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1 The mathematician’s telescope

Albert Einstein once said “You can confirm a the-
ory with experiment, but no path leads from exper-
iment to theory.” But that was before computers.
In mathematical research now, there’s a very clear
path of that kind. It begins with wondering what
a particular situation looks like in detail; it contin-
ues with some computer experiments to show the
structure of that situation for a selection of small
values of the parameters of the problem; and then
comes the human part: the mathematician gazes
at the computer output, attempting to see and to
codify some patterns. If this seems fruitful then
the final step requires the mathematician to prove
that the pattern she thinks she sees is in fact the
truth, rather than a shimmering mirage above the
desert sands.

A computer is used by a pure mathematician
in much the same way that a telescope is used by
a theoretical astronomer. It shows us “what’s out
there.” Neither the computer nor the telescope can
provide a theoretical explanation for what it sees,
but either of them extends the reach of the mind
by providing multitudes of examples that might
otherwise be hidden, and from which one has some
chance of perceiving, and then demonstrating, the
existence of patterns, or universal laws.

In this article I’d like to show you some examples
of this process at work. Naturally the focus will be
on examples in which some degree of success was
realized, rather than on the much more numerous
cases where no pattern could be perceived, at least
by my eyes. Since my work is mainly in combi-
natorics and discrete mathematics, the focus will
also be on those areas of mathematics. It should
not be inferred that experimental methods are not
used in other areas; only that I don’t know those
applications well enough to write about them.

In this space we cannot even begin do justice
to the richly varied, broad, and deep achievements
of experimental mathematics. For further reading,

see the journal [7] and the books [4],[5].
In the following we give first a brief description

of some of the useful tools in the armament of ex-
perimental mathematics, and then some successful
examples of the method, if it is a method. The ex-
amples have been chosen subject to fairly severe
restrictions. viz.

• The use of computer exploration was vital to
the success of the project, and

• the outcome of the effort was the discovery of
a new theorem in pure mathematics.

I must apologize for including several examples
from my own work, but since I am most familiar
with those, it seemed inevitable.

2 Some of the tools in the toolbox

2.1 The CAS

The mathematician who enjoys using computers
will find an enormous number of programs and
packages available, beginning with the two ma-
jor Computer Algebra Systems (CAS), Maple and
Mathematica. Either of these programs will pro-
vide so much assistance to a working mathemati-
cian that they must be regarded as essential pieces
of one’s professional armamentarium. They are
extremely user-friendly and capable.

Typically one uses a CAS in interactive mode,
meaning that you type in a one line command and
the program responds with its output, then you
type in another line, etc. This modus operandi

will suffice for many purposes but for best results
one should learn the programming languages that
are embedded in these packages. With a little
knowledge of programming, one can ask the com-
puter to look at larger and larger cases until some-
thing nice happens, then take the result and use
another package to learn something else, and so
forth. Many are the times when I have written lit-
tle programs in Mathematica or Maple and then
gone away for the weekend leaving the computer
running and searching for interesting phenomena.

2.2 Neil Sloane’s database of integer

sequences

Aside from a CAS, another indispensable
tool for experimentally inclined mathemati-
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cians, particularly for combinatorialists, is
Neil Sloane’s On-Line Encyclopedia of In-

teger Sequences, which is on the web at
<http://www.research.att.com/∼njas>. This
now (early 2004) contains nearly 100,000 integer
sequences and has full search capabilities. A great
deal of information is given for each sequence.

Suppose you are trying to count a certain collec-
tion of objects of size n . Perhaps these are sets of
n elements that have some property that interests
you, or some property of the integer n, like the
number of its prime divisors, that interests you,
etc. Suppose further that you’ve found the answer
for n = 1, 2, 3, . . . , 10, say, but you haven’t been
able to find any simple formula for the general an-
swer.

Here’s a concrete example. Suppose you’re
working on such a problem, and the an-
swers that you get for n = 1, 2, . . . , 10 are
1, 1, 1, 1, 2, 3, 6, 11, 23, 47. The next step should be
to look online to see if the human race has encoun-
tered your sequence before. You might find noth-
ing at all, or you might find that the result that
you’d been hoping for has long since been known,
or you might find that your sequence is mysteri-
ously the same as another sequence that arose in
quite a different context. In the latter case, an
example of which is described below in section 3,
something interesting will surely happen next. If
you haven’t tried this before, do look up the little
example sequence above, and see what it repre-
sents.

2.3 Krattenthaler’s package Rate

A very helpful Mathematica package for guessing
the form of hypergeometric sequences has been
written by Christian Krattenthaler and is available
from his web site. The name of the package is Rate

(rot’-eh), which is the German word for “guess.”

To say what a hypergeometric sequence is let’s
first recall that a rational function of n is a quotient
of two polynomials in n, like (3n2 +1)/(n3 +4). A
hypergeometric sequence {tn}n≥0 is one in which
the ratio tn+1/tn is a rational function of the index

n. For example, if
(

tn=(n
7)

)

then tn+1/tn works out

to be (n + 1)/(n − 6), which is a rational function
of n, so this is a hypergeometric sequence. Other

examples are

n!, (7n + 3)!,

(

n

7

)

tn,
(3n + 4)!(2n − 3)!

4nn!4
,

all of which are hypergeometric sequences.
If you input the first several members of the un-

known sequence, Rate will look for a hypergeo-
metric sequence that takes those values. It will
also look for a hyper-hypergeometric sequence (i.e.,
one in which the ratio of consecutive terms is hy-
pergeometric), and a hyper-hyper-hypergeometric
sequence, etc.

For example the line

Rate[1, 1/4, 1/4, 9/16, 9/4, 225/16]

elicits the (somewhat inscrutable) output

{41−i0(−1 + i0)!2}.

Here i0 is Rate ’s running index, so we would nor-
mally write that answer as, perhaps,

(n − 1)!2

4n−1
, (n = 1, 2, 3, 4, 5, 6)

which fits the input sequence perfectly. Rate is a
part of the Superseeker front end to the Integer
Sequences database, discussed in 2.2 above.

2.4 Identification of numbers

Suppose that, in the course of your work, you en-
countered a number, let’s call it β which, as nearly
as you could calculate it, was 1.218041583332573.
It might be that β is related to other famous math-
ematical constants, like π, e,

√
2, and so forth, or

perhaps not. But you’d like to know.
The general problem that is posed here is the fol-

lowing. We are given k numbers, α1, . . . , αk (the
basis), and a target number α. We want to find
integers m,m1, . . . ,mk such that the linear combi-
nation

mα + m1α1 + m2α2 + · · · + mkαk (1)

is an extremely close numerical approximation
to 0. For, suppose we had a computer pro-
gram that could find such integers, how would
we use it to identify the mystery constant β =
1.218041583332573?
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We would take the αi’s to be a list of the log-
arithms of various well known universal constants
and prime numbers, and we would take α = log β.
For example, we might use

{log π, 1, log 2, log 3} (2)

as our basis. If we then find integers m,m1, . . . ,m4

such that

m log β + m1 log π + m2 + m3 log 2 + m4 log 3 (3)

is extremely close to 0, then we will have found
that our mystery number β is extremely close to

β = π−m1/me−m2/m2−m3/m3−m4/m. (4)

At this point we will have a judgment to make.
If the integers mi seem rather large, then the pre-
sumed evaluation (4) is suspect. Indeed for any
target α and basis {αi} we can always find huge
integers {mi} such that the linear combination (1)
is exactly 0, to the limits of machine precision. The
real trick is to find that the linear combination is
extraordinarily close to 0, while using only “small”
integers m,mi, and that is a matter of judgment.
If the judgment is that the relation found is real,
rather than spurious, then there remains the little
job of proving that the suspected evaluation of α
is correct, but that task is beyond our scope here.
For a nice survey of this subject see [3].

There are two major tools that can be used to
discover linear dependencies such as (1) among
the members of a set of real numbers. They
are the algorithms PSLQ, of Ferguson and For-
cade [8], and LLL, of Lenstra, Lenstra, and
Lovász [11], which uses their lattice basis re-
duction algorithm. For the working mathemati-
cian, the good news is that these tools are
available in CAS’s. For example, Maple has a
package, IntegerRelations[LinearDependency]
which places the PSLQ and the LLL algorithms
at the immediate disposal of the user. Similarly
there are Mathematica packages on the web that
can be freely downloaded and which perform the
same functions.

An application of these methods will be given
below in section 7. For a quick illustration,
though, let’s try to recognize the mystery num-
ber β = 1.218041583332573. We use as a ba-
sis the list in (2) above, and we put this list,

augmented by log 1.218041583332573, into Maple’s
IntegerRelations[LinearDependency] package.
The output is the integer vector [2,−6, 0, 3, 4],
which tells us that β = π3

√
2/36, to the number

of decimal places carried.

2.5 Solving PDE’s

I had an occasion recently to need the solution to
a certain partial differential equation that arose
in connection with a research problem that was
posed by Graham, Knuth and Patashnik in [10].
It was a first order linear PDE, so in principle
the method of characteristics should give the solu-
tion. As those who have tried that method know,
it can be fraught with technical difficulties relating
to the solution of the associated ordinary differen-
tial equations.

However some extremely intelligent packages are
available for solving partial differential equations.
I used the Maple command pdsolve to handle the
equation

(1 − αx − α′y)
∂u(x, y)

∂x
=

y(β + β′y)
∂u(x, y)

∂y
+ (γ + (β′ + γ′)y)u(x, y),

with u(0, y) = 1. pdsolve found that

u(x, y) =
(1 − αx)−

γ
α

(

1 + β′

β y(1 − (1 − αx)−
β
α )

)1+ γ′

β′

is the solution, and that enabled me to find explicit
formulas for certain combinatorial quantities, with
much less work and fewer errors than would oth-
erwise have been possible.

3 Thinking rationally

In the September/October 1997 issue of Quantum,
and chosen by Stan Wagon for the Problem of the
Week archive, there appeared the following prob-
lem:

How many ways can 90316 be written
as

a + 2b + 4c + 8d + 16e + 32f + . . .

where the coefficients can be any of 0, 1,
or 2?
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In standard combinatorial terminology, the ques-
tion asks for the number of partitions of the integer
90316 into powers of 2, where the multiplicity of
each part is at most 2.

Let’s define b(n) to be the number of partitions
of n, subject to the same restrictions. Thus b(5) =
2 and the two relevant partitions are 5 = 4 + 1
and 5 = 2 + 2 + 1. Then it is easy to see that
b(n) satisfies the recurrences b(2n + 1) = b(n) and
b(2n+2) = b(n)+ b(n+1), for n = 0, 1, 2 . . . , with
b(0) = 1.

It is now easy to calculate particular values of
b(n). This can be done directly from the recur-
rence, which is quite fast for computational pur-
poses. Alternatively, it can be shown quite eas-
ily that our sequence {b(n)}∞0 has the generating
function1

∞
∑

n=0

b(n)xn =

∞
∏

j=0

(

1 + x2j

+ x2·2j
)

.

This helps us to avoid much programming when
working with the sequence, because we can use the
built in series expansion instructions in Mathemat-
ica or Maple to show us a large number of terms in
this series quite rapidly. Returning to the original
question from Quantum, it is a simple matter to
compute b(90316) = 843, from the recurrence. But
let’s try to learn more about the sequence {b(n)}
in general. To do that we open up our telescope,
and calculate the first 96 members of the sequence,
i.e., {b(n)}95

0 which are shown in Fig. 1 below. The
question now is, as it always is in the mathemat-
ics laboratory, what patterns do you see in these
numbers?

Just for instance, one might notice that when n
is 1 less than a power of 2, it seems that b(n) = 1.
The reader who is fond of such puzzles is invited to
cease reading here for the moment (without peek-
ing at the next paragraph), and look at Fig. 1 to
spend some time finding whatever interesting pat-
terns seem to be there. Also, computations up to
n = 95 aren’t as helpful as going up to n = 1000 or
so might be, for such a quest, so the reader is also
invited to compute a much longer table of values
of b(n), using the above recurrence formulas, and
to study it carefully for fruitful patterns.

1For more information on generating functions, see the
article by Zeilberger in this volume, Part III, or see [17].

OK, did you notice that if n = 2a then b(n)
appears to be a + 1? How about this one - in the
block of values of n between 2a and 2a+1−1, inclu-
sive, the largest value of b(n) that seems to occur
is the Fibonacci number Fa+2. There are many in-
triguing things going on in this sequence, but the
one that was of crucial importance in constructing
the paper [6] was the observation that consecutive

values of b(n) seem always to be relatively prime.2

It was totally unexpected to find a property of
the values of this sequence that involved the multi-
plicative structure of the positive integers, rather
than their additive structure, which would have
been quite natural. This is because the theory of
partitions of integers belongs to the additive the-
ory of numbers, and multiplicative properties of
partitions are rare and always cherished.

Once this relative primality is noticed, the proof
is easy. If m is the smallest n for which b(n), b(n+
1) fail to be relatively prime, then suppose p >
1 divides both of them. If m = 2k + 1 is odd
then the recurrence implies that p divides b(k) and
b(k + 1), contradicting the minimality, whereas if
m = 2k is even, the recurrence again gives that
result, finishing the proof.

Why was it so interesting that consecutive val-
ues appeared to be relatively prime? Well, at once
that raised the question as to whether every possi-
ble relatively prime pair (r, s) of positive integers
occurs as a pair of consecutive values of this se-
quence, and if so, whether every such pair occurs
once and only once. Both of those possibilities are
supported by the table of values above, and upon
further investigation both turned out to be true.
See [6] for details.

The bottom line here is that every positive ra-

tional number occurs once and only once, and in

reduced form, among the members of the sequence

{b(n)/b(n + 1)}∞0 . Hence the partition function
b(n) induces an enumeration of the rational num-
bers, a result which was found by gazing at a com-
puter screen and looking for patterns.

Moral: Be sure to spend many hours each day
gazing at your computer screen and looking for
patterns.

2Two positive integers are relatively prime if they have
no common factor.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

9 7 12 5 13 8 11 3 10 7 11 4 9 5 6 1

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

7 6 11 5 14 9 13 4 15 11 18 7 17 10 13 3

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

14 11 19 8 21 13 18 5 17 12 19 7 16 9 11 2

Figure 1: The first 96 values of b(n).

Figure 2: The Ferrers board.

4 An unexpected factorization

One of the great strengths of computer algebra sys-
tems is that they are very good at factoring. They
can factor very large integers and very complicated
expressions. It is a good practice, when using a
CAS, that whenever you run into some large ex-
pression as the answer to a problem that interests
you, ask your CAS to factor it for you. Sometimes
the results will surprise you. This is one such story.

The theory of Young tableaux forms an impor-
tant part of modern combinatorics. To create a
Young tableau we choose a positive integer n and
a partition n = a1 + a2 + · · · + ak of that inte-
ger. We’ll use the integer n = 6 and the partition
6 = 3 + 2 + 1 as an example. Next we draw the
Ferrers board of the partition, which is a truncated
chessboard that has a1 squares in its first row, a2

in its second row, etc., the rows being left justified.
In our example, the Ferrers board is as shown in
Figure 2.

1 2

3

4

5

6

Figure 3: A Young tableau.

To make a tableau, we insert the labels
1, 2, . . . , n into the n cells of the board in such
a way that the labels increase from left to right
across each row and increase from top to bottom
down every column. With our example, one way
to do this is as shown in Figure 3.

One of the important properties of tableaux is
that there is a one-to-one correspondence, known
as the Robinson-Schensted-Knuth (RSK) corre-
spondence, which assigns to every permutation of
n letters a pair of tableaux of the same shape. One
use of the RSK correspondence is to find the length
of the longest increasing subsequence in the vector
of values of a given permutation. It turns out that
this length is the same as the length of the first row
of either of the tableaux to which the permutation
corresponds under the RSK mapping. This fact
that gives us a good way, algorithmically speak-
ing, of finding the length of the longest increasing
subsequence of a given permutation.

Now suppose that uk(n) is the number of per-
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mutations of n letters that have no increasing sub-
sequence of length > k. A spectacular theorem of
Ira Gessel [9] states that

∑

n≥0

uk(n)

n!2
x2n = det

(

I|i−j|(2x)
)

i,j=1,...,k
. (5)

in which Iν(t) is (the modified Bessel function)

Iν(t) =
def

∞
∑

j=0

(

t
2

)2j+ν

j!(j + ν)!
.

At any rate, it seems fairly “spectacular” to me
that when you place various infinite series such as
the above into a k × k determinant and then ex-
pand the determinant and examine the coefficient
of x2n, that you should find yourself looking at
the number of permutations of n letters with no
increasing subsequence longer than k, divided by
n!2.

Let’s evaluate one of these determinants, say the
one with k = 2. We find that

det
(

I|i−j|(2x)
)

i,j=1,2
= I2

0 − I2
1 ,

which of course factors as (I0 + I1)(I0 − I1). The
arguments of the Iν ’s are all 2x and have been
omitted.

When k = 3, no such factorization occurs. If you
ask your CAS for this determinant when k = 4, it
will show you

I0
4 − 3I0

2I1
2 + I1

4 + 4I0I1
2I2 − 2I0

2I2
2

−2I1
2I2

2 + I2
4 − 2I1

3I3 + 4I0I1I2I3

−2I1I2
2I3 − I0

2I3
2 + I1

2I3
2

where now we have abbreviated Iν(2x) simply by
Iν . If we ask our CAS to factor this last expression,
it (surprisingly) replies with
(

I0
2 − I0I1 − I1

2 + 2I1I2 − I2
2 − I0I3 + I1I3

)

×
(

I0
2 + I0I1 − I1

2 − 2I1I2 − I2
2 + I0I3 + I1I3

)

.

which is actually of the form (A + B)(A − B), as
a quick inspection will reveal.

We have now observed, experimentally, that for
k = 2 and k = 4, Gessel’s k × k determinant has a
nontrivial factorization of the form (A+B)(A−B),
in which A and B are certain polynomials of de-
gree k/2 in the Bessel functions. Such a factoriza-
tion of a large expression in terms of formal Bessel

functions simply cannot be ignored. It demands
explanation. Does this factorization extend to all
even values of k? It does. Can we say anything in
general about what the factors mean? We can.

The key point, as it turns out, is that in Gessel’s
determinant (5), the matrix entries depend only on
|i − j|.3 The determinants of such matrices have
a natural factorization, as follows. If a0, a1, . . . is
some sequence, and a−i = ai, then we have

det (ai−j)
2m
i,j=1 =

det (ai−j + ai+j−1)
m
i,j=1 det (ai−j − ai+j−1)

m
i,j=1.

When we apply this fact to the present situation
it correctly reproduces the above factorizations for
k = 2, 4, and generalizes them to all even k, as
follows.

Let yk(n) be the number of Young tableaux of
n cells whose first row is of length ≤ k, and let

Uk(x) =
∑

n≥0

uk(n)

n!2
x2n,

Yk(x) =
∑

n≥0

yk(n)

n!
xn.

In terms of these two generating functions, the gen-
eral factorization theorem states that

Uk(x) = Yk(x)Yk(−x), (k = 2, 4, 6, . . . ).

Why is it useful to have such factorizations? For
one thing we can equate the coefficients of like pow-
ers of x on both sides of this factorization (try it!).
We then find an interesting explicit formula that
relates the number of Young tableaux of n cells
whose first row is of length ≤ k, on the one hand,
and the number of permutations of n letters that
have no increasing subsequence of length > k, on
the other hand. No more direct proof of this re-
lationship is known. For more details and some
further consequences, see [16].
Moral: Cherchez les factorisations!

5 A score for Sloane’s database

Here is a case study in which, interestingly, not
only was Sloane’s database utilized, but Sloane

3Such a matrix is called a Toeplitz matrix.
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himself was one of the authors of the ensuing re-
search paper.

Eric Weisstein, the creator of the invaluable web
resource MathWorld, became interested in the enu-
meration of 0-1 matrices whose eigenvalues are all
positive real numbers. If f(n) is the number of
n×n matrices whose entries are all 0’s and 1’s and
whose eigenvalues are all real and positive, then by
computation, Weisstein found for f(n) the values

1, 3, 25, 543, 29281 (for n = 1, 2, . . . , 5).

Upon looking up this sequence in Sloane’s data-
base, Weisstein found, interestingly, that this se-
quence is identical, as far as it goes, with sequence
A003024 in the database. The latter sequence
counts vertex-labeled acyclic directed graphs (“di-
graphs”) of n vertices, and so Weisstein’s conjec-
ture was born: the number of vertex-labeled acyclic

digraphs of n vertices is equal to the number of

n × n 0-1 matrices whose eigenvalues are all real

and positive. This conjecture was proved in [12].
Enroute to the proof of the result, the following

somewhat surprising fact was shown in [12] .

Theorem 1. If a 0-1 matrix A has only real posi-

tive eigenvalues, then those eigenvalues are all = 1.

To prove this, let {λi}n
i=1 be the eigenvalues of

A. Then

1 ≥ 1

n
Trace(A) (since all Ai,i ≤ 1)

=
1

n
(λ1 + λ2 + · · · + λn)

≥ (λ1λ2 . . . λn)
1

n

= (detA)
1

n

≥ 1.

in which the third line uses the arithmetic-
geometric mean inequality, and the last line uses
the fact that detA is a positive integer. Since the
arithmetic and geometric means of the eigenvalues
are equal, the eigenvalues are all equal, and in fact
all λi(A) = 1.

The proof of the conjecture itself is by finding
an explicit bijection between the two sets that are
being counted. Indeed, let A be an n × n matrix
of 0’s and 1’s with positive eigenvalues only. Then
those eigenvalues are all 1’s, so the diagonal of A
is all 1’s, whence the matrix A− I has only entries

of 0’s and 1’s also. Regard A − I as the vertex
adjacency matrix of a digraph G. Then (it turns
out that) G is acyclic.

Conversely, if G is such a digraph, let B be its
vertex adjacency matrix. By renumbering the ver-
tices of G, if necessary, B can be brought to tri-
angular form with zero diagonal. Then A = I + B
is a 0,1 matrix with positive real eigenvalues only.
But then the same must have been true for the
matrix I + B before simultaneously renumbering
its rows and columns. For more details and more
corollaries see [12].
Moral: Look for your sequence in the online en-
cyclopedia!

6 The 21-stage rocket

Now we’ll describe a successful attack that was car-
ried out by George Andrews [1] on the evaluation of
the Mills-Robbins-Rumsey determinant. Let Mn

be the n × n matrix

Mn(µ) =

((

i + j + µ

2j − i

))

0≤i,j≤n−1

. (6)

The problem is to evaluate its determinant. This
problem arose [13] in connection with the study of
plane partitions. A plane partition of an integer
n is an (infinite) array ni,j of nonnegative integers
whose sum is n, subject to the restriction that the
entries ni,j are nonincreasing across each row, and
also down each column.

It turns out that detMn(µ) can be expressed
neatly as a product, namely as

det Mn(µ) = 2−n
n−1
∏

k=0

∆k(2µ), (7)

in which

∆2j(µ) =
(µ + 2j + 2)j(

1
2µ + 2j + 3

2 )j−1

(j)j(
1
2µ + j + 3

2 )j−1

,

and (x)j is the rising factorial x(x+1) . . . (x+j−1).
The strategy of Andrews’s proof is elegant in

conception and difficult in execution: we are going
to find an upper triangular matrix En(µ), whose
diagonal entries are all 1’s, such that

Mn(µ)En(µ) =
def

Ln(µ) (8)
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is lower triangular, with the numbers
{ 1

2∆2j(2µ)}n−1
j=0 on its diagonal. Of course, if

we can do this, then from (8), since detEn(µ) = 1,
we will have proved the theorem (7), since the
determinant of the product of two matrices is the
product of their determinants, and the determi-
nant of a triangular matrix (i.e., of a matrix all of
whose entries below the diagonal are 0’s) is simply
the product of its diagonal entries.

But how shall we find this matrix En? By hold-
ing tightly to the hand of our computer and letting
it guide us there. More precisely,

1. we will look at the matrix En for various small
values of n, and from those data we will con-
jecture the formula for the general (i, j) entry
of the matrix, and then

2. we will (well actually, “we” won’t, but An-
drews did) prove that the conjectured entries
of the matrix are correct.

It was in step 2 above that an extraordinary 21
stage event occurred which was successfully man-
aged by Andrews. What he did was to set up a
system of 21 propositions, each of them a fairly
technical hypergeometric identity. Next, he carried
out a simultaneous induction on these 21 proposi-
tions. That is to say, he showed that if, say, the
13th proposition was true for a certain value of n
then so was the 14th, etc., and if they were all true
for that value of n, then the first proposition was
true for n + 1. The reader should be sure to look
at [1] to gain more of the flavor and substance of
what was done than can be conveyed in this short
summary.

Here we will confine ourselves to a few comments
about step 1 of the program above. So, let’s look
at the matrix En for some small values of n. The
condition that En is upper triangular with 1’s on
the diagonal means that

j−1
∑

k=0

(Mn)i,kek,j = −(Mn)i,j ,

for 0 ≤ i ≤ j − 1, and 1 ≤ j ≤ n − 1. We can
regard these as

(

n
2

)

equations in the
(

n
2

)

above-
diagonal entries of En and we can ask our CAS to
find those entries, for some small values of n. Here

is E4:

E4(µ) =











1 0 0 0

0 1 − 1
µ+2

6(5+µ)
(µ+2)(µ+3)(2µ+11)

0 0 1 − 6(µ+5)
(µ+3)(2µ+11)

0 0 0 1











.

At this point the news is all good. While it is
true that the matrix entries are fairly complicated,
the fact that leaps off the page and warms the
heart of the experimental mathematician is that
all of the polynomials in µ factor into linear fac-
tors with pleasant-looking integer coefficients. So
there is hope for conjecturing a general form of the
E matrix. Will this benign situation persist when
n = 5? A further computation reveals that E5(µ)
is as shown in Fig. 4. Now it is a “certainty” that
some nice formulas exist for the entries of the gen-
eral matrix En(µ). The Rate package, described in
subsection 2.3, would certainly facilitate the next
step, which is to find general formulas for the en-
tries of the E matrix. The final result is that En(µ)
has, for its (i, j) entry, 0, if i > j, and

(−1)j−i(i)2(j−i)(2µ + 2j + i + 2)j−i

4j−i(j − i)!(µ + i + 1)j−i(µ + j + i + 1
2 )j−i

otherwise.
After divining that the E matrix has the above

form, Andrews now faced the task of proving that
it works, i.e., that MnEn is lower triangular and
has the diagonal entries specified above. It was
in this part of the work that the 21-fold induction
was unleashed. Another proof of the evaluation of
the Mills–Robbins–Rumsey determinant is in [14].
That proof begins with Andrews’s discovery of the
above form of the En matrix, and then uses the
machinery of the so-called WZ method [15], in-
stead of a 21 stage induction, to prove that the
matrix performs the desired triangulation (8).
Moral: Never give up; even when defeat seems
certain.

7 The computation of π

In 1997, a remarkable formula for π was found [2].
This formula permits the computation of just a
single hexadecimal digit (!) of π, if desired, using
minimal space and time. For example, the authors
of [2] found that in the hexadecimal expansion of
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1 0 0 0 0

0 1 − 1
µ+2

6(5+µ)
(µ+2)(µ+3)(2µ+11) − 30(µ+6)

(µ+2)(µ+3)(µ+4)(2µ+15)

0 0 1 − 6(µ+5)
(µ+3)(2µ+11)

30(µ+6)
(µ+3)(µ+4)(2µ+15)

0 0 0 1 − 6(2µ+13)
(µ+4)(2µ+15)

0 0 0 0 1















.

Figure 4: The upper triangular matrix E5(µ).

π, the block of 14 digits in positions 1010 through
1010 + 13 are 921C73C6838FB2. The formula is

π =
∞
∑

i=0

1

16i

(

4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

.

(9)

In our discussion here we will limit ourselves to
describing how we might have found the specific
expansion (9) once we have decided that an inter-
esting expansion of the form

π =

∞
∑

i=0

1

ci

b−1
∑

k=1

ak

bi + k
. (10)

might exist. This, of course, begs the question of
how the discovery of the form (10) was singled out
in the first place.

The strategy will be to use the Linear Depen-
dency algorithm, described above in subsection
2.4, on the identification of numbers. More pre-
cisely, we want to find a nontrivial integer linear
combination of π and the 7 numbers

αk =

∞
∑

i=0

1

(8i + k)16i
(k = 1..7)

which sums to 0. As in equation (3), we now com-
pute the 7 numbers αj and we look for a relation

mπ+m1α1+m2α2+· · ·+m7α7 = 0, (m,mi ∈ Z)

using, for example, the Maple IntegerRelations

package. The output vector,

(m,m1,m2, . . . ,m7) = (1,−4, 0, 0, 2, 1, 1, 0),

yields the identity (9). The reader should do this
calculation for himself, then prove that the appar-
ent identity is in fact true, and finally, look for
something similar that uses powers of 64 instead

of 16. Good luck!
Moral: Even as late as the year A.D. 1997, some-
thing new and interesting was said about the num-
ber π.

8 Conclusions

When computers first appeared in mathemati-
cians’ environments the almost universal reaction
was that they would never be useful for proving
theorems since a computer can never investigate
infinitely many cases, no matter how fast it is. But
computers are useful for proving theorems despite
that handicap. We have seen several examples
of how a mathematician can act in concert with
a computer to explore a world within mathemat-
ics. From such explorations there can grow under-
standing, and conjectures, and roads to proofs, and
phenomena that would not have been imaginable
in the pre-computer era. This role of computation
within pure mathematics seems destined only to
expand over the near future and to be imbued into
our students along with Euclid’s axioms and other
staples of mathematical education.

At the other end of the rainbow lies a role for
computers in which we would input some hypothe-
ses and a desired conclusion, press the Enter key,
and get a printout of a proof. There are a few fields
of mathematics in which we can do such things, no-
tably in the proofs of identities [15], but in general
the road to that brave new world remains long and
uncharted.
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