMA (bn-y) 

GAMYLA(cs-y) : GAMICr~(cl-y) �9 �9 �9 GAMMA(cp-y) 

GAMMA (l-ds+y) = GAMMA (l-dl+y) �9 �9 �9 GAMMA (l-dq+y) 

Another excellent example of how packages are chang- 
ing mathematics is the Lambert W function [4], whose 
properties and development are very nicely described in a 
recent article by Brian Hayes [8], Why W? 

Two big surprises 
I finish this section by discussing in more detail the two 
problems whose resolution most surprised the authors. 

The essay on Problem #7, whose principal author was 
Bornemann, is titled: "Too Large to be Easy, Too Small to 
Be Hard." Not so long ago a 20,000 x 20,000 matrix was large 
enough to be hard. Using both congruential and p-adic 
methods, Dumas, Turner, and Wan obtained a fully symbolic 
answer, a rational with a 97,000-digit numerator and like de- 
nominator. Wan has reduced the time to obtain this to about 
15 minutes on one machine, from using many days on many 
machines. While p-adic analysis is susceptible to parallelism, 
it is less easily attacked than are congruential methods; the 
need for better parallel algorithms lurks below the surface 
of much modern computational mathematics. 

The surprise here, though, is not that the solution is ra- 
tional, but that it can be explicitly constructed. The chap- 
ter, like the others, offers an interesting menu of numeric 
and exact solution strategies. Of course, in any numeric ap- 
proach ill-conditioning rears its ugly head, while sparsity 
and other core topics come into play. 

My personal favourite, for reasons that may be appar- 
ent, is: 

Problem #10: "Hitting the Ends." Bornemann starts the 
chapter by exploring Monte-Carlo methods, which are 
shown to be impracticable. He then reformulates the prob- 
lem deterministically as the value at the center of a 10 • 
1 rectangle of an appropriate harmonic measure of the 
ends, arising from a 5-point discretization of Laplace's 
equation with Dirichlet boundary conditions. This is then 
solved by a well-chosen sparse Cholesky solver. At this 
point a reliable numerical value of 3.837587979 �9 1 0  - 7  is ob- 
tained. And the posed problem is solved numerically to the 
requisite 10 places. 

But this is only the warm-up. We proceed to develop two 

analytic solutions, the first using separation of variables 
on the underlying PDE on a general 2a • 2b rectangle. We 
learn that 

4 ~. ( - l ) n s e c h ( ~ r ( 2 n + l ) p )  
(3.4) p(a,b) = IT 2n +-----~ 2 

n = 0  

where p:= a/b. A second method using conformal map- 
pings yields 

IT 
(3.5) arccot p = p(a,b) -~ + arg g(eip(a'b)~r), 

where K is the complete elliptic integral of the first kind. 
It will not be apparent to a reader unfamiliar with inver- 
sion of elliptic integrals that (3.4) and (3.5) encode the same 
solution; but they must, as the solution is unique in (0,1); 
each can now be used to solve for p = 10 to arbitrary pre- 
cision. 

Bornemann fmally shows that, for far from simple rea- 
sons, the answer is 

2 
(3.6) p = - -  arcsin (kl00), 

IT 

where 

k , 0 o  : - -  ( ( 3  - 2 ~ / 2 )  ( 2  + "~/'5) ( - 3  + " ~ )  ( - ~ / ' 2  s 4 ~ / 5 ) 2 )  2 

a simple composition of one arcsin and a few square roots. 
No one anticipated a closed form like this. 

Let me show how to finish up. An apt equation is [5, 
(3.2.29)] showing that 

(3.7) ~ ( -1 )n  s e c h ( i T ( 2 n + l )  ) 1 �9 = - -  ~ a r C S l n  k ,  
2 n +  1 2 P = 

exactly when k = k~ is parametrized by thetafunctions in 
terms of the so-called nome, q = exp(-  ITp), as Jacobi dis- 
covered. We have 

02(q) Zn=-~ q(n+u2)2 
(3.8) k~ -- 02(q ) = ~ n = - ~  qn2 

Comparing (3.7) and (3.4), we see that the solution is 

k]00 = 6.02806910155971082882540712292 . . . .  10 -7, 
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as a s se r t ed  in (3.6). The explici t  form now fol lows from 

class ical  n ine teenth-century  theory  as  d i scussed  in [1, 5]. 

In fact  k210 is the  singular  value sent  by  Ramanujan  to Hardy 
in his f amous  le t ter  of  in t roduct ion [2, 5 ] - - i f  only Trefe then 

had asked  for  a ~ x 1 box, or  even be t te r  a ~ / ~  x ~ / ~  

one! 

Alternatively,  a rmed  only with the knowledge  that  the 

singular  values  are  a lways  algebraic,  we may  finish wi th  an 

au courant proof:  numer ica l ly  obta in  the  minimal  polyno-  

mial  f rom a high-precis ion computa t ion  with (3.8), and re- 

cover  the  surds  [4]. 

E x a m p l e  3. Maple al lows the following 

>Digits:=100:with(PolynomialTools): 

>k::s->evalf(EllipticModulus(exp(-Pi*sqrt(s )): 

>p:=latex(MinimalPolynomial(k(100),12)): 

> 'Error',fsolve(p) [l]-evalf(k(100)); galois(p); 

Error, 4 i0 z06 

"8T9", {"D(4) [x]2", "E(8):2"}, "+", 16, {"4 5)(6 7)", 

"(i 8)(2 3)(4 5)(6 7)", "(2 8) (i 3)(4 6)(5 7)"} 

"(4 8) (i 5) (2 6) (3 7)", 

which f inds the  minimal  polynomial  for klo0, checks  it to 
100 places,  tel ls  us the galois group, and re turns  a la tex ex- 

p ress ion  'p'  which  sets as: 

p(_X) = 1 - 1658904 _X - 3317540 X 2 + 1657944 _X 3 

+ 6637254 _X 4 + 1657944 _X 5 
- 3317540 _X 6 - 1658904 _X 7 + _X 8, 

and is self-reciprocal: it sat isfies p(x) = xSp(1/x). This sug- 

gests  taking a square root,  and we d iscover  that  y = 

satisfies 

1 - 1288y + 20y 2 - 1288y 3 - 26y 4 + 1288y 5 
+ 20y6 + 1288y7 + y8. 

Now life is good. The pr ime factors  of  100 are  2 and 5, 

p rompt ing  

subs (_X= z, 

[op( ( (factor (p, {sqrt (2), sqrt (5) }) )))]) ) 

This yields  four  quadrat ic  terms,  the  des i red  one being 

q = z 2 + 322 z - 228 z~x/2 + 144 z~ /5  - 102 z ~ / 5  

+ 323 - 228 ~/2 + 144~f5 - 102~/2~/-5. 

Fo r  securi ty,  

w: =solve (q) [2] : evalf[1000] (k(100)-w^2) ; 

gives a 1000-digit e r ror  check  of  2.20226255 �9 10 998. 
We leave it to the  reader  to find, using one of the 3Ms, 

the  more  beautiful  form of  kloo given above  in (3.6). []  

Consider ing also the many  techniques  and types  of  math- 

emat ics  used, we have a wonderfu l  adver t i sement  for multi- 

field, mult i -person,  mult i -computer ,  mul t i -package col labo-  

ration. 

Concrete Constructive Mathemat ics 

Elsewhere Kronecker said "In mathematics, I recognize 
true scientific value only in concrete mathematical 
truths, or to put  it more pointedly, only in mathemati- 
cal f o r m u l a s . " . . .  I would rather say "computations" 

than "formulas," but m y  view is essentially the same. 
(Harold M. Edwards  [6, p. 1]) 

Edwards  comment s  e l sewhere  in his recen t  Essays on 
Constructive Mathematics that  his own pre fe rence  for  con- 

s t ruct iv ism was  forged by exper ience  of  comput ing  in the  

fifties, when  comput ing p o w e r  was, as  he notes,  "trivial by  

today ' s  s tandards ."  My own similar  a t t i tudes  were  ce- 
mented  pr imar i ly  by the abil i ty in the  ear ly days  of  pe r sona l  

compute r s  to d e c o d e - - w i t h  the help of  A P L - - e x a c t l y  the  

sor t  of  work  by  Ramanujan which  f inished #10. 
The SIAM l O0-Digit Challenge: A Study In High-accu- 

racy Numerical  Computing is a wonderfu l  and well-writ-  

ten book  full of  living mathemat ics  by  lively mathemat i -  
cians. It shows  how far we have come computa t iona l ly  and 

hints tantal izingly at wha t  l ies ahead.  Anyone who has  been  

in teres ted  enough to finish this  review, and had  not  ye t  r ead  
the book,  is s t rongly urged to buy and plunge i n - - c o m p u t e r  
in h a n d - - t o  this fine adver t i sement  for  cons t ruc t ive  math-  

emat ics  21st-century style. I would  equally s t rongly suggest  
a c ross -word  solving s t y l e - - p i c k  a few p rob lems  from the 
list given, and t ry  them before  peeking  at  the  answers  and 
ex tens ions  given in The Challenge. Later, use  it to i l lustrate  
a course  or  jus t  for a refresher;  and be p leasan t ly  r eminded  
that  chal lenging p rob lems  rare ly  have only one pa th  to so- 
lution and usual ly r eward  study. 
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REVIEWED BY JEAN PETITOT 

W hat exactly is the type of reality of mathematical 
ideal entities? This problem remains largely an open 

question. Any ontology of abstract entities will encounter 
certain antinomies which have been well known for cen- 
turies if not millennia. These antinomies have led the var- 
ious schools of contemporary epistemology increasingly to 
deny any reality to mathematical ideal objects, structures, 
constructions, proofs, and to justify this denial philosoph- 
ically, thus rejecting the spontaneous naive Platonism of 
most professional mathematicians. But they throw out the 
baby with the bath water. Contrary to such figures as Poin- 
card, Husserl, Weyl, Borel, Lebesgue, Veronese, Enriques, 
Cavaillbs, Lautman, Gonseth, or the late G6del, the domi- 
nant epistemology of mathematics is no longer an episte- 
mology of mathematical content. For quite serious and pre- 
cise philosophical reasons, it refuses to take into account 
what the great majority of creative brilliant mathematicians 
consider to be the true nature of mathematical knowledge. 
And yet, to quote the subtitle of Hao Wang's (1985) book 
Beyond Analytic Philosophy, one might well ask whether 
the imperative of any valid epistemology should not be "do- 
ing justice to what we know." 

The remarkable debate Conversations on Mind, Mat- 
ter, and Mathematics between Main Connes and Jean- 
Pierre Changeux, both scientific minds of the very first rank 
and professors at the Collbge de France in Paris, takes up 
the old question of the reality of mathematical idealities in 
a rather new and refreshing perspective. To be sure, since 
it is designed to be accessible to a wide audience, the de- 
bate is not framed in technical terms; the arguments often 

employ a broad brush and are not always sufficiently de- 
veloped. Nevertheless, thanks to the exceptional standing 
of the protagonists, the debate manages to be compelling 
and relevant. 

Jean-Pierre Changeux's Neural Materialism 
Let me begin by summarizing some of Jean-Pierre 
Changeux's arguments. 

Because mathematics is a human and cognitive activity, 
it is natural first to analyze it in psychological and neuro- 
cognitive terms. Psychologism, which formalists and logi- 
cists have decried since the time of Frege and Husserl, de- 
velops the reductionist thesis that mathematical objects 
and the logical idealities that formulate them can be re- 
d u c e d - a s  far as their reality is concerned-- to  mental 
states and processes. Depending on whether or not mental 
representations are themselves conceived as reducible to 
the underlying neural activity, this psychologism is either 
a materialist reductionism or a mentalist functionalism. 

J-P. Changeux defends a variant of materialist reduc- 
tionism. His aim is twofold: first, to inquire into the nature 
of mathematics, but also, at a more strategic level, to put 
mathematics in its place, so to speak. He has never con- 
cealed his opposition to Cartesian or Leibnizian ratio- 
nalisms that have made mathematics the "queen" of the sci- 
ences. In his view, mathematics must abdicate its overly 
arrogant sovereignty, stop laying claim to universal valid- 
ity and absolute truth, and accept the humbler role assigned 
to it by Bacon and Diderot-- that  of "servant" to the natural 
sciences (p. 7). And what better way to make mathematics 
surrender its prestigious seniority than to demonstrate sci- 
entifically that its claims to absolute truth have no more ra- 
tional basis than do those of religious faith? 

Pursuing his mission with great conviction, Changeux 
revisits all the traditional touchstones of the empiricist, ma- 
terialist, and nominalist critiques of Platonist idealism in 
mathematics. He cites an impressive mass of scientific data 
along the way, including results from neurobiology and cog- 
nitive psychology in which he has played a leading role. It 
is this aspect of his approach which commands attention. 

1. The empiricist and constructivist theses hold that 
mathematical objects are "creatures of reason" whose re- 
ality is purely cerebral (p. 11). They are representations, 
that is, mental objects that exist materially in the brain, 
and "corresponding to physical [i.e., neural] states" (p. 14). 

Mental representat ions--memory objects--are  coded in 
the brain as forms in the Gestalt sense, and stored in the 
neurons and synapses, despite significant variability in 
synaptic efficacy (p. 128). 

Their object-contents are reflexively analyzable and their 
properties can be clarified axiomatically. But that is possible 
only because, as mental representations, they are endowed 
with a material reality (pp. 11-15). What's more, the axiomatic 
method of analysis is itself a "cerebral process" (10. 30). 

2. One might try to salvage an autonomy for the formal 
logical and mathematical levels by admitting, in line with 
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