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39. Prove Euler’s theorem.

40. The initial remark of sect. 1 is vague, but can suggest several precise
statements. Here is one that we have not considered in sect. 1: “If any one
of the three quantities F, V, and E tends to o0, also the other two must
tend to 00.” Prove the following inequalities which hold generally for
convex polyhedra and give still more precise information:

9E>3F, 2V>F+4, 3V>E+6,
9E>3V, 2F>V+4, 3F>E+6,

Fig. 3.7, Exterior angles of a palygon.

Can the case of equality be attained in these iri_e&uaii.ties? For which kind
of polyhedra can it be attained?

41. There are convex polyhedra all faces of which are polygons of the
same kind, that is, polygons with the same number of sides. For example,
all faces of a tetrahedron are triangles, all faces of a parallelepiped quadri-
laterals, all faces of a regular dodecahedron pentagons. ‘“‘And so on,”
you may be tempted to say. Yet such simple induction may be misguiding:
there exists no convex polyhedron with faces which are all hexagons. Try
to prove this. [Ex. 31.]

[ —
2 IV  Em
[ ] '] [ ] '}

[ ] n

INDUCTION IN THE THEORY
OF NUMBERS

In the Theory of Numbers it happens rather frequently that, by some
unexpected luck, the most elegant new truths spring up by induction.
—GAusst

1. Right triangles in integers.? The triangle with sides 3, 4, and S isa

right triangle since
32 4 4% = 52,

This is the simplest example of a right triangle of which the sides are
measured by integers. Such “right triangles in integers” have played a
réle in the history of the Theory of Numbers; even the ancient Babylonians
discovered some of their properties.

One of the more obvious problems about such triangles is the following:
Is there a right triangle in integers, the hypotenuse of which is a given integer n?

We concentrate upon this question. We seek a triangle the hypotenuse
of which is measured by the given integer n and the legs by some integers
xandy. We may assume that x denotes the longer of the two legs. There-
fore, being given n, we seek two integers x and y such that

n=x242 0<yla<nm

We may attack the problém inductively and, unless we have some quite
specific knowledge, we cannot attack it any other way. Let us take an
example. We choose n = 12. Therefore, we seek two positive integers
x and y, such that x > y and

P

144 = x? 4 52

1 Werke, vol. 2, p. 3.

2 Parts of this chapter appeared already under the title “Let us teach guessing” in the
volume Etudes de philosophie des sciences en hommage & Ferdinand Gonseth. Editions du Griffon,
1950; see pp. 147-154.
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60 INDUCTION IN THE THEORY OF NUMBERS

Which values are available for #2? The following:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121.
Is x2 = 121? Thatis, is
144 — x% = 144 — 121 = 42

a square? No, 23 is not a square. We should now try other squares
but, in fact, we need not try too many of them. Since y < x,

144 = 22 + 32 < 22
%% > 72,

Therefore, x2= 100 and #%*= 8] are the only remaining possibilities.
Now, neither of the numbers

144 — 100 = 44, 144 — 81 = 63

is a square and hence the answer: there is no right triangle in integers with
hypotenuse 12.
We treat similarly the hypotenuse 13. Of the three numbers

169 — 144 = 25, 169 — 121 = 48, 169 — 100 = 69

only one is a square and so there is just one right triangle in integers with
hypotenuse 13:
169 = 144 + 25.

Proceeding similarly, we can examine with a little patience all the
numbers under a given not too high limit, such as 20. We find only five
“hypotenuses’ less than 20, the numbers 5, 10, 13, 15, and 17:

95— 16+ 9
100 — 64 + 36
169 = 144 + 25
295 — 144 481
289 — 225 4 64.

By the way, the cases 10 and 15 are not very interesting. The triangle
with sides 10, 8, and 6 is similar to the simpler triangle with sides 5, 4, and 3,
and the same is true of the triangle with sides 15, 12, and 9. The remaining
three right triangles, with hypotenuse 5, 13, and 17, respectively, are essen-
tially different, none is similar to another among them.

We may notice that all three numbers 5, 13, and 17 are odd primes. 'They
are, however, not all the odd primes under 20; none of the other odd primes,
3,7,11,and 191is a hypotenuse. Why that? What is the difference between
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the two sets? When, under which circumstances, is an odd prime the hypotenuse
of some right triangle in integers, and when is it not?

This is a modification of our original question. It may appear more
hopeful; at any rate, it is new. Let us investigate it—again, inductively.
With a little patience, we construct the following table (the dash indicates
that there is no right triangle with hypotenuse p).

Odd prime p Right triangles with hypotenuse p
3 —
5 25=16 49
7 —
11 —
13 169 = 144 + 25
17 289 = 225 -+ 64
19 —
23 —
29 841 = 441 + 400
31 —

When is a prime a hypotenuse; when is it not? What is the difference
between the two cases? A physicist could easily ask himself some very
similar questions. For instance, he investigates the double refraction of
crystals. Some crystals do show double refraction; others do not. Which
crystals are doubly refracting, which are not? What is the difference
between the two cases?

The physicist looks at his crystals and we look at our two sets of primes

5,13,17,29,... and 3,7,11,19,23,31,....

We are looking for some characteristic difference between the two sets.
The primes in both sets increase by irregular jumps. Let us look at the
lengths of these jumps, at the successive differences:

5 13 17 29 3 7 11 19 23 3l
8 4 12 4 4 8 4 8

Many of these differences are equal to 4, and, as it is easy to notice, all are
divisible by 4. The primes in the first set, led by 5, leave the remainder 1
when divided by 4, are of the form 4n + 1 with integral n. The primes in
the second set, led by 3, are of the form 4n + 3.  Could this be the character-
istic difference we are looking for? If we do not discard this possibility
from the outset, we are led to the following conjecture: A prime of the form
4n -+ 1 is the hypotenuse of just one right triangle in integers; a prime of the form
4n 4 3 is the hypotenuse of no such triangle.
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2. Sums of squares. The problem of the right triangles in integers, one
aspect of which we have just discussed (in sect. 1), played, as we have said,
an important role in the history of the Theory of Numbers. It leads on, in
fact, to many further questions. Which numbers, squares or not, can be
decomposed into two squares? What about the numbers which cannot
be decomposed into two squares? Perhaps, they are decomposable into
three squares; but what about the numbers which are not decomposable
into three squares?

We could go on indefinitely, but, and this is highly remarkable, we need
not. Bachet de Méziriac (author of the first printed book on mathematical
recreations) remarked that any number (that is, positive integer) is either a
square, or the sum of two, three, or four squares. He did not pretend to possess
a proof. He found indications pointing to his statement in certain problems
of Diophantus and verified it up to 325.

In short, Bachet’s statement was just a conjecture, found inductively. It
seems to me that his main achievement was to put the question: HOW
MANY squares are needed to represent all integers? Once this question is
clearly put, there is not much difficulty in discovering the answer inductively.
We construct a table beginning with

1=1
2=141
3=1+4+141
4=4

5=14 41
6=4-4+141
T=4+14141
8=4 14

9=09

10 =9 4 1.

This verifies the statement up to 10. Only the number 7 requires four
squares; the others are representable by one or two or three. Bachet
went on tabulating up to 325 and found many numbers requiring four
squares and none requiring more. Such inductive evidence satisfied him,
it seems, at least to a certain degree, and he published his statement. He
was lucky. His conjecture turned out to be true and so he became the
discoverer of the “four-square theorem” which we can state also in the
form: The equation

n=x* 458+ 2 4wt

where 7 is any given positive integer has a solution in which %, %, 2, and w
are non-negative integers.
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The decomposition of a number into a sum of squares has still other
aspects. Thus, we may investigate the number of solutions of the equation

n= %+

in integers x and . We may admit only positive integers, or all integers,
positive, negative, and 0. If we choose the latter conception of the problem
and take as example n = 25, we find 12 solutions of the equation

25 = x® 4%,
namely the following
95 = 52 4 02 = (—5)% + 02 = 02 4 52 = 0% 4 (—5)2
=B () B = 4 (=3 = (4 (-3
=3 L 42 = (—3)2 4+ 42= 32 4 (—4)% = (—3)? 4 (—4)%
By the way, these solutions have an interesting geometric interpretation,

but we need not discuss it now. See ex. 2.

3. On the sum of four odd squares. Of the many problems concerned
with sums of squares I choose one that looks somewhat far-fetched, but will

turn out to be exceptionally instructive.
Let u denote a positive odd integer. Investigate inductively the number of the

solutions of the equation
du=x"+" + 2+ u?

in positive odd integers x, y, z, and w.
For example, if 4 = 1 we have the equation

4=+ + 22+ w?

and there is obviously just one solution, x =y = z=w=1. In fact,
we do not regard

or
x =2, y=0, z=0, w=0

as a solution, since we admit only positive odd numbers for #, y, z, and w.
If u = 3, the equation is

12= 2 4+ % + 22 + w?
and the following two solutions:

x=3 y=1, z=1, w=1

I

x=1 y=3 z=1, w
are different.
In order to emphasize the restriction laid upon the values of #, y, z, and w,

we shall avoid the term “solution” and use instead the more specific de-
scription: “‘representation of 4u as a sum of four odd squares.” As this
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description is long, we shall abbreviate it in various ways, sometimes even
to the one word “representation.”

4. Examining an example. In order to familiarize ourselves with the
meaning of our problem, let us consider an example. We choose u = 25.
Then 4u = 100, and we have to find all representations of 100 as a sum
of four odd squares. Which odd squares are available for this purpose?
The following:

I, 9, 25, 49, 8l
If 81 is one of the four squares the sum of which is 100, then the sum of the

three others must be
100 — 81 = 19,

The only odd squares less than 19 are 1 and 9, and 19=9 49+ 1 is
evidently the only possibility to represent 19 as a sum of 3 odd squares if
the terms are arranged in order of magnitude. We obtain

100=81 49494 1.
We find similarly
100=494+49 +1 41,
100 =49 4+ 25 425 + 1,
100 = 25 + 25 4 25 4 25.
Proceeding systematically, by splitting off the largest square first, we may
convince ourselves that we have exhausted all possibilities, provided that
the 4 squares are arranged in descending order (or rather in non-ascending
order). But there are more possibilities if we take into account, as we
should, all arrangements of the terms. For example,
100=49+494+1+1
=49+ 1449 + 1
=49 4141449
=1+49449 41"
1 4+49 41449
=1+1+49+49.
These 6 sums have the same terms, but the order of:the terms is different;
they are to be considered, according to the statement of our problem, as

6 different representations; the one representation
100=49 449 + 1+ 1

with non-increasing terms is a source of 5 other representations, of 6 repre-
sentations in all. We have similarly

Il

Non-increasing terms Number of arrangements

81 94941 12
49 149 4141 6
49 1+ 25 1+ 925 & 1 12
25 + 25 + 25 + 25 1

'
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To sum up, we found in our case where u = 25 and 4u = 100

1246+ 12 +1=3l1

representations of 4u = 100 as a sum of 4 odd squares.

5. Tabulating the observations. The special case u =25 where
4y = 100 and the number of representations is 31 has shown us clearly the
meaning of the problem. We may now explore systematically the simplest
cases, u==1,3,5,...uptou==25. We construct Table I. (See below;
the reader should construct the table by himself, or at least check a few items.)

Table I
u 4u Non-increasing Arrangements  Representations
1 4 14+ 14+ 14+ 1 1 1
3 12 94+ 1+ 14+ 1 4 4
5 20 94 9+ 1+ 1 6 6
7 28 254+ 14+ 14+ 1 4 8
9+ 9+ 94 1 4
9 36 254 94+ 14 1 12 13
9+ 9+ 94 9 1
11 44 254+ 9+ 9+ 1 12 12
13 52 494 14+ 14 1 4 14
25+ 254+ 14 1 6
254+ 94+ 94 9 4
15 60 494+ 94+ 1+ 1 12 24
254254+ 94+ 1 12
17 68 49+ 94 94 1 12 18
25425+ 9+ 9 6
19 76 49425+ 14+ 1 12 20
494 94+ 9+ 9 4
25+ 254254+ 1 4
21 84 81+ I+ 14 1 4 32
49+ 254+ 94 1 24
25+ 25+ 25+ 9 4
23 92 814 9+ 1+ 1 12 24
o 49+254+ 94+ 9 12
25 100 814+ 9+ 9+ 1 12 31
49449+ 1+ 1 6
49 + 25 425+ 1 12
25 + 25 + 25 + 25 1

6. What is the rule?

Is there any recognizable law, any simple con-
nection between the odd number % and the number of different representa-
tions of 4u as a sum of four odd squares?
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This question is the kernel of our problem. We have to answer it on the
basis of the observations collected and tabulated in the foregoing section.
We are in the position of the naturalist trying to extract some rule, some
general formula from his experimental data. Our experimental material
available at this moment consists of two parallel series of numbers

1 3 5 7 9 11 13 15 17 19 21 23 25
1 4 6 8 13 12 14 24 18 20 32 24 3l

The first series consists of the successive odd numbers, but what is the rule
governing the second series?

As we try to answer this question, our first feeling may be close to despair.
That second series looks quite irregular, we are puzzled by its complex
origin, we can scarcely hope to find any rule. Yet, if we forget about the
complex origin and concentrate upon what is before us, there is a point
easy enough to notice. It happens rather often that a term of the second
series exceeds the corresponding term of the first series by just one unit.
Emphasizing these cases by heavy print in the first series, we may present
our experimental material as follows:

1 3 5 7 9 1 13 15 17 19 21 23 25
1 4 6 8 13 12 14 24 18 20 32 24 3L

The numbers in heavy print attract our attention. It is not difficult to
recognize them: they are primes. In fact, they are all the primes in the
first row as far as our table goes. This remark may appear very surprising
if we remember the origin of our series. We considered squares, we made
no reference whatever to primes. Is it not strange that the prime numbers
play a réle in our problem? It is difficult to avoid the impression that our
observation is significant, that there is something remarkable behind it.

What about those numbers of the first series which are not in heavy print?
They are odd numbers, but not primes. The first; 1, is unity, the others are
composite J

9=3%3 15=3x%5 21=3x7, 25=5X35.

What is the nature of the corresponding numbers in the second series?

If the odd number z is a prime, the corresponding number is u + 1;
if u is not a prime, the corresponding number is not « 4+ 1. This we have
observed already. We may add one little remark. If u = 1, the corre-
sponding number is also I, and so less than u + 1, but in all other cases in
which u is not a prime the corresponding number is greater than u + 1. That
is, the number corresponding to u is less than, equal to, or greater thanu + 1
accordingly as u is unity, a prime, or a composite number. There is some
regularity.
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Let us concentrate upon the composite numbers in the upper line and the
corresponding numbers in the lower line:

3 X3 3x5 3x7 5%5
13 24 32 31

There is something strange. Squares in the first line correspond to primes
in the second line. Yet we have too few observations; probably we should
not attach too much weight to this remark. Still, it is true that, conversely,
under the composite numbers in the first line which are not squares, we ﬁnd
numbers in the second line which are not primes:

3X5 3x7

4 X6 4 x 8.
Again, there is something strange. Each factor in the second line exceeds
the corresponding factor in the first line by just one unit. Yet we have too
few observations; we had better not attach too much weight to this remark.

Still, our remark shows some parallelism with a former remark. We noticed
before

b
p+1

and we notice now
bq
p+Dg+1)
where p and ¢ are primes. There is some regularity.

Perhaps we shall see more clearly if we write the entry corresponding to
pq differently:

+D@+D)=pg+p+q+ 1

What can we see there? What are these numbers pg, p, ¢, 1? At any rate,
the cases

9 25
13 31

remain unexplained. In fact, the entries corresponding to 9 and 25 are
greater than 9 + 1-and 25 + 1, respectively, as we have already observed:

13=9+1+3 31=25+145.

What are these numbers?

If one more little spark comes from somewhere, we may succeed in com-
bining our fragmentary remarks into a coherent whole, our scattered indica-
tions into an illuminating view of the full correspondence:

b bq 9 25 1
P+l prtpt+a+1 9+3 41 254541 1.
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DIVISORS! The second line shows the divisors of the numbers in the
first line. This may be the desired rule, and a discovery, a real discovery:
To each number in the first line corresponds the sum of its divisors.

And so we have been led to a conjecture, perhaps to one of those “‘most
elegant new truths” of Gauss: If u is an odd number, the nu.m_ber of representations
of 4u as a sum of four odd squares is equal to the sum of the (.hvzsors of u.

7. On the nature of inductive discovery. Looking back at the fore-
going sections (3 to 6) we may find many questions to ask. '

What have we obtained? Not a proof, not even the shadow of a proof, Ju§t
a conjecture: a simple description of the facts within the limits of our experi-
mental material, and a certain hope that this description may apply beyond
the limits of our experimental material. '

How have we obtained our conjecture? In very much the same manner that
ordinary people, or scientists working in some non-mathematical field,
obtain theirs. We collected relevant observations, examined and compared
them, noticed fragmentary regularities, hesitated, blundered, an(‘:1 eventually
succeeded in combining the scattered details into an apparently r-neam{zg]ful whole.
Quite similarly, an archaeologist may reconstitute a whole inscription from
a few scattered letters on a worn-out stone, or a palaeontologist may recon-
struct the essential features of an extinct animal from a few of its petrified
bones. In our case the meaningful whole appeared at the same moment when
we recognized the appropriate unifying concept (the divisors).

8. On the nature of inductive evidence. There remain a few more
questions.

How strong is the evidence? Your question is incomplete. You mean, of
course, the inductive evidence for our conjecture stated in sect. 6 that we can
derive from Table I of sect. 5; thisis understood. Yet what dg) you mean by
“strong”? The evidence is strong if it is convincing; it is cenvincing if it
convinces somebody. Yet you did not say whom it should convince—me,
or you, or Euler, or a beginner, or whom?

Personally, I find the evidence pretty convincing. I feel sure that Euler
would have thought very highly of it. (I mention Euler becaus'e he came
very near to discovering our conjecture; see ex. 6.24.) I think that a
beginner who knows a little about the divisibility of num‘tfers ought to find
the evidence pretty convincing, too. A colleague of mine, an excellent
mathematician who however was not familiar with this corner of the
Theory of Numbers, found the evidence “hundred per cent convin.cin‘g.”

I am not concerned with subjective impressions. What is the precise, objectively
evaluated degree of rational belief, justified by the inductive evidence? You give me
one thing (A), you fail to give me another thing (B), and you ask me a third
thing (C). . .

(A) You give me exactly the inductive evidence: the conjecture has bee.n
verified in the first thirteen cases, for the numbers 4, 12, 20, . . ., 100. This
is perfectly clear.
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(B) You wish me to evaluate the degree of rational belief justified by this
evidence. Yet such belief must depend, if not on the whims and the tempera-
ment, certainly on the knowledge of the person receiving the evidence. He
may know a proof of the conjectural theorem or a counter-example exploding
it. In these two cases the degree of his belief, already firmly established, will
remain unchanged by the inductive evidence. Yet if he knows something
that comes very close to a complete proof, or to a complete refutation, of
the theorem, his belief is still capable of modification and will be affected by
the inductive evidence here produced, although different degrees of belief
will result from it according to the kind of knowledge he has. Therefore, if
you wish a definite answer, you should specify a definite level of knowledge
on which the proposed inductive evidence (A) should be judged. You should
give me a definite set of relevant known facts (an explicit list of known
elementary propositions in the Theory of Numbers, perhaps).

(C) You wish me to evaluate the degree of rational belief justified by the
inductive evidence exactly. Should I give it to you perhaps expressed in
percentages of “full credence”? (We may agree to call “full credence” the
degree of belief justified by a complete mathematical proof of the theorem in
question.) Do you expect me to say that the given evidence justifies a belief
amounting to 99%, or to 2.8759%, or to .0000019, of “full credence” ?

In short, you wish me to solve a problem: Given (A) the inductive evi-
dence and (B) a definite set of known facts or propositions, compute the
percentage of full credence rationally resulting from both (C).

To solve this problem is much more than I cando. I do not know anybody
who could do it, or anybody who would dare to doit. I know of some philo-
sophers who promise to do something of this sort in great generality. Yet,
faced with the concrete problem, they shrink and hedge and find a thousand
excuses why not to do just this problem.

Perhaps the problem is one of those typical philosophical problems about
which you can talk a lot in general, and even worry genuinely, but which
fade into nothingness when you bring them down to concrete terms.

Could you compare the present case of inductive inference with some standard case
and so arrive ai a reasonable estimate of the strength of the evidence? Let us compare
the inductive evidence for our conjecture with Bachet’s evidence for his
conjecture. .

Bachet’s conjecture was: Forn = 1,2,3,. .. the equation

n= gt 2w
has at least one solution in non-negative integers x, 9, z, and w. He verified

this conjecture for n=1,2,3, ..., 325. (See sect. 2, especially the short
table.)

Our conjecture is: For a given odd %, the number of solutions of the
equation

fu= 4%+ 2% 4 w?
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in positive odd integers x, y, 2, and w is equal to the sum of the divisors of «.
We verified this conjecture for z=1,3,5,7,...,25 (13 cases). (See
sect. 3 to 6.)

I shall compare these two conjectures and the inductive evidence yielded
by their respective verifications in three respects.

Number of verifications. Bachet’s conjecture was verified in 325 cases, ours
in 13 casesonly. The advantage in this respect is clearly on Bachet’s side.

Precision of prediction. Bachet’s conjecture predicts that the number of
solutions is 2> 1; ours predicts that the number of solutions is exactly equal
to such and such a quantity. It is obviously reasonable to assume, I think,
that the verification of a more precise prediction carries more weight than that of a less
precise prediction. The advantage in this respect is clearly on our side.

Rival conjectures. Bachet’s conjecture is concerned with the maximum
number of squares, say M, needed in representing an arbitrary positive
integer as sum of squares. In fact, Bachet’s conjecture asserts that M = 4.
I do not think that Bachet had any a priori reason to prefer M = 4 to, say,
M = 5, or to any other value, as M = 6 or M = 7; even M = o0 is not
excluded a priori. (Naturally, M = o0 would mean that there are larger
and larger integers demanding more and more squares. On the face,
M = oo could appear as the most likely conjecture.) In short, Bachet’s
conjecture has many obvious rivals. Yet ours has none. Looking at the
irregular sequence of the numbers of representations (sect. 6) we had the
impression that we might not be able to find any rule. Now we did find an
admirably clear rule. We hardly expect to find any other rule.

It may be difficult to choose a bride if there are many desirable young
ladies to choose from; if there is just one eligible girl around, the decision
may come much quicker. It seems to me that our attitude toward conjec-
tures is somewhat similar. Other things being equal, @conjecture that has
many obvious rivals is more difficult to accept than one” that is unrivalled.
If you think as I do, you should find that in this respect the advantage is on
the side of our conjecture, not on Bachet’s side.

Please observe that the evidence for Bachet’s conjecture is stronger in one
respect and the evidence for our conjecture is stronger in other respects, and
do not ask unanswerable questions.

EXAMPLES AND COMMENTS ON CHAPTER IV

1. Notation. We assume that n and k are positive integers and consider
the Diophantine equation

n=a} +x2+...+ x5

We say that two solutions #;, %y, . . . %, and x;, Xy, . . . %, are equal if, and
only if, x; = x7, X3 = xg, . . . %= % . If we admit for x;, xp, ... % all
integers, positive, negative, or null, we call the number of solutions Ry(r). If
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we‘admit .onl}f positive odd integers, we call the number of solutions S, (n).
This notation is important in the majority of the following problems.

Bachet’s conjecture (sect. 2) is expressed in this notation by the inequality
Ryn) >0forn=1,2,3,...

The conjecture that we discovered in sect. 6 affirms that $,(4(2n — 1))
equals the sum of the divisors of 2n — 1, forn = 1,2, 3, ...

Find R,(25) and S,(11).

2. Let x and y be rectangular coordinates in a plane. The points for
Wth.h botl.x x and y are integers are called the “lattice points” of the plane.
Lattice points in space are similarly defined.

Interpret Ry(n) and R,(n) geometrically, in terms of lattice points.

3. Express the conjecture encountered in sect. 1 in using the symbol

Ry(n).

4. .\Nh(.:n is an odd prime the sum of two squares? Try to answer this
question inductively, by examining the table ;

3 —_
5= 441
7 _

11 —

13= 914
17 =16 + 1
19 —
23 —
29 = 925 + 4
31 —

Extend this table if necessary and compare it with the table in sect. 1.

5. Could you verify by mathematical deduction some part of your answer
to ex. 4 obtained by induction? After such a verification, would it be
reasonable to change your confidence in the conjecture ?

6. Verify Bachet’s conjecture (sect. 2) up to 30 inclusively. Which
numbers require actually four squares ?
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. In order to understand better Table I in sect. 5, let a2, b2, ¢2, and 42
denote four different odd squares and consider the sums

(1) a® + b 4 ¢ + d®
(2) @+ a* + b* + &
(3) &+ & + B2+ b°
(4) @+ a* + o + &
(5) @® + a® + a® 4 a®.

How many different representations (in the sense of sect. 3) can you derive
from each by permuting the terms?

8. The number of representations of 4u, as a sum of four odd squares is
odd if, and only if, u is a square. (Following the notation of sect. 3, we
assume that z is odd.) Prove this statement and show that it agrees with
the conjecture of sect. 6. How does this remark influence your confidence

in the conjecture?

9. Now, let a, b, ¢, and 4 denote different positive integers (odd or even).
Consider the five sums mentioned in ex. 7 and also the following:

(6) @+ 0>+ (9) @48
(7) *+a 48 (10) & + 2
8 @+a+a (1) .

Find in each of these eleven cases the contribution to R,(n). You derive
from each sum all possible representations by the foHowing obvious opera-
tions: you add 02 as many times as necessary to bring'the number of terms
to 4, you change the arrangement, and you replace some (or none, or all) of
the numbers a, b, ¢, d by —a, —b, —c, —d, respectively. (Check examples
in Table IL.)

10. Investigate inductively the number of solutions of the equation
n= %+ y* + 22 + w? in integers x, y, 2, and w, positive, negative, or 0.
Start by constructing a table analogous to Table 1.

11 (continued). Try to use the method, or the result, of sect. 6.

12 (continued). Led by the analogy of sect. 6 or by your observation of
Table II, distinguish appropriate classes of integers and investigate each
class by itself.

13 (continued). Concentrate upon the most stubborn class.

14 (continued). Try to summarize all fragmentary regularities and
express the law in one sentence.
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15 (continued). Check the rule found in the first three cases not contained
in Table II.

16. Find Ry(5) and S(40).

17. Check at least two entries of Table III, p. 75, not vyet gi .
Tables I and II. P /9 yet given in

18. Using Table III, investigate inductively Rg(n) and Sg(8n).

Igl;o(clontinued). Try to use the method, or the result, of sect. 6 and
ex. 10-15.

20 (continued). Led by analogy or observation, distinguish appropriate

- classes of integers and investigate each class by itself.

21 (continued). Try to discover a cue in the most accessible case.

22 (continued). Try to find some unifying concept that could summarize
the fragmentary regularities.

23 (continued). Try to express the law in one sentence.

24. Which numbers can and which numbers cannot be expressed in the
form 3x 4 5y, where x and y are non-negative integers?

25. Try to guess the law of the following table:

Last integer not expressible

a b in form ax + by
2 3 1
2 5 3
2 7 5
2 9 7
3 4 5
3 5 7
3 7 11
3 8 13
4 5 11
5 6 19

It is understood that x and y are non-negative integers. Check a few items
and c:ftend the table, if necessary. [Observe the change in the last column
when just one of the two numbers a and 4 changes.]

26. Dangers of induction. Examine inductively the following assertions:
(1) (n— 1)! 4 1is divisible by n when 7 is a prime, but not divisible by n
when n is composite.

(2) 2"~1— 1 is divisible by » when 7 is an odd prime, but not divisible by n
when 7 is composite.



INDUCTION IN THE THEORY OF NUMBERS

Table II (continued)
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Table II

n Non-increasing Repres R,(n)/8

1 1 4 x 2 1

2 141 6 x 4 3

3 14+ 1+1 4 x8 4

4 4 4 x2 3
1+1+141 1 x16

5 441 12 x 4 6

6 4+ 1+1 12 x 8 12

7 4+14+1+1 4 x 16 8

8 4+ 4 6 X 4 3

9 9 4 x2 13
44+4+1 12 x 8

10 9+ 1 12 x 4 18
4+44+1+1 6 x 16

11 9+1+41 12 x 8 12

12 9414141 4% 16 12
4+ 4+ 4 4x8

13 9+ 4 12 x 4 14
4+ 4+4+1 4 x 16

14 9+4+1 24 x 8 24

15 9+4+1+1 12 X 16 24

16 16 4 x2 3
44+4+4+4 1 x 16

17 16 4+ 1 12 x4 18
9+ 4+4 12 x 8Y

18 16 +1+1 12 x 8 39
949 6 X 4
9+4+4+1 12 x 16

19 164+14+1+1 4 x 16 20
94+9+1 12 x 8

20 16 + 4 12 x 4 18
94+9+1+1 6 x 16

21 16 +4+1 24 x 8 32
9+4+4+4 4 x 16

22 164+4+1+1 12 x 16 36
9-+9+4+4 12 x 8

23 9+94+44+1 12 x 16 24

24 16 -4+ 4 12 x 8 12

25 25 4 x 2 31
16 +9 12 x 4
16 +4-+4+4+1 12 x 16

n Non-increasing Repres. R,(n)/8
26 2541 12 X 4 42
16+9+1 24 x8
94+9+4+4+4 6 x 16
27 254+ 1+1 12 x 8 40
16 +9+1+1 12 x 16
9+9+9 4x8
28 25+ 14141 4 x 16 24
16+4+4+4 4 x 16
9+94+9+1 4 x 16
29 254+ 4 12 x 4 30
16 +9+ 4 24 x 8
30 2544 +1 24 x 8 72
16+9+4+1 24 x 16
Table III
n Ry(n)/8 Ry(n)/16 S5(8n) S$4(42n — 1)) 2n—1
1 1 1 1 1 1
2 3 7 8 4 3
3 4 28 28 6 5
4 3 71 64 8 7
5 6 126 126 13 9
6 12 196 224 12 11
7 8 344 344 14 13
8 3 583 512 24 15
9 13 757 757 18 17
10 18 882 1008 20 19
11 12 1332 1332 32 21
12 12 1988 1792 24 23
13 14 2198 2198 31 25
14 24 2408 2752 40 27
15 24 3528 3528 30 29
16 3 4679 4096 32 31
17 18 4914 4914 48 33
18 39 5299 6056 48 35
19 20 6860 6860 38 37
20 18 8946 8064 56 39




