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Abstract. Experimental mathematics is a newly developed approach to discovering mathe-
matical truths through the use of computers. In this paper, we look at how these techniques
can be applied to help solve six problems that have appeared in the Problems section of the
MONTHLY. The paper has examples of constant recognition, sequence recognition, and inte-
ger relation detection.

Experimental mathematics is a newly developed approach to discovering mathematical
truths through the use of computers. Mathematicians have always calculated as part of
their search for new facts. The computer makes this easier and has extended our range,
but there are also new computer methods that are qualitatively different from what has
gone before.

“Experimental math” is a very broad term. Borwein and Devlin state in [10] that
“experimental mathematics is really an approach to mathematical discovery” (p. 115)
and “Experimental mathematics is the use of a computer to run computations—
sometimes no more than trial-and-error tests—to look for patterns, to identify partic-
ular numbers and sequences, to gather evidence in support of specific mathematical
assertions that may themselves arise by computational means, including search.” (p. 1)
Experimental math is thus primarily heuristic; it guides us to an expression, but we
still have to prove it.

In this paper, we will look at three particular computer methods that are important
in mathematics research and illustrate their use on six problems that have appeared in
the Problems section of THE AMERICAN MATHEMATICAL MONTHLY.

Experimental math has been very successful in mathematical research, but there
are a couple of reasons why it might be even more successful in helping to solve
MONTHLY problems. One reason is that MONTHLY problems tend to have short, neat
answers (typical published solutions run about half a page to a page), so these meth-
ods, which lead directly to a final answer, might be an important shortcut in solving
the problem. Another reason is that MONTHLY problems are always presented out of
context so that we do not know where the problem came from or (usually) why it is
interesting. The lookup methods are especially useful here because they do not require
any context. The lack of context is more of a challenge for integer relation detection,
as we will see in our example in Section 7.

The best place to start learning about experimental mathematics is the brief but
wide-ranging survey and introduction [10]. The two-volume set [6, 7] contains an enor-
mous number of worked examples and exercises from a wide variety of mathematics.
The book [3] contains many lengthy and very difficult examples. The website [2] is
a collection of much useful information and links to other sites. There is a research
journal, Experimental Mathematics, published by Taylor & Francis.

For this paper, we will use Mathematica to perform the multiple-precision calcula-
tions needed, although any computer-algebra system or high-precision package would
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work. The calculations and timings shown in this paper were performed using Mathe-
matica 10.0.2.0 on a 2.8 GHz Macintosh iMac computer.

1. THE METHODS. In this paper, we will look at three particular methods or tech-
niques that are commonly used in experimental math and see examples of applying
each to MONTHLY problems.

Other computer methods that are useful for many MONTHLY problems, but not cov-
ered in this paper, are the mechanical summation methods of Gosper, Wilf, Zeilberger,
et al. These are especially useful for problems involving sums with binomial coeffi-
cients. They are illustrated in a very illuminating and entertaining article [21] published
earlier in this MONTHLY. These methods are often included as part of experimental
math, but they produce both the final answer and the proof, so they are not heuristic in
the same way that methods we consider here are.

Constant recognition. The Inverse Symbolic Calculator Plus (ISC+) [8] is an online
service that attempts to identify a constant, given a good numerical approximation to
the constant. According to its website, ISC+ “uses a combination of lookup tables and
integer relation algorithms in order to associate a closed form representation” with the
given approximation. It is used to identify values that come up in research, such as
definite integrals or infinite series, by calculating them to a high precision (the rule
of thumb is that 15 digits are needed) and asking ISC+ for a closed-form candidate.
Such problems are very common in the MONTHLY Problems section, and the value
can often be discovered by this method. Even with computers, it is sometimes difficult
to calculate a value to 15 digits, and we will see examples of this in this paper.

Even in the old days, we might have attempted to guess the value of a series by
adding up several dozen terms. If we got a sum of 3.14159, we would probably guess
that the series summed to π and attempt to prove this using known facts about π ,
including other series whose value included π . With computers we can get more digits;
if the answer was 3.1415926535897932385, we would be even more confident that
the answer was π and would be willing to work harder to prove this. Plugging in our
20-digit π suspect into ISC+ indeed produces π .

The ISC+ table is enormous, and the lookup method almost always produces a can-
didate if you have enough digits. However, guessing a constant from a high-precision
approximation is far from infallible. We like mathematical problems to have neat
answers. For example, to 30 digits, we have

eπ
√

163 = 262537412640768743.999999999999.

Anyone looking at the right-hand side would guess that it represents an integer, but to
35 digits, we have

eπ
√

163 = 262537412640768743.99999999999925007.

Another example (from [4, pp. 498–503]) is the integral

∫ ∞

0
cos(2x)

∞∏

n=1

cos
( x

n

)
dx .

To 42 digits, this agrees with π/8, but in fact, it is not π/8. A collection of even more
spectacular examples of misleading near matches is in [9].
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Sequence recognition. The On-Line Encyclopedia of Integer Sequences (OEIS) [22]
is a large searchable table of integer sequences. It is used by calculating several terms
of the sequence of interest and then using the table to see if it is a known sequence.
This technique is especially valuable for combinatorial problems, where it is often
easy to count the objects for small sizes but difficult to work out the general case. (The
table lookup is not inherently a computer technique, as the Encyclopedia started as a
collection of file cards in 1964 and became a print book in 1973, but the computer has
extended its reach and made it easier to use.)

Let’s suppose you become interested in the problem of how many slices a pizza
can be cut into using n straight cuts, and you don’t realize the problem has already
been solved. After some experimentation, you decide the maximum number of pieces
for one through four cuts is 2, 4, 7, 11. You can then try looking up this sequence in
OEIS. Its top hit is the sequence A000124, which is described as the central polygonal
numbers but also as the maximal number of pieces formed when slicing a pancake with
n cuts, so you realize your problem has already been solved. Better yet, the OEIS gives
you the formula for this number of pieces, n(n + 1)/2 + 1, and numerous references
where you can find proofs and further information.

Integer relation detection. The third method is integer relation detection, in which
we seek to express a given constant as a rational linear combination of known con-
stants. An ancient example is the greatest common divisor of two integers, which we
know can be expressed as such a combination: gcd(a, b) = ax + by for some integers
x , y.

The general integer relation detection problem is: Given a set of n numbers ck ,
attempt to find an integer linear combination of them that is very nearly 0; that is,
find integers ak such that

∑n
k=1 akck ≈ 0. If successful, and the combination is exactly

0, this means that any of the ck that have a nonzero coefficient can be expressed as
a rational linear combination of the others. Ferguson and Bailey’s PSLQ algorithm
[15] and the Lenstra–Lenstra–Lovász (LLL) lattice reduction algorithm [19] are two
well-known integer relation detection algorithms. Mathematica’s solver is the function
FindIntegerNullVector; the Mathematica documentation does not reveal which
algorithm this uses.

Another (slightly disguised) example of integer relation detection is the question
of whether a given number x is an algebraic number (that is, it is a zero of a polyno-
mial with integer coefficients). We can recast this question as: For some n is there an
integer relation between the numbers 1, x, . . . , xn? In other words, are there integers
a0, . . . , an such that an xn + · · · + a0 = 0? If we could show that a mystery number
was a zero of particular polynomial, we would then know a lot about it, even if we
could not get an explicit representation. Take the simple example that we are given a
number x that is approximately

x ≈ 3.146264369941972342329135.

Is x algebraic? (Clearly, the right-hand side is algebraic because it is rational, but the
question is really whether x is the root of a polynomial with small coefficients.) This
can be answered using FindIntegerNullVector and a suitable number of powers of
x (say n = 10). Mathematica also has a function RootApproximant specifically for
answering whether a number is algebraic, and it says that x satisfies

x4 − 10x2 + 1 = 0.
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For most purposes, this would be almost as good as an explicit form. In this example,
because the equation is so simple, we can in fact find the explicit form. A few
keystrokes in Mathematica gives the roots, and looking at their numerical values
shows x =

√
2 +

√
3.

One early and spectacular example of integer relation detection is the Bailey–
Borwein–Plouffe formula for π in base 16 (see, for example, [10, Chapter 2]):

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

This formula allows the calculation of any base-16 digit of π with a moderate amount
of effort and without calculating the preceding digits. The formula was hard to dis-
cover but once discovered can be proved easily using only calculus. More examples of
integer relation detection are in an article [4] published earlier in this MONTHLY.

2. A RAPIDLY CONVERGING SUM. We start with an easy example. MONTHLY
problem 11853 [23] asks for the value of

∞∑

n=1

1
sinh 2n

.

This series converges extremely rapidly, so it is easy to get a good numerical approx-
imation: The first five terms give about 28 digits of accuracy. Mathematica gives to
15 digits that

K =
5∑

n=1

1
sinh 2n

= 0.313035285499331.

The ISC+ “standard lookup” does not identify this constant, but the “advanced lookup”
yields the transformed value 1/(1 + K ) = tanh(1), in other words, K = 1/ tanh 1 − 1.
We are prompted to conjecture

∞∑

n=1

1
sinh 2n

= 1
tanh 1

− 1, (1)

which is plausible because of the hyperbolic functions on both sides and checks out
numerically: If we sum the first 10 terms, the two sides agree to about 900 decimals.
This is strong evidence but not a proof; we still use traditional hand methods to get a
proof.

Because the hyperbolic functions have expressions in terms of the exponential func-
tion, we might try expanding both sides of (1) as power series in e−1 and see if they
match. We have on the left, using the geometric series, that

∞∑

n=1

1
sinh 2n

=
∞∑

n=1

2
exp(2n) − exp(−2n)

= 2
∞∑

n=1

exp(−2n)

1 − exp(−2 · 2n)

= 2
∞∑

n=1

∞∑

m=0

exp(−2n(2m + 1)).
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Some thought shows that this double series can be rearranged to 2
∑∞

k=1 e−2k : Each
positive integer can be written in exactly one way as the product of a power of 2 and
an odd integer, so the expression 2n(2m + 1) = 2 · 2n−1(2m + 1) in the sum takes on
each even positive integer value exactly once. Meanwhile, expanding the right-hand
side of (1) using the geometric series gives

1
tanh 1

− 1 = e1 + e−1

e1 − e−1
− 1 = 2e−1

e1 − e−1
= 2e−2

1 − e−2
= 2

∞∑

k=1

e−2k,

so the two sides are equal, and our numerically inspired conjecture is proved.

3. A NUMBER-THEORETIC DETERMINANT. Let’s try a discrete problem
which does not require any high-precision calculation. MONTHLY problem 11179 [5]
asks: For positive integers i and j , let

mi j =
{

−1 if j | (i + 1)

0 if j ! (i + 1)
,

and when n ≥ 2 let Mn be the (n − 1) × (n − 1) matrix with (i, j)-entry mi j . Evaluate
det Mn . (For integers a, b the notation a | b means that a divides b, that is, b/a is an
integer.)

For example, for n = 6 we have the 5 × 5 matrix

M6 =

⎛

⎜⎜⎜⎝

−1 −1 0 0 0
−1 0 −1 0 0
−1 −1 0 −1 0
−1 0 0 0 −1
−1 −1 −1 0 0

⎞

⎟⎟⎟⎠
. (2)

We work out the first few terms as examples and get that for n = 2 through n = 25
the values of det Mn are

−1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1, 0, −1, 0, −1, 0, 1, 1, −1, 0, 0.

A number theorist might recognize this sequence, but anyone can ask the OEIS about
it. One of the OEIS hints is “enter about 6 terms, starting with the second term,” so we
ask about the subsequence −1, 0, −1, 1, −1, 0. OEIS immediately replies with 1,399
matches, of which the one rated most relevant is its sequence A008683, the Möbius
function µ(n). This sequence in fact matches all 24 of our calculated values, so we
conjecture det Mn = µ(n).

The matrices Mn have an obvious recursive structure in the sense that mi j does
not depend on n, and so the upper left (k − 1) × (k − 1) submatrix is always Mk .
The determinants have a further recursive structure: If we expand by minors along
the bottom row, the minor determinant for column j is ± det M j . This is because, in
forming the minor, the M j at the upper left is preserved while the −1 terms in the
superdiagonal slide into the diagonal. For example, the minor for column 3 and row
5 in (2) is

120 c⃝ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124

This content downloaded from 140.77.168.36 on Sat, 11 Feb 2017 05:43:54 UTC
All use subject to http://about.jstor.org/terms



∣∣∣∣∣∣∣

−1 −1 0 0
−1 0 0 0
−1 −1 −1 0
−1 0 0 −1

∣∣∣∣∣∣∣
.

In this example, M3 is in the upper left, and the matrix in the lower right has all −1
along the diagonal and all 0 above the diagonal.

The minor thus has determinant (−1)n− j det M j . If we make the convention that
det M1 = 1 for the empty matrix M1, this evaluation is still true for j = 1. Therefore,
expanding det Mn by minors along the bottom row gives us a recurrence: We have for
n > 1 that

det Mn =
∑

j<n, j |n
(−1)(−1)n−1+ j−1(−1)n− j det M j = −

∑

j<n, j |n
det M j .

This rearranges as
∑

j |n
det M j = 0.

The Möbius function also has a recursive structure. It satisfies a recurrence

∑

d|n
µ(d) =

{
1, n = 1;
0, n > 1.

(This is the first formula in the OEIS entry A008683.) This is the same recurrence
satisfied by det Mn , and det Mn and µ(n) have the same starting value of 1, so we have
by induction that det Mn = µ(n).

4. A PARAMETRIC SERIES DEFINED BY RECURRENCE. We look at a more
difficult series that depends on a parameter and whose terms are given by a recurrence
rather than explicitly. MONTHLY problem 11604 [13] asks: Given 0 ≤ a ≤ 2, let ⟨an⟩
be the sequence defined by a1 = a and

an+1 = 2n −
√

2n(2n − an) for n ≥ 1. (3)

Find
∑∞

n=1 a2
n .

The sequence depends on the parameter a, so we are being asked for a function and
not a single number, but we will try to work out the value for particular values of a
and then try to guess the general result. Try the endpoints first: The case a = 0 is easy
but uninformative (all terms are 0). For the other endpoint, a = 2, the first few terms
an are

2.0, 2.0, 1.17157, 0.608964, 0.307436, 0.154089, 0.0770908, 0.0385512,

and we see that each term is roughly half the preceding term. In the sum
∑

a2
n , each

term is about 1/4 the previous term, so to get 15 decimals, 50 terms should be plenty.
To 25 decimals, Mathematica gives

50∑

n=1

a2
n = 9.869604401089358618834491,
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which does not look like anything in particular, but ISC+ immediately identifies it as
π2. We do not know how π got into a problem with only square roots, but we press
on. Trying some additional values, we get

a
∑50

n=1 a2
n ISC+ identifies as

0 0 0
1/2 0.346622711232150957648277 π2/9 − 3

4
1 1.467401100272339654708623 π2/4 − 1
2 9.869604401089358618834491 π2

We are not asked anything about the individual values an , and even if we had some
information, it might not help with the value of the sum. But we will make a detour
and see if an has any interesting properties. We suspect from the a = 2 example above
that 2nan goes to a nonzero finite limit. We make a wild guess that the value for n = 50
gives a result close to the true limit, and calculate some examples:

a 250a50 ≈ limn→∞ 2nan ISC+ identifies as
0 0 0
1/2 1.096622711232150957648277 π2/9
1 2.467401100272339654708623 π2/4
2 9.869604401089358618834491 π2

Surprisingly, the same π2 values turn up! We still do not know where the π2 comes
from, but comparing the tables, we conjecture that

∞∑

n=1

a2
n = lim

n→∞
2nan + simple function of a.

In fact, this is easy to prove now that we have thought of it. Rearrange, square, and
rearrange the recurrence (3) to get

a2
n+1 = 2n+1an+1 − 2nan.

When this is summed, the right-hand side telescopes, and we get

∞∑

n=1

a2
n = a2

1 +
∞∑

n=1

a2
n+1 = a2

1 + lim
n→∞

2nan − 2a1 = lim
n→∞

2nan + a2 − 2a,

so the “simple function” is a2 − 2a, and this gives the right answer for the four
examples we tried. (We are assuming temporarily that lim 2nan exists; this will be
proved later when we evaluate it.)

So we have reduced the sum problem to an asymptotic problem for the general term,
which should be easier. The recurrence (3) has a lot of 2n in it, and it should be easier
to think about if we reparameterize to get rid of them. If we define bn = an/2n , we get

2n+1bn+1 = 2n −
√

2n(2n − 2nbn) = 2n − 2n
√

1 − bn,

which rearranges to

bn+1 = 1 −
√

1 − bn

2
with b1 = a/2, so 0 ≤ b1 ≤ 1. (4)
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This is much simpler: Not only is the 2n gone, but each b value depends only on
the previous value and not on n. That is, it is an iteration, bn+1 = f (bn) where
f (x) = 1

2

(
1 −

√
1 − x

)
. This is attractive not only because it is simpler but also

because there is a systematic (but complicated) theory to get asymptotic values of
sequences defined by an iteration (see [14, Chapter 8]).

In our case, rather than apply the systematic theory, we will make an observation
that leads to a quick solution. Remembering the π2 and the square roots, we might be
reminded of the half-angle formulas for the trigonometric functions, of which the most
common are

cos
θ

2
=
√

1 + cos θ

2
and sin

θ

2
=
√

1 − cos θ

2
.

Neither of these has exactly the same form as our recurrence, but if we square the
second one, we can get a half-angle formula for sin2 that does have the right format,
namely

sin2 θ

2
= 1 − cos θ

2
= 1 −

√
1 − sin2 θ

2
.

Therefore, we define

θ1 = arcsin
√

b1 and θn+1 = 1
2θn

so that bn = sin2 θn is the solution of the recurrence (4), and

an = 2n sin2 θ1

2n−1

is the solution to the recurrence (3). Then using limx→∞ x2 sin2(c/x) = c we calculate

lim
n→∞

2nan = lim
n→∞

22n sin2 θ1

2n−1
= 4θ2

1 = 4 arcsin2

√
a
2
.

The final formula is then

∞∑

n=1

a2
n = 4 arcsin2

√
a
2

+ a2 − 2a,

which matches the calculated values.

5. A STIRLING SERIES. Even with today’s fast computers, it is often difficult to
get enough digits to feed to the lookup program (recall that our rule of thumb is that
we need 15 digits). Traditional methods of numerical analysis are still very useful,
particularly methods for transforming series and integrals and methods for accelerating
convergence of series. In this example, we will approximate a slowly convergent series
with a combination of other series that converge just as slowly but for which we know
the sum explicitly. This method is sometimes called Kummer’s transformation of series
(see, for example, [17, p. 247]).
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MONTHLY problem 10832 [18] asks for an explicit form for the sum

∞∑

k=1

(
kk

k!ek
− 1√

2πk

)
. (5)

Today, Mathematica can identify the sum immediately and directly, but back in 2000,
when this problem was posed, Mathematica was not as smart. Let’s see how experi-
mental math can help us identify the sum.

The sum converges slowly (the general term is about 1/k3/2), so brute force does not
work. There is a very precise asymptotic formula (an extension of Stirling’s formula;
see, for example, [24, p. 140, formula 5.11.1]) for ln k!, which begins

ln k! =
(
k + 1

2

)
ln k − k + 1

2 ln(2π) + 1
12k

− 1
360k3

+ 1
1260k5

− · · · .

We therefore have

kk

k!ek
= 1√

2πk
exp

(
− 1

12k
+ 1

360k3
− 1

1260k5
+ · · ·

)

= 1√
2πk

(
1 − 1

12k
+ 1

288k2
+ 139

51840k3
− 571

2488320k4
+ · · ·

)
.

The first term of this will cancel with the other term in the sum (5), and we can use
as many of the remaining terms as we think is useful. Using three terms reduces the
required numerical work to a reasonable level for a computer. Write

ak = − 1
12k

+ 1
288k2

+ 139
51840k3

so that we have

∞∑

k=1

(
kk

k!ek
− 1√

2πk

)
=

∞∑

k=1

(
kk

k!ek
− 1√

2πk
(1 + ak)

)
+ 1√

2π

∞∑

k=1

ak√
k

=
∞∑

k=1

(
kk

k!ek
− 1√

2πk
(1 + ak)

)
(6)

+ 1√
2π

(
− 1

12
ζ( 3

2 ) + 1
288

ζ( 5
2 ) + 139

51840
ζ( 7

2 )

)
, (7)

where ζ is the Riemann zeta function. The zeta series converge slowly too, but a lot is
known about them and how to calculate them more quickly, and we can let Mathemat-
ica figure them for us. To 25 decimals, we get

(7) = −0.08378540362877196918178047.

We estimate (6) by truncating it at some point and summing numerically. The
general term is about the first omitted term from the asymptotic expansion, i.e.,
571/(

√
2πk · 2488320k4), so truncating the series at N introduces an error of about
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571

2488320
√

2π

∞∑

k=N

1
k9/2

≈ 571

(7/2)2488320
√

2π

1
N 7/2

< 10−4 1
N 7/2

.

Therefore, if we take N = 104, we will get about 18 decimals of accuracy. (Remember
that we are doing heuristics. If we misestimate the error, there is no logical problem,
but we may misidentify the number.) To 25 digits, Mathematica gives the truncated
sum as −0.0002841050988840270181249700. This takes about 30 seconds, which is
reasonable; if it had taken too long, we could have sped up the convergence some more
by using more terms in the asymptotic expansion and fewer terms in the numerical part.

The whole sum is therefore approximately

(5) ≈ −0.0840695087276559961999.

The ISC+ identifies this as

−2
3

−
ζ
(

1
2

)
√

2π
= −0.08406950872765599646148950,

which matches to 18 decimals.
This result is plausible and encouraging; looking at the second term in the original

problem, we have that the 1/
√

2π matches, and the
∑

1/
√

k “sort of” matches the
ζ
(

1
2

)
, although we know the series does not converge and is not really ζ

(
1
2

)
. Having

detected the zeta function, we might look through books and find expressions such as

ζ(s) = s
∫ ∞

0

⌊x⌋ − x
xs+1

dx (0 < Re s < 1),

which is one way to analytically continue the zeta function to the left of the line
Re s = 1 (see, for example, [26], p. 14). For s = 1

2 , we rearrange and evaluate this
to get

lim
n→∞

(
n∑

k=1

1√
k

− 2
√

n

)

= ζ
(

1
2

)
.

This explains the second part of the answer, so we would now need to show

lim
n→∞

(
n∑

k=1

kk

k!ek
− 2√

2π

√
n

)

= −2
3
.

The sum here is also a limiting case of a known function, in this case the Lambert
W -function (see, for example, [24], section 4.13, p. 111), whose power series expan-
sion is

W (z) =
∞∑

k=1

(−1)k−1 kk−1

k!
zk .

Formally, we want to study the derivative at z = −1/e, but this point is on the circle
of convergence and the series does not converge there, so we have to work inside the
circle and take a limit. This can be done by appealing to properties of this function;
the details are in the published solution [18]. Another experimental math treatment of
this problem is in [10, pp. 81–85].
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6. AN ALTERNATING SUM OF SQUARES OF ALTERNATING SUMS. This
example also converges extremely slowly, and even after a standard transformation to
speed up the convergence, it is still too slow to be useful. We will add a heuristic trick
to reduce the work to a manageable level.

MONTHLY problem 11682 [16] asks for a closed form for

∞∑

n=0

(−1)n

( ∞∑

k=1

(−1)k−1

n + k

)2

. (8)

This is an intimidating-looking problem, and even getting a numerical estimate is chal-
lenging. The inner series is the tail of ln 2 =

∑
(−1)k−1/k, which converges extremely

slowly. The tail is about ±1/(2n), so the outer sum converges slowly, too.
We can speed up the convergence of the inner sum by Euler’s transformation (see,

for example, [17, p. 244]). Write $an = an+1 − an for the forward difference operator
and $kan for the composition of this operator k times. Euler’s transformation states

∞∑

k=0

(−1)kak =
∞∑

n=0

$na0

2n+1
.

Our particular example is worked out in [17, p. 246, Example 1], where we find

∞∑

k=1

(−1)k−1

n + k
=

∞∑

k=0

1

2k+1(n + k + 1)
(n+k

k

) . (9)

The right-hand side converges quickly, and to get 15 decimals, we only need about 50
terms.

The inner sum is about 1/(4n2), and the outer sum is an alternating series, so we
would need about 107 or 108 terms to get 15 decimals, and each of those has an inner
sum of 50 terms. That is a lot of terms, and we need a better way.

We will attempt to get a good value with much less work by using the following
observation. We know that the partial sums of an alternating series lie alternately above
and below the series value (and that the error is less than the first omitted term). Empir-
ically, it is further true that for series with slowly and smoothly decreasing terms, the
series value is almost exactly halfway between two successive partial sums (or what is
the same, the series value is almost exactly the partial sum plus half the first omitted
term). To take a simple example, ln 2 = 0.693147. The first 100 terms of the series
ln 2 =

∑∞
k=1(−1)k−1/k give a poor approximation of 0.688172, but adding half the

next term gives the much better approximation 0.693123. (This heuristic observation
has been worked out in more generality and detail as the method of “repeated averag-
ing”; see, for example, [11, p. 72] and [12, p. 278].)

Our method is to truncate the outer sum of (8) after 100,000 terms, and estimate
each term (and the first omitted term) using Euler’s transformation (9) with 50 terms.
That is, write

dn =
50∑

k=0

1

2k+1(n + k + 1)
(n+k

k

) ,
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and sum all the included terms and add half the next term, giving to 25 digits

(8) ≈
105−1∑

n=0

(−1)nd2
n + 1

2
d2

100000

= 0.411233516699556597589303

+ 0.000000000012499875000313

= 0.411233516712056472589616.

This takes about 40 seconds in Mathematica, which is reasonable. The ISC+ (with
advanced lookup) identifies this as

π2

24
= 0.4112335167120566091181038,

which matches the calculated value to 15 decimals.
Where does π2/24 come from? The π2 makes us think of

∑∞
n=1

1
n2 = ζ(2) = π2

6 ,
especially because of the terms in the outer sum being very nearly 1/(4n2). However,
naively applying this estimate to the sum gives

∑∞
n=1(−1)n−1 1

4n2 = 1
8ζ(2) = π2

48 , only
half the calculated value, and it is not clear how ζ(2) might be generated.

However, thinking about the double (or triple) series and rummaging through zeta
function lore might make us think of Tom Apostol’s evaluation [1] of ζ(2) using the
double integral

ζ(2) =
∫ 1

0

∫ 1

0

1
1 − xy

dx dy.

(This method appeared earlier as an exercise in LeVeque [20, Section 6-10, exercise 6,
p. 122], and later Apostol independently rediscovered it and popularized it.) Apostol
then used an extremely clever change of variables to evaluate the integral. It is easy to
turn our sum into a double integral, too, and it looks a little like Apostol’s:

∞∑

n=0

(−1)n

( ∞∑

k=1

(−1)k−1

n + k

)2

=
∞∑

n=0

(−1)n

(∫ 1

0

∞∑

k=1

(−1)k−1xn+k−1 dx

)2

=
∞∑

n=0

(−1)n

(∫ 1

0

xn

1 + x
dx
)2

=
∞∑

n=0

∫ 1

0

∫ 1

0

(−1)nxn yn

(1 + x)(1 + y)
dx dy

=
∫ 1

0

∫ 1

0

1
(1 + x)(1 + y)(1 + xy)

dx . (10)

Somewhat miraculously, Mathematica knows the value of this integral: π2/24, which
confirms our guess. If we trust Mathematica, our job is done!
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If we do not trust Mathematica that much, we can work the integral by hand. Math-
ematica can help with this too because it also knows the value of the indefinite integral:

∫ ∫
1

(1 + x)(1 + y)(1 + xy)
dx

= 1
2

(
− Li2

(
xy + 1
1 − y

)
+ Li2

(
xy + 1
y + 1

)
− ln

(
(x + 1)y

y − 1

)
ln(xy + 1)

+ ln
(

− (x − 1)y
y + 1

)
ln(xy + 1) + 2 tanh−1(x) ln(y + 1)

)
,

where we need the dilogarithm function

Li2(x) =
∞∑

n=1

xn/n2 = −
∫ x

0

ln(1 − t)
t

dt. (11)

We can verify the indefinite integral by hand by differentiating, but it is easier to work
forward now that we have the hint of using Li2. We expand the integrand of (10) in
partial fractions twice to get

∫ 1

0

∫ 1

0

1
(1 + x)(1 + y)(1 + xy)

dx

=
∫ 1

0

∫ 1

0

1
1 − x2

(
1

1 + y
− x

1 + xy

)
dy dx

=
∫ 1

0

1
1 − x2

(ln 2 − ln(1 + x)) dx

= 1
2

∫ 1

0

1
1 + x

(ln 2 − ln(1 + x)) dx + 1
2

∫ 1

0

1
1 − x

(ln 2 − ln(1 + x)) dx .

The first integral is easily evaluated as 1
2 ln2 2. To evaluate the second integral, we make

the change of variables x = 1 − 2t to get

∫ 1

0

1
1 − x

(ln 2 − ln(1 + x)) dx =
∫ 0

1/2

1
2t

(− ln(1 − t)) (−2 dt)

= Li2(
1
2 ) − Li2(0) = π2

12
− 1

2
ln2 2,

where we have used the value Li2(0) = 0 from the definition (11), and the value
Li2(

1
2 ) = π2/12 − 1

2 ln2 2 that comes from setting x = 1
2 in the functional equation

(see [24, p. 611, formula 25.12.6]):

Li2(x) + Li2(1 − x) = 1
6
π2 − (ln x)(ln(1 − x)) for 0 < x < 1.

Combining this with the first integral, the ln2 2 terms cancel and we are left with
(10) =π2/24.
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7. A RAPIDLY CONVERGING PRODUCT. MONTHLY problem 11677 [25] asks
for an evaluation of

P =
∞∏

n=1

(
1 + 2e−nπ

√
3 cosh

(
nπ/

√
3
))

.

Just as in Section 2, this expression converges very rapidly, and we only need a few
terms to get a good approximation. If we write an = e−nπ

√
3 cosh

(
nπ/

√
3
)

(so that we
seek P =

∏∞
1 (1 + 2an)), then

ln an ≈ −nπ
(√

3 − 1/
√

3
)

≈ −3.6276n ≈ −1.57545n ln 10,

so we get about 1.5 significant digits for each term we take in the product.
Taking the first 15 terms and calculating to 25 digits, we get

P ≈ 1.028032541689576770462884.

But now we hit a snag: We ask ISC+ about this, and it says it found nothing, both in the
standard lookup and the advanced lookup. (We asked on March 18, 2016; the database
is updated continually, and ISC+ may someday be able to identify this constant.)

Because the item we seek is a product, we wonder if we would have better luck
working with its logarithm, ln P =

∑∞
n=1 ln(1 + 2an). Taking the first 15 terms of this

and calculating to 25 digits, we get

ln P ≈ 0.02764682187200888558353500.

This has the same problem, though: ISC+ cannot find it.
The ISC+ lookups almost always work for MONTHLY problems, perhaps because

those usually have neat answers, but this is an exception, and we look at other
methods to identify the number. Testing whether it is an algebraic integer using
RootApproximant does not produce any useful answers. It does misidentify the
25-digit version of ln P as

5657351 −
√

29079344023205
9578834

,

which agrees to 24 digits but is not correct. We will try integer relation detection.
There are two challenges to using integer relation detection. The first is that often

the desired number must be calculated to a very high precision, sometimes to hun-
dreds of digits. For our example, this is not much of a problem because the product
converges so rapidly. The other problem is guessing which constants should go into a
linear combination to get the desired number. These guesses are based on experience
and similar expressions for which we know the constants. In MONTHLY problems we
are not given the context, and we may not have any experience with the particular
expressions, so guessing the constants may be especially challenging.

We are going to work with ln P again. We do not have much idea what constants to
use, but we will guess that we should include the constants that appear explicitly in the
product, namely π ,

√
3, and π

√
3 and their logarithms, ln π and ln 3. (Do not use both

π
√

3 and π/
√

3 because one is a rational multiple of the other, and do not use both ln 3
and ln

√
3, for the same reason.) A good rule of thumb when looking for a logarithm
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is to throw in the logs of small primes because expressions often have small integer
factors in addition to the transcendental factors. We add ln 2, ln 5, ln 7, and ln 11 to
the mix. We will also bump up the precision of our approximation by calculating ln P
with 100 terms and 100 digits of precision.

Somewhat miraculously, this very loose procedure produces a neat answer when
FindIntegerNullVector tells us that (within the precision of the calculations)

36 · ln P − 2 · π
√

3 + 9 · ln 3 = 0,

in other words

P = eπ
√

3/18/ 4
√

3. (12)

We test this against the product with 200 terms and find they agree to about 317 digits,
so we conjecture that this is the correct value of the product.

Unfortunately, the explicit answer does not seem to point to any method of proof.
One oddity that might catch our eye is the 18th root; that is, in the product and the final
answer, we have a term with exp(π

√
3), but in the final answer, it appears to the 1/18

power. If we know a lot about special functions, this might remind us of the modular
functions and in particular of the Dedekind eta function, which includes a 1/12 power
and that appears in a discriminant formula to the 24th power:

η(τ ) = eπ iτ/12
∞∏

n=1

(
1 − e2π inτ

)
, Im τ > 0.

This turns out to be the key observation, as it is possible to express the given product
in terms of a ratio of eta function values, and a functional equation allows us to express
the ratio as 1/

4
√

3. The complete solution is in [25].
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