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Fortunately, on 20 April 1977, all of this kludgery was rendered obsolete 
when I found a decision procedure for this problem. 

(A discrete analog to the Risch algorithm for indefinite integration.) 

-R. William Gosper, Jr., Indefinite Hypergeometric Sums in MACSYMA 
(1977) 

1. INTRODUCTION. The problem of finding simple evaluations of major classes 
of sums that involve factorials, binomial coefficients, and their q-analogues, has 
been completely solved. Sums that have the rather general form specified in 
Section 3 can all be done algorithmically, that is to say, you can do them on your 
own PC. Your computer evaluates the sum as a simple formula, if that's possible, 
and gives you a proof that you can check, or gives you a proof that your sum 
cannot be "done" in simple closed form, if that is the case. 

We first briefly describe the algorithms and the theory that have achieved this 
goal. Second, to illustrate both the scope of the method and the fact that in some 
interesting cases human intervention still helps, we show how these computer 
methods would have fared in attacking 27 problems that have appeared over the 
years in the Problems section of this MONTHLY. 

It happens (coincidentally, of course) that three of the authors of this article 
(PWZ) have just written a book [8] that describes the theoretical foundations of the 
solution of this problem, and also gives the software by means of which everyone 
can perform these sums sans peine (almost). 

2. THE METHODS. The methods that have achieved the complete solution of 
this class of problems are the following: 

* Sister Celine's method [1] 
* Gosper's algorithm [3] 
* Zeilberger's algorithm c t ("creative telescoping") [11] 
* Wilf and Zeilberger's WZ method [9] 
* Petkovwsek's algorithm Hyper [6] 

Here is a brief description of the scope of each of these algorithms (full 
descriptions are in [8]). Computer programs, in Maple or Mathematica versions, 
that carry out each of these algorithms are available free at 

http: // www . ci s . upenn . edu / wi 1 f / AeqB . html . 

Sister Celine's algorithm has been superseded by faster ones, but her work 
contains the original ideas on which the later algorithms have built. What it does 
can be stated pretty simply: it finds recurrences for hypergeometric summands. 
The fundamental theorem of this subject, which we state precisely in Section 3, 
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holds that eveiy proper hypergeometric summand does indeed satisty a recurrence 
relation. For instance, if? under your summation sign, there lurks 

F(nSk)=(nk), 

then her method informs you that 
nF( nS k)-(2n-1) ( F( n-1, k) + Ff n-1, k-1)) 

+(n-l)(F(n - 2,k)-2F(n - 2,k - 1) +F(n-2,k - 2)) = O. 
Why did you want to know that? Well, if you sum this recurrence over all integer 
k, you'llfind immediately (tIy it!) that the sum f(n) =k(k) satisfies f(n)= 

2(2n - l)f(n - l)/n, and so by induction, f(n) = (2n ) and you have evaluated 
your sum. But, you say, you already knew that the sum of the squares of the 
binomial coefficients is (2n )? Sure you did, but the same method works on any 
sum of factorials and binomial coefficients and powers in the world, provided it's of 
the form described in Section 3. So it wasn't finding that one particular sum that 
was the revolutionary event. It was the fact that Sister Celine's method can find 
recurrences satisfied by any one of a huge class of summands, and, as was realized 
much later, from the recurrence for the summand there comes the recurrence for 
the sum, and from that comes the closed form evaluation of the sum, if it has one. 
We now have algorithms that handle all of those pieces. 

Gosper's algorithm completely solves the problem of indinite hypergeometric 
summation. Given a summand F(k) that is a hypergeometric tetm in k (i.e., 
F(k + l)/F(k) is a rational function of k), Gosper's algorithm finds a hypergeo- 
metric term G(k) such that F(k) = G(k + 1) - G(k), if one exists, or prove that 
none exists, if that be the case. Thus it solves the discrete analogue of the 
antidifferentiation problem: instead of exhibiting a given integrand as the derivative 
of something, thereby enabling integration in finite terms, it exhibits a given 
summand as the difference of something, thereby enabling summation in finite 
terms. Examples of the operation of this algorithm are in Section 5. 

Zeilberger's algorithm ct finds a recurrence for a given hypergeometric sum- 
mand F(n, k). To that extent, it solves the same problem that Sister Celine's 
method solves. The form of the recurrence that it finds is different, however, and 
that allows an enormous speedup in its operation time. His algorithm finds a 
recurrence for F(n, k) in the form 

d 

5£ aj(n)F(n + j, k) = G(n, k + 1) - G(n,k)' (1) 
j=o 

in which G/F is a rational function (which the output exhibits) and the aj(n)'s are 
polynomials in n. The power of this result derives from the fact that if we sum both 
sides of this recurrence over a certain range of k, the sum on the right side 
telescopes, and so is easy to handle, and we obtain a recurrence for the sum, 
SkF(n, k), that we are trying to deal with. The fundamental theorem guarantees 
that such recurrences always exists if F is a proper hypergeometric summand (see 
Section 3). 

Wilf and Zeilberger's WZ method is at once a special case and a generalization 
of Zeilberger's method. In order to prove an identity of the type ,kF(n, k) = 1, it 
finds a recurrence of the form 

F(n + 1, k)-F(n, k) = G(n, k + 1) - G(n, k), (2) 
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where G/F is a rational function called the proof certificate of the identity. This 
form is clearly a special case of (1) above. A recurrence of this form does not 
always exist. When it does, one gets two benefits: first a very short proof of one's 
summation identity, and second, because of the symmetry of (2) in F and G, one 
finds a new identity, involving G, from the original one, involving F. 

Petkovwsek's algorithm Hyper finds closed form solutions f(n) to linear differ- 
ence equations with polynomial coefficients, 

d 
, aj(n)f(n + j) = °, 

j=o 

when such solutions eXist, or itproves that they do not exist, when they do not. We 
use the phrase "closed form" in the following precise sense: f(n) is said to be of 
(hypergeometric) closed form if it is equal to a linear combination of a fixed 
number, r, say, of hypergeometric terms in n. Thus Hyper completes the job of 
doing the summation problem because the methods just described, while they are 
guaranteed to give you a recurrence for your unknown sum, are not guaranteed to 
give you one of minimum order! But Hyper knows how to solve such recurrences 
in closed form, or to prove the impossibility of solving the recurrence in closed 
form, if that be the case. 

3. THE THEORY. Are these algorithms just more tricks, that might or might not 
work, to try on sums? Quite the contrary. In fact, the algorithms are accompanied 
by theorems that precis4y describe circumstances under which they are guaranteed 
to work. So these are definitely not of the let's-see-if-it-works genre. They will 
work if the hypotheses of the relevant theorems are satisfied. 

We are talking about sums of the form f(n) = Sk(n)(n)F(n,k). The whole 
method rests on the fact that if F(n, k) is a suitable summand then it satisfies a 
recurrence relation of a certain form. A summand F(n,k) is suitable (proper 
hypergeometric) if it is of the form 

F(n,k)=P(n,k)rlJ ( i i Ci) xnyk (3) 

in which 
* P(n, k) is a polynomial in n and k, whose degree is a specific integer, and 
* the limits I, J on the products are fixed specific nonnegative integers, and 
* the quantities ai,bi, u;, u; are specific integers, and 
* the quantities ci, w;, x, y may depend on parameters. 
Suppose we have a summand of that kind. What can sve expect? 

Theorem 1. If F(n, k) is proper hypergeometric then there exist a nonnegative integer 
d, a rational fiwnction R(n, k), and polynomials {pj(n)}Jd O, independent of k, such 
that F(n, k) satisfies 

d 

L pj(n)F(n + j, k)-G(n, k + 1) - G(n, k) 
y=o 

where G(n, k) = R(n, k)F(n, k). 

This theorem of Zeilberger, and the creative telescoping algorithm that 
carries it out, are used to find recurrences for given sums. The existence part of 

1997] 507 HOW TO DO MONTHLY PROBLEMS WITH YOUR COMPUTER 

This content downloaded from 202.28.191.34 on Wed, 30 Dec 2015 22:37:33 UTC
All use subject to JSTOR Terms and Conditions



the proof follows from an earlier algorithm of Sister Mary Celine Fasenmyer that 
was used by her to find recurrences for hypergeometric polynomials. 

From the recurrence for the summand one gets a recurrence for the sum. From 
the recurrence for the sum one gets the evaluation of the sum in closed form, if 
possible, or a proof of impossibility. The latter follow from algorithm Hyper, if the 
recurrence obtained is of order greater than 1. Just as the problem of finding 
recurrences has a life of its own, aside from its uses in evaluating sums, so 
algorithm Hyper has a life aside from finding out if sums have closed forms. 
Combinatorics is full of enumeration problems that lead to recurrences. With 
Hyper we can now find solutions of these, or else prove that closed forms do not 
exist, for the first time. In this way a large number of combinatorial sequences have 
been proved not to be of closed form, such as those in the following theorem. 

Theorem 2. None of the following famous sequences can be expressed in hypergeomet- 
rzc closed fotm: 

* the sum of the cubes (also the fourth and ffth powers) of the binomial coefJ2cients 
of order n, 

* the number of 3 x n Latin rectangles, 
* the number of involutions on n letters, 
* the derangement numbers, 
* the sum of the f rst n of the binomial coefficients of order pn ( p > 2) [7], 

For the whole story of this remarkable current of matheMatical thought, see [8]. 

4. THREE RECIPES FOR SUCCESS. Given a sum S(n) = Eb(n)(n)F(n, k) with a 
proper hypergeometric summand, Zeilberger's algorithm ct yields a linear recur- 
rence relation y with polynomial coefficients, of order d 2 O, satisfied by S(n). 
This is very helpful in the following situations that interest us here (and in many 
other situations too): 

1. To prove that S(n) = tn where tn is given in closed form, simply verify that 
tn also satisfies , and that it agrees with S(n) for d sufficiently large 
consecutive values of n. 

2. To prove equality of two such sums use algorithm ct on both, and find a 
common multiple, X, of the two resulting recurrences. If the order of X is 
m, verify that the two sums agree for m sufficiently large consecutive values 
of n. 

3. To find a closed form evaluation of S(n), note first that if d = O, or d = 1 
and S is homogeneous, then such an evaluation is immediate from < 
Otherwise, for various special reasons we might be able to solve y by 
inspection; it might be homogeneous with constant coefficients, for instance. 
But if no solutions are immediately apparent, then 
(a) If d = 1 and y is inhomogeneous, then S(n)canbe expressed in terms 

of an "indefinite" sum which Gosper's algorithm will put into closed 
form provided such a form exists. 

(b) Otherwise, use Hyper to find all closed form solutions of S. Homoge- 
nize first if y is inhomogeneous. If you are lucky and y is satisfied by 
t > 0 linearly independent hypergeometric terms, then: 

i. If t = d, any solution of y can be put into closed form by choosing 
an appropriate linear combination of hypergeometric solutions. 
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ii. If t < d, try to find a linear combination of hypergeometric solu- 
tions that agrees with S(n) for d sufficiently large consecutive 
values of n. 

iii. If this fails, use hypergeometric solutions to reduce the order of S. 
Repeat these steps with the new recurrence. 

This procedure is guaranteed to decide whether S(n) has a closed form evalua- 
tion (and to find it when it exists) whenever F(n, k) is proper hypergeometric, and 
the limits of summation are either infinite (recall that summands often have 
compact support) or linear in n. But sometimes, with a little help, it works even 
when F(n, k) is not proper hypergeometric (cf. problems E 3258, 10206, 10223, 
10388 in the next Section). We refer the interested reader to [8, Chapter 8] for 
more details. 

During the reviewing of this paper, one of the readers asked us for an example 
of a problem that we had not been able to do by these methods, even though it 
may have appeared to be a candidate. Of course such a problem would have to 
violate the hypotheses of Theorem 1, while at the same time seeming, at first 
glance anyway, to satisfy them. A good example of such a problem is an identity 
whose truth was conjectured by Borwein and Bradley, and which has recently been 
proved by Almkvist and Granville. It states that 

2nE ( k ) 4n4 + k4 rli 4n4 + j4 = n2, (n 2 1). 

After factoring the fourth degree polynomials that appear in the summand one 
discovers that it has exactly the form (3), except that, for instance, one of the 
numbers ai is , which is not a specific integer, so the conditions are not 
satisfied. 

5. PROBLEMS AND SOLUTIONS. We looked through MONTHLY problems on 
sums and recurrences that have been published since 1978, and selected 27 of the 
kind we're considering here. We used algorithms ct and Hyper, following the 
recipes given in the previous section. Wherever possible we used Gosper's algo- 
rithm and the WZ method, which technically are special cases of Zeilberger's 
algorithm ct corresponding to d = O, and to d= 1 with given closed form 
evaluation, respectively (d being the order of the resulting recurrence). Besides 
our own implementations, we used the outstanding implementation of Zeilberger's 
algorithm in Mathematica by P. Paule and M. Schorn [5], which excels especially 
when the resulting recurrence is not homogeneous. 

Many of the problems were solved completely automatically, while others 
required a little human help. For example, in several sums that involve the floor 
function we humans carried out the replacement 

,F(n, k, [k/21) = E (F(n, 2k, k) + F(n, 2k + 1, k)) (4) 
k k 

in which, if F(n, k, m) is hypergeometric in n, k, m, the summand on the left is 
not hypergeometric, but the one on the right is. Other examples of human 
intervention include the choice of the "best" recurrence variable when the sum- 
mand depends on more than one parameter, etc. 

A notable exception in the amount of necessary human aid is the double sum in 
Problem E 3376, which required the sharp eyes of P. Paule [4] to notice a special 
relationship among the coefficients of the recurrence. In principle, of course, 
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multiple sums can be handled by the methods of [10], but it is nice to be able to 
"do" a double sum with single-sum methods. 

And now, here are the problems and their solutions! 

Problem 6407. (Proposed in 1982, p. 703; solution in 1984, p. 315) 

Define [ k ] by means of the relation 

[k] Fn,k/Fk,k Fn,k = (qn - 1)(qn-1 - 1) .................................. (qn-k+1 .... 1) 

so that [ k ] is the so-called Gaussian polynomial. Prove the identity 

E q E ( 1) k(k+l)/2[n] (5) 

Denote the right side of (5) by S(n). The q-version of algorithm ct yields the recurrence 
S(n) - S(n - 1) = qn/(l - qn), which is also satisfied by the left side of (5). As they agree 
for n = 0, the identity is proved. 

Problem E 3021. (Proposed in 1983, p. 645; solution in 1986, p. 652) 
Let 

n ( )2 (6) 

Express pn(x) as an explicit function of 1 - x2. 
We provide a partial solution as follows. By algorithm ct 

4(n + 1)x pn(X) 2(2n + 3)pn+l(x) + (n + 2)Pn+2(X) = ° (7) 
With pO(X) = 1 and p1(x) = 2, we see from this recurrence that pn(x) is a polynomial in 
x2, and hence in 1 - x2. By comparing (7) with the three-term recurrence 

(n + l)pn(x) (2n + 3)xPn+l(x) + (n + 2)Pn+2(x) = 0 

satisfied by the Legendre polynomials Pn(x), we find that pn(x) = (2x)nPn(1/x). 

Problem E 3022. (Proposed in 1983, p. 645; solution in 1986, p. 736) 
Show that, for any cv > O and any positiue integer N, 

( _ l)k ( k ) 1 + (k - 1) ae rt' ( k + a 1 ) 

We are to show that £kF(N7 k) = 1, where 

(-l)k-l(CE-l)N 

(k - 1)!(N- k)!(k - 1 + ae-1) ' 
and (x)n is the rising factorial. The WZ method does this with the rational proof certificate 
(k - l)(c-1 + k - 1)/(N(k - N - 1)), and a check of the case N = 1. 

Problem E 3065. (Proposed in 1984, p. 649; solution in 1987, p. 378) 

Let n 2 0 be any integer and let k be any integer such that k 2 n + 1. Then find a closed 
formula for 

J=0 j + 1 ( J ) ( n - j ) 
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Let S(n) be the sum in question. Algorithm ct finds that 
{ k \ 

S(n) + S(n + 1) = t 1 } S 

whence 

S(n) = (-l)n E (j + ) ( jk) + S(O) = (-l)n E (j + ) ( jk) 

Gosper's algorithm gives the final answer 

S(n) = k + 1 ((n + 1) ( ) ) 

Problem E 3088. (Proposed in 1985, p. 359; solution in 1987, p. 685) 

Show that, for euery positive integer n, 

k- 1 nk ( k ) n * (8) 

Let tk denote the summand in (8). Gosper's algorithm finds that tk = sk+1 - s, where 
Sk = -ntk/k. Summing this recurrence on k from 1 to n gives the sum as Sn+l - S1 - n. 

Problem 6519. (Proposed in 1986, p. 403; solution in 1988, p. 1S6) 

Let 

F(a b m n)= E (a+m+n-2k)(a+n)(b+m) 

where m and n are nonnegatiue integers. Show that F(a, b, m, n) = F(b, a, n, m). 
For F(a, b, m, n) and F(b, a, n, m) we compute recurrence relations with respect to n 

using algorithm ct. As it turns out, both sums satisty the same recurrence of order 4: 
-3(1 + a + n)(2 + a + n)(3 + a + n)S(n) 

+2(2 + a + n)(3 + a + n)(10 + a + b - 2m + 4n)S(n + 1) 
(3 + a + n)(53 + Sa + 5b - ab - 26m - 4am - 4bm 

+36n + 2an + 2bn - 8mn + 6n2)S(n + 2) 
- (7 + a + b + 2n)(1 + 4a + 4b + ab + 8m + am 

+bm + an + bn + 2mn)S(n + 3) 

+ (4 + n)(4 + b + n)(4 + a + b + n)S(n + 4) = O. 
Checking that F(a, b, m, n) = F(b, a, n, m) for 0 < n < 3 therefore completes the proof. 

Problem E 3190. (Proposed in 1987, p. 181: solution in 1988, p. 877) 
Show that 

j (-1) (N-2r) ( r ) 

5£ (N-r) ... (N-r-i) ° (10) 
forj > O and&NZ 2j. 

Let tr denote the summand in (10). Gosper's algorithm finds that tr = sr+1 - Sr where 
Sr = r(r + j - N)tr/(j(N - 2r)). Summing this recurrence on r from 0 to j - 1 gives the 
sum as sj - sO + tj = O. 
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Problem E 3207. (Proposed in 1987, p. 456; solution in 1990, p. 67) 
If m is a positiue integer, let 

Fm(X) E (1- -) ( k )Xk(l -X)2m k . 

Show that 

Fm_l(x) - Fm(x) = 2(2m - 1) ( m )x (1 - x) for m > 1. (11) 
Zeilberger's algorithm ct instantly yields (11). 

Problem E 3258. (Proposed in 1988, p. 259; solution in 1989, p. 651) 
Proue that 

JE (J )2 ( t j/2J) = (2n + 1 n). 
If we use the transformation (4) here, the sum in question becomes 

5£, 2j + 1 ( 2j )2n-2 j-l ( i j ) . 

If we divide the summand by the claimed right side, ( 2n + 1), the WZ method proves the 
identity with a proof certificate of 4j(j + 1)/((2n + 3)(2j - n - 1)). 

Problem E 3335. (Proposed in 1989, p. 525; solution in 1990, p. 927) 
Solue the recurrence 

x0=aS x1=b, Xn+2=Xn+l +Xn/(n+ 1) for n= 0,1,2,... 
both exactly (in terms of familiar functions of n) and asymptotically. 

Algorithm Hyper gives one solution, n + 1. Then by reducing the order we find that 
(n + l)nk=0(- l)k/(k + 1)! is another. So 

Xn = (n + 1) a + (b - 2a) E (-1) 

which is asymptotic to (n + 1)(a + (b - 2a)/e). 

Problem E 3352. (Proposed in 1989, p. 838; solution in 1991, p. 369) 
Show that 

°° 1 e 
nEO n!(n4 + n2 + 1) 2 

This is equivalent to 
00 1 1 

n=O n!(n4 + n2 + 1) - 2n! = 0. (12) 
Let tn denote the summand in (12). Gosper's algorithm finds that tn = sn+1 - Sn where 
Sn = n2/(2n!(n2 - n + 1)). Summing this recurrence on n from 0 to oo gives the sum as 
sOO-sO = O. 

Problem E 3376. (Proposed in 1990, p. 240; solution in 1992, p. 63) 
Proue that 

, 5£, ( J ) ( 2N - 2j ) = (2N + 1)(2NN), 
for any positiue integer N. 
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Let S(N, i) denote the inner sum on the left. Algorithm ct finds the recurrence 

5£, Fj(N, i)S(N, i + j) = o (13) j-o 
where 

po(NS i) = (1 + i)(-i + N)(-1 - 2i + 2N), 

p1(N, i) = -18-32i - 22i2 _ 6i3 - 11N + 4iN + 8i2N 30N2 20iN2, 

p2(N, i) = (2 + i)(27 + 23i + 6i2 + 9N - 4iN + 18N2), 

p3(N, i) = -2(2 + i)(3 + i) . 
Following Paule [4], we notice that £3=o pj(N, i - j) = -2(2N + 1)2 is independent of i. 
Summing recurrence (13) on i from - 3 to N, and changing the order of summation to take 
advantage of this, we obtain 

3 3-i 

E , (S(N, -i)pj(N -i - j) + S(N, N + i)pyss(N, N j)) 

i=l j=O 
N 

- 2(2N + 1)2 E S(N, i) = O. (14) 
s=o 

Since for positive integer i the sums S(N -i) and S(N, N + i) contain only i nonzero 
terms, the result 

iEoS(N,i) = (2N+ 1)(2ff) 

can be readily computed from (14). 

Problem E 3439. (Proposed in 1991, p. 437; solution in 1993, p. 188) 
If M and N are nonnegative integers, proue that 

(M+N) = M-1 ( a )(2a + 1) + E ( a )( 2aa)- (15) 
Osav 2 OvaS 2 

If M = 0 both sides are 1. When M > 0 the two sums on the right can be combined into 
a single hypergeometric sum 

S(N) = , (2 1)( M a (M a ) (N + a ) 

for which creative telescoping finds the recurrence 

(N + 1)S(N + 1) (M + N + 1)S(N) - O 

satisfied by (MMN). As the two sides of (15) agree at N = O, the identity is proved. 

Problem 10206. (Proposed in 1992, p. 266; solution in 1995, p. 657) 
If m and k are positiue integers, proue that 

r ( k - r ) ( r ) = # ( Lk}/- j] ) ( m k + L3j/2J ) (16) 

If we apply the transformation (4) to the sum on the right of (16) it becomes 

, km - k2 + 3jk + 3j 2jm + 1 { j + 1 j {m - k + 3jA (17) 

j (2j+ l)(j+ 1) vk2jJv Zj J 
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The creative telescoping algorithm with respect to k shows that the same recurrence 

(k - 2m)S(k) + (1 - m + k)S(k + 1) + (k + 2)S(k + 2) = 0 

is satisfied both by (17) and by the left side of (16). Since they agree for k = 0,1, the identity 
is proved. 

Problem 10223. (Proposed in 1992, p. 462; solution in 1997, p. 70) 

For p E i8, q = 1 - p, and positiue integers n, prove 

E (n _ 1 ) (P q + P q ) 1. 

Write the sum as Sn(p) + Sn(l-p) where Sn(p) = Ekncnl (n l )pn(l _ p)k-n, By 

algorithm ct 

Sn+1( p) Sn( p) ( p(l _ p))n( 2n ) 

therefore 

Sn+l(l -p) -Sn(l -p) 2 p (p(l _ p))n( 2n ) 

which implies that Sn(p) + Sn(l - p) is constarlt. Evaluating the sum for n = 1 completes 
the proof. 

Problem 10229. (Proposed in 1992, p. 570; solution in 1994, p. 797) 

Giuen that m and p are integers with m > p 2 1, eualuate 

JE ( m - j + 1 ) ( m + j ) (18) 

Let tj denote the summand in (18). Gosper's algorithm finds that tj = Sj+l - sj where 
sj = (j - 1)(j + m)(2m - 2j + 1)tj/(m(2m + 1)). Summing this recurrence on j from 1 to 
p gives the sum as Sp+l - 51 which is 

{ 1/2 8{ 1/2 j p(m - p + 1)(2m + 2p - 1) 

tm -p + 1}tm +p} m(2m + 1) 

Problem 10332. Proposed in 1993, p. 796; $olution in 1996, p. 702) 

If n and k are integers with 0 < k < n, proue that 

( 2n ) = E 2n-k-2 j ( n ) ( n - J ) 

If we divide the summand on the right by the claimed left side, (n2+ k ) the WZ method 
proves the identity with a proof certificate of 4j(j + k)/((2j + k - n - 1)(2n + 1)). 

Problem 10357. (Proposed in 1994, p. 75; solution in 1997, p. 177) 
Def ne integers am n by 

1 00 

1 u u + 2uu m,n=O 

Show that ( l)ja2; 2j+2 is the Catalan number ( J )/(j + 1). 
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We expand the function on the left into a power series in u and v, using first the 
geometric series, then the Binomial Theorem, and finally the derivatives of the geometric 
series: 

1 1 1 / 1 - 2v E 

(l 5)(1 -U 1 ) 5 m=O t 1 U ) 

1 V m-O ( 1 V ) m, k=O ( k ) (1 v) 

E (-l)k(M ) (n )umvn 

From this we see that am n = Sk(- l)k( k ) ( k ) Using Zeilberger's algorithm ct on 

S(j) = (- l)ja2i,2i+2 = Ek(-l)k+j( kj)( jk ) we obtain the recurrence 

16(1 + j)(1 + 2j)(9 + 4j)S(j) - 2(7 + 4j)(21 + 28j + 8j2)S(j + 1) 

+(3 + j)(5 + 2j)(5 + 4j)S(j + 2) = O, 

which is satisfied by cj = ( JJ )/( j + 1). As Sf j) = cj for j = O, 1, the proof is complete. 

Problem 10363. (Proposed in 1994, p. 175; solution in 1997, p. 179) 

If m, n are integers satisfjoing 1 < m < n - 1, prove that 

{ 2n - m - 1 j _ {n - 18 E {k + j8{2n - m - 2k - j - 38 

\2n-2m-1J \ m J k j \ k Ja 2(n-m-k-1) J 

Let 

( ) jE ( k ) ( 2(n - m - k - 1) ) 

Algorithm ct finds the first-order recurrence 
(2m - 2n + k + 1)S(k) + (2n - m - k - 2)S(k + 1) = O, 

for 0 < k < m - n - 2. From this, S(k) = C(n, m)(2m k2n + k)/(m 2nk+ k + 1) where 

( S ) ( ) jE ( 2(n-m-1) ) ( m-1 )' 

by Gosper's algorithm. Finally, 
{2m - 2n + kA 

E S(k) = ( m - 1 ) E (m - 2n + k + 1 ) ( m ) ( m ) 

by Gosper's algorithm again. 

Problem 10375. (Proposed in 1994, p. 362; solution in 1997, p. 275) 

Find the complete solution of the recurrence 

Un+2 = 2(2n + 3)2Un+l - 4(n + 1)2(2n + 1)(2n + 3)Un, for n 2 O. 

Petkovsek's algorithm Hyper finds that (2n)! satisfies the recurrence. Then by reducing 
the order we find that (2n)!Hn also satisfies it, where Hn = 1 + 1/2 + + 1/n is the n-th 

harmonic number. Hence the complete solution is Un = (2n)!(C1 + C2Hn) where C1 and 
C2 are arbitrary constants. 
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Problem 10388. (Proposed in 1994, p. 474; solution in 1997, p. 459) 
Find 

E (k) 4 2 P 

where n and p are positive integers. 
The summand is not hypergeometric due to the non-integral coefficient of k. Denote the 

sum by S(n, p), and write S(n, p) = S1(n, p) + S2(n, p) where 

S1(n,p)= £(2nk) 4 P, 

'n-3 1 
S2(n, p) = (2k + 1) 2p , 

Zeilberger's algorithm ct finds that both sums satisfy the same recurrence with respect to 
p, ViZ., 

(n - 4p - 7)(n - 4p - 5)(n - 4p - 3)(n - 4p - 1)Si(n, p) 
-16(n - 4p - 7)(n - 4p - 5)(5n + 4pn - 8p2 - 20p - 14)Si(n, p + 1) 
+512(n - 2p - 3)(n - 2p - 4)(2p + 3)(p + 2)Si(n,p + 2) = 0, for i E {1,2}. 

(19) 

Then S(n, p) also satisfies (19). Algorithm Hyper finds the complete solution of this 
recurrence as 

< n - 3 ' < n - 1 ' < n - 3 ' < n - 1 
4 4 4 4 

S(n, p) = C1(n) Z 1 > ' n - 2 > + C2(n) K n - 1 8 

-4)P 2 2 4P 2 
i P J i P J i P J 

The initial conditions S(n, 0) = 2n and 

SXn,1)= E (k) 4 2 = 32 2n, 

J 

can be found using algorithm ct again. From these C1(n) = 0 and C2(n) = 2n, whence 
' n - 3 ' ' n - 1 

4 4 

S(n, p) = 4p ' n - 1 ' 

K P J 

Problem 10396. (Proposed in 1994, p. 681; solution in 1997, p. 570) 
Let ae > 0 and let (bn:n 2 1> be defined recursively by bl - ae, b2 = 3ae, 

bn+l = (2n + l)bn-(n2 + 2)bn_l (n 2 2). (20) 
Prove that < bn > contains infinitely many positive and infinitely many negative terms. 
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Algorithm Hyper finds the complete solution of (20) as Cl(1 + ai)(2 + ai) (n + ai) 
+ C2(1 - a i)(2 - a i) * * * (n - a i ) where i 2 = - 1 and C1, C2 are arbitrary constants. From 
the initial conditions, C1 = 1/(2i) and C2 = -1/(2i), so that 

bn = A(1 + ati)(2 + ati) (n + ai). 
Write bn = SZnn where zO = 1 and Zn = (n + ai)zn_1 (for n 2 1). As limnOOarctan a/n 
= 0 but En=1arctan a/n = oo, it is clear that the imaginary part Of Zn is positive and 
negative infinitely often. 

Problem 10403. (Proposed in 1994, p. 792; solution in 1997, p. 368) 

Define a sequence < Yn > recursively by yO = 1> Y1 = 3 and 
Yn + 1 (2n + 3)Yn - 2nyn_ 1 + 8n (21) 

for n 2 1. Find an asymptotic formula for Yn. 
Algorithm Hyper finds that 2nn! satisfies the homogeneous part of (21). By reduction of 

order we obtain 

y 2n ! E 1 + 8Em=1m 2n ! E 1 + 4k(k-1) 

n 1 
= 2n+1n! E 2kkl -2n-1, 

k=O 

which is asymptotic to 2n+1n!4. 

Problem 10424. (Proposed in 1995, p. 70; solution in 1997, p. 466) 

Evaluate the sum 

n n k ( 2k ) (22) 
O<k< 3 

Denote the sum in (22) by S(n). The creative telescoping algorithm yields the constant- 
coefficient recurrence 

S(n + 3)-2S(n + 2) + S(n + 1)-2S(n) = O (n 2 1). (23) 
The roots of the characteristic polynomial are 2, _ i, and the solution of (23) satisi37ing 
S(1) = S(2) = 1 is 

(n-1) ( O, n--1 (mod2) 
S(n) = 2n-1-sin 2 = 2n-1 + i-1, n-2 (mod4) . 

t 1, n--0 (mod4) 

Problem 10466. (Proposed in 1995, p. 654; solution in 1997, p. 575) 

For x E ¢ and n E , prove the following identities between polynomials: 

(a) (-4)n ' ( )( 2n -j ) = ( n ) 5' ( 2j )(2n - 2j) 
(b) For all m E , with O < m < 2n, generalize (a) to 

m 

n {X + 2 \{n - 1 -xj {2nl { x +i \{ x-j \ 
( 4) Eol j }t 2n-j J t n J Em t2j+m}t2n-m-2j} 
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(a) Denote the sums on the left and right by S(n) and T(n), respectively. Algorithm et 
finds recurrence relations 

(1 + 2n)S(n) - 2(1 + n)S(n + 1) = (1 + 3n 2x)(1 + 2x) (2x)(2n) (24) 

and 

2(1 + n)(2 + n)2(1 + 3n-2x)T(n + 2) 
-(1 + n)(6 + 41n + 67n2 + 30n3 

-x(28 + 98n + 68n2 _ 40x-56nx + 16x2))T(n + 1) 
+2(1 + 2n)(4 + 3n-2x)(x-n)(2x-2n-1)T(n) = 0. 

The latter recurrence turns out to be the homogenization of the former, so S(n) and T(n) 
satisi37 the same recurrence of order 2. As they agree for n = 0,1, they are identical. As a 
bonus, from (24) we can express S(n) in terms of an "indefinite" sum in which the summand 
does not depend on n: 

{2ni 
( ) t n J (1-(2x + 1) 5£ 4 (k + 1)(2k + 1) (2k)) 

(b) Denote the sum on the right by U(n, m). Algorithm et with respect to m finds the 
recurrence 

(2n-m-1)U(n, m + 2)-2nU(n, m + 1) + (m + 1)U(n, m) = ° (25) 

( ' ) ( n )2 J--° (2] + 1 ) (2n - 1 - 2j )' algorithm et finds the same recurrence as 
for T(n) (for n > 1). As they agree for n = 1,2, they agree for all n 2 1. SO U(n,1) = T(n) 
-U(n, 0) (for n 2 1). It follows from (25) that U(n, m) = T(n) = S(n). 

Problem 10473. (Proposed in 1995, p. 745; solution in 1997, p. 371) 
Prove that there are infinitely many positive integers m such that 

5 * 2 k=O ( 2k ) (26) 
is an odd integer. 

Denote (26) by S(m). Algorithm et yields the constant-coefficient recurrence 
S(m + 2) - 4S(m + 1) + S(m) = 0. (27) 

The sequence T(m) = 5S(m) satisfies (27) as well and starts out as (1, 5, . . . >, hence it is 
integral. Let Ts(m) = T(m) mod 5 and T2(m) = T(m) mod 2. Using (27) mod 5 and mod 2, 
respectively, we see that Ts = (1, 0, 4,1, 0,4, . . . > and T2 = 41, 1, 1, . . . >, so that S(3k + 1) 
= T(3k + 1)/5 is an odd integer for all k 2 0. 

Problem 10494. (Proposed in 1996, p. 74; solution in 1997, p. 371) 
For each positive integer n, evaluate the sum 

k-O ( 2k )/( k ) (28) 
Let tk denote the summand in (28). Gosper's algorithm finds that tk = sk+1 - sk where 

sk = (2k - 1)tk/(2(1 - 2n)). Summing on k from 0 to 2n - 1 gives the sum as S2n - sO + 
t2n = 1/(l-2n). 

6. CONCLUSION. Quite often, MONrHLY problems require evaluation of a single 
or double sum in closed form, or a proof of equality of two such sums. When the 
summand involves binomial coefficients, factorials, products of rational functions, 
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and exponential functions with constant base, there are vety good chances that 
such a problem can be solved automatically by Gosper's algorithm or by its 
generalizations: the WZ methodf Zeilberger's algorithm ct, and algorithm Hyper. 
Although Gosper's algorithm is now over 19 years old (see the quotation on the 
title page!), it seems that it is not as widely known as it deserves to be. 

To help spread the word, we surveyed MONTHLY problems that have appeared 
since the publication of Gosper's algorithm in 1978. We have presented here a 
selection of those on which these methods are successful. For a similar list of 
earlier problems, see the Web site 
http://www.math.temple.edu/ zeilberg/Monthly.html. 
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