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Lecture 1: Context, Motivation, Example_
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CONTEXT
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A 3-step process

1. Compute a high-order approximation

—high precision numerical approximation,
power series truncated to high order,
large number of terms in a sequence,...—

2. Guess/conjecture a general formula

—uwith the help of a computer—

3. Prove it

—using computer-algebra algorithms—
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Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.
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Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data ]—)[ make conjectures )—)[prove them]
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Effective mathematics: what can we compute exactly?

And complexity: how fast? (also, how big is the result?)

Systems with several million users
KD i
H Y% @) nRB

50+ years of algorithmic progress
in computational mathematics!
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Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Experimental mathematics books

I
CONTEMPORARY
MATHEMATICS

experimentation
in mathematics:

: - i
Experimental Selected works =
Number Theory am e Msathemstics Gems in Experimental
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David H. Bailey
and

m Jonathan M. Borwein  p&Thes

Experimentation o 4
{IJ[E T MATHEMATICS EXPERIMENTS
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! cOMPUTER IN MATHEMATICS
Computational Paths to Disc ARTHUR ENGEL L

I

THE COMPUTER AS CRUC
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EXPERIMENTAL
MATH EMATICS 'VOLUME 24, NUMBER 1 2015

Chief Editor
Sergei Tabachaikov

Founding Editor
D.B.A. Epstein

Associate Editors

Yori Tschinkel

e Taylor & Francis
TP G

https://www.tandfonline.com/loi/uexm
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https://www.tandfonline.com/loi/uexm

Computer algebra books

The Desngn
Ny USATED AND REVIED of mmr
w0 opcrorr | uuLaan Polynomial
The Art of and Matrix
Computer Computations
Programming Noumet

Fundamental

VOLUME 2 Algorithms

Seminumerical Algorithms

Dario Bini and Victor Pan
Thid Edition

DONALD E. KNUTH

Mathématiques & Applications 42
Fundamental Problems Joundidi Abdeljooved
of Algorithmic Algebra Henr lombordi

& Chee Keng vap
s
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Main computer algebra journal and conference

Volume 40 Numbers -5 OctoberNovenber 2005 SN 07477171 osium on Symbolic and Algebraic Computation

£ (22019

15-18 July 2019

Journal of e sm

Lorenzo Robbiano,

Beta Com PUtation | Inited Spekers LN
e

Special Issue
b Application of Computer Algebra 2002 (ACA)
Guest Editors: 15.Kotsireas, AG. Akritas, |

Virinia Vassilevska Willams, \

Tutorial Speakers

SL Steinberg, M) Wester

https://www.journals.elsevier.com/journal-of-symbolic-computation

http://www.issac-conference.org
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MOTIVATION
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A Philosopher of Scien

From a philosophical viewpoint, mathematics has traditionally been dis-
tinguished from the natural sciences by its formal nature and emphasis on
deductive reasoning. Experiments—one of the corner stones of most modern
natural science—have had no role to play in mathematics. However, in the
past two to three decades, a mathematical subdiscipline has been forming
that describes itself as “experimental mathematics”, and it is the purpose
of this paper to investigate and discuss the ways in which experimental
mathematics is experimental.
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A Philosopher of Science perspective [Serensen, 2010]

Since the 1990s, many domains of knowledge production have witnessed
a “computational turn” during which the wide use of computers has in-
fluenced established ways of thinking.! In mathematics, computers have
been utilized since their first construction, but in the 1990s, their use led
to a new subdiscipline of experimental mathematics in which computers
were central to most—if not all—the experiments that give the subdisci-
pline its name. Using high speed computers and software packages such
as Maple and Mathematica, mathematicians can now manipulate data and
structures of immense complexity through real-time interaction with com-
puters, and these practices are at the heart of experimental mathematics,
I will argue. Thus, computers—and the “experiments” that they seem to
carry with them—have entered into wide areas of traditional mathematics
ranging from combinatorics to partial differential equations.
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An Experimental

Albert Einstein once said “You can confirm a the-
ory with experiment, but no path leads from exper-
iment to theory.” But that was before computers.

A computer is used by a pure mathematician
in much the same way that a telescope is used by
a theoretical astronomer. It shows us “what’s out
there.” Neither the computer nor the telescope can
provide a theoretical explanation for what it sees,
but either of them extends the reach of the mind
by providing multitudes of examples that might
otherwise be hidden, and from which one has some
chance of perceiving, and then demonstrating, the
existence of patterns, or universal laws.

14 /45
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An Experimental Mathematician perspective [Wilf, 2007]

When computers first appeared in mathemati-
cians’ environments the almost universal reaction
was that they would never be useful for proving
theorems since a computer can never investigate
infinitely many cases, no matter how fast it is. But
computers are useful for proving theorems despite
that handicap. We have seen several examples
of how a mathematician can act in concert with
a computer to explore a world within mathemat-
ics. From such explorations there can grow under-
standing, and conjectures, and roads to proofs, and
phenomena that would not have been imaginable
in the pre-computer era. This role of computation
within pure mathematics seems destined only to
expand over the near future and to be imbued into
our students along with Euclid’s axioms and other
staples of mathematical education.
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Role of computers

© heuristics
© gaining insight and intuition
© discovering new patterns and relationships
© using graphical displays to vizualize underlying mathematical principles

© refining and evaluating conjectures

© testing (and falsifying) conjectures
© exploring a possible result to see if it is worth formal proof

© aiding in the procedure of proving conjectures

© suggesting approaches for formal proof
© replacing lengthy hand derivations with computer-based calculations
© confirming analytically derived results

15/ 45
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Role of compu

© check huge number of cases (but finitely many)

> E.g. an algorithm checks 1936 configurations to complete the proof of
the four-color conjecture [Appel, Haken, 1976]

© guess patterns

> E.g. an algorithm guesses a new (and useful!) formula for 7t

ey L(4 o2 1
_n2016" 8n+1 8n+4 8n+5 8n+6

[Bailey, Borwein, Plouffe, 1997]

© prove theorems

> E.g. an algorithm proves a classification of lattice walks according to
properties of generating functions — details on Wednesday!
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Some tools and

© Computer Algebra Systems: Maple, Mathematica, Sage, Magma, Pari, . ..

©® Databases

© OEIS (large searchable table of integer sequences),
© ISC (online service to identify real constants given with good numerical
precision)

© Algorithmic tools for guessing patterns

© guessing recurrences satisfied by truncated sequences

© guessing equations (algebraic / differential) from truncated power series
© integer relation detection satisfied by truncated numbers

© constant recognition

© Algorithmic tools for proving theorems

© polynomial elimination (resultants, Grobner bases)
© D-finiteness
© Creative Telescoping

17 /45
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https://www.maplesoft.com
https://www.wolfram.com/mathematica/
http://sagemath.org
http://magma.maths.usyd.edu.au
http://pari.math.u-bordeaux.fr
http://oeis.org/
http://wayback.cecm.sfu.ca/projects/ISC/ISCmain.html

EXAMPLES
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )
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Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij=Bj_1,;+Bjj1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
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Discov

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924
21 56 126 252 462
15 35 70 126 210
10 20 35 56 84
6 10 15 21 28
4 5 6 7
1 1 1 1 1

L = T W S Gy S e
= N W ke U NN
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Discoveri

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i)

@ There are 2 ways to get to (i, f), either from (i — 1, ), or from (i,j — 1):
Bij = Bi_1,;+ Bij1
@ There is only one way to get to a point on an axis: B;g = By; =1

> These two rules completely determine all the numbers B, ;

(1) Generate data:

1 7 28 84 210 462 924

1 6 21 56 126 252 462 (I Guess:
1 5 15 35 70 126 210

1 4 10 20 35 56 84 —

1 3 10 15 21 28 — (L)+2)

1 2 4 5 6 7 — i1

11 1
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Discoveri

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi—1,+ Bij—1
@ There is only one way to get to a point on an axis: B;y = Bp; =1

> These two rules completely determine all the numbers B; ;
(1) Generate data:

28 84 210 462 924

v (IT) Guess:

1 6 21 56 126 252 462

1 5 15 35 70 126 210 B, L (i:rl'j)'
1 4 10 20 35 56 84 Br
1 3 6 10 15 21 28

1 2 4 6 7

111 1 1 1 1
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Discovering

Question: Find B;; := the number of {—, 1}-walks in IN? from (0,0) to (i, )

@ There are 2 ways to get to (i, ), either from (i — 1, ), or from (i,j — 1):
Bij = Bi-1j+Bij1
@ There is only one way to get to a point on an axis: B;y = Bp; =1
> These two rules completely determine all the numbers B; ;

(1) Generate data:

(IIT) Prove: If
28 84 210 462 924 C. . def (i)

1 Z 21 56 126 252 462 ij = 7y then

1 5 15 35 70 126 210 Civj Gy _ i
1 4 10 20 35 56 84 Cij Cij i+j i+j

1 3 6 10 15 21 28 and Cyo = Co; = 1.

1 2 4 5 6 7

111 1 1 1 1 Thus B
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Biasing for a Fair Return [

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

20 / 45
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Biasing for a Fair Return [Trefe

The SIAM 100-Digit

CHALLENGE

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

> Computer algebra conjectures and proves

-1
[A 11 124/1—16€2
ple) =1- 2~2P1< 2’12 V?) , with A =1+8€?++/1— 16€2.

20 / 45
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Biasing for a Fair Return [Trefethen, _

The SIAM 100-Digit

Problem 6

A flea starts at (0,0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + €, and west with probability
1/4 — €. The probability that the flea returns to (0,0) sometime during
its wanderings is 1/2. What is €?

> Computer algebra conjectures and proves

€ =~ 0.0619139544739909428481752164732121769996387749983
6207606146725885993101029759615845907105645752087861 . . .

20 / 45
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from SIAM News, Volume 35, Number 1

A Hundred-dollar, Hundred-digit Challenge

Each October, a few new graduate students arrive in Oxford to begin research for a doctorate in numerical analysis. In their first
term, working in pairs, they take an informal course called the “Problem Solving Squad.” Each week for six weeks, I give them
aproblem, stated in a sentence or two, whose answer is a single real number. Their mission is to compute that number to as many
digits of precision as they can.

Ten of these problems appear below. I would like to offer them as a challenge to the SIAM community. Can you solve them?

Iwill give $100 to the individual or team that delivers to me the most accurate set of numerical answers to these problems before
May 20, 2002. With your solutions, send in a few sentences or programs or plots so I can tell how you got them. Scoring will be
simple: You get a point for each correct digit, up to ten for each problem, so the maximum score is 100 points.

Fine print? You are free to getideas and advice from friends and literature far and wide, but any team that enters the contest should
have no more than half a dozen core members. Contestants must assure me that they have received no help from students at Oxford
or anyone else who has already seen these problems.

Hint: They're hard! If anyone gets 50 digits in total, I will be impressed. The ten magic numbers will be published in the July/
August issue of SIAM News, together with the names of winners and strong runners-up.—Nick Trefethen, Oxford University.

The Hundred-dollar, Hundred-digit Challenge Problems
1. What s lim, ,, ], x™" cos(x™" log x) dx ?
2. A photon moving at speed 1 in the x—y plane starts at ¢ = 0 at (x,y) = (0.5, 0.1)
heading due east. Around every integer lattice point (7, j) in the plane, a circular mirror

of radius 1/3 has been erected. How far from the origin is the photon at ¢ = 10?

3. The infinite matrix A with entries a,, = 1, @, = 1/2, a,, = 1/3, a;; = 1/4,
a, = 1/5,a, = 1/6, efc., is a bounded operator on £2. What is ”A| ?

4. What is the global minimum of the function
exp(sin(50x)) + sin(60e*) + sin(70 sin(x)) + sin(sin(80y)) — sin(10(x + y)) + ,]; (*+y)?
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5. Let lz) = 1/T'(z), where I'(z) is the gamma function, and let p(z) be the cubic
polynomial that best approximates f(z) on the unit disk in the supremum norm ‘ L .
What s |- p|, ?

6. Afleastarts at (0, 0) on the infinite 2D integer lattice and executes a biased random
walk: At each step it hops north or south with probability 1/4, east with probability
1/4 + €, and west with probability 1/4 — €. The probability that the flea returns to
(0, 0) sometime during its wanderings is 1/2. What is €?

7. Let A be the 20,000 x 20,000 matrix whose entries are zero everywhere except
for the primes 2, 3, 5,7, . . ., 224737 along the main diagonal and the number 1 in
all the positions a; with li —jl = 1,2,4,8,...,16384. Whatis the (1, 1) entry of A™1?

8. A square plate [-1, 1] x [-1, 1] is at temperature # = 0. At time ¢ = O the
temperature is increased to u = 5 along one of the four sides while being held at
u = 0 along the other three sides, and heat then flows into the plate according to
u, = Au. When does the temperature reach # = 1 at the center of the plate?

9.Theintegral [(a) = foz [2 + sin(10a)]x*sin(ot/(2—x))dx depends on the parameter
a. What is the value a € [0, 5] at which /(o) achieves its maximum?

10. A particle at the center of a 10 x 1 rectangle undergoes Brownian motion (i.e.,
2D random walk with infinitesimal step lengths) till it hits the boundary. What is the
probability that it hits at one of the ends rather than at one of the sides?

Solutions should be sent to Nick Trefethen at Oxford University (LNT @ comlab.ox.ac.uk), no
later than May 20, 2002.
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_ Another (innocent looking) combinatoral question

Let ¥ = {1, +, \(}. An .“-walk is a path in Z? using only steps from .%.
Show that, for any integer 7, the following quantities are equal:

(i) number a,, of n-steps .#-walks confined to the upper half plane Z x N
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

22/45
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Another (innoc

Let ¥ = {1, +, \(}. An .“-walk is a path in Z? using only steps from .%.
Show that, for any integer 7, the following quantities are equal:

(i) number a,, of n-steps .#-walks confined to the upper half plane Z x N
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of NG (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)
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Another (innocent

Let ¥ = {1, +, \(}. An .“-walk is a path in Z? using only steps from .%.
Show that, for any integer 7, the following quantities are equal:

(i) number a,, of n-steps .#-walks confined to the upper half plane Z x N
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of NG (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)

> Can be solved using Exp. Math. and Computer Algebra L
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Question’: The number of ways one can change any amount of banknotes of
10€,20€, ... using coins of 50 cents, 1€ and 2 € is always a perfect square.

* Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pélya and Szego’s Problems Book (1925).
> Can be solved using Exp. Math. and Computer Algebra

23 /45
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Eul

Def. A partition of n € IN* is a representation n = x; +x+--- + x; as a
sum of positive integers xq > - -+ > x4.

> Denote by p(n) the number of partitions of n (by convention, p(0) = 1)
E.g., there are p(5) = 7 partitions of n = 5:
5=4+4+1=34+2=34+1+1=2+2+1=2+1+1+1=1+1+1+1+1

24 /45
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Euler’s pentagonal

Def. A partition of n € IN* is a representation n = x; +x, +---+x; asa
sum of positive integers xq > - -+ > x4.

> Denote by p(n) the number of partitions of n (by convention, p(0) = 1)
E.g., there are p(5) = 7 partitions of n = 5:
5=4+4+1=34+2=34+1+1=2+2+1=2+1+1+1=1+1+1+1+1

Pentagonal theorem [Euler, 1780] The inverse of the generating function

Yo pm)ax" =1+x+2x* +3x3 + 52 +72° + 110 + 1547 + -+ -
n>0

is equal to
Hl_x —1+Z ( (Bn+1)/2 4 yn(3n— 1)/2

=1—x =20 a =215 224 5 @
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Euler’s pentagonal theorem — masterpiece of (early) experimental math

One of Euler’s most profound discoveries, the Pentagonal Number Theorem [T], has been
beautifully described by André Weil:

Playing with series and products, he discovered a number of facts which to him looked
quite isolated and very surprising. He looked at this infinite product

(-0 (- x)(1-x%)

and just formally started expanding it. He had many products and series of that kind; in some
cases he got something which showed a definite law, and in other cases things seemed to be
rather random. But with this one, he was very successful. He calculated at least fifteen or
twenty terms; the formula begins like this:

M1-x")=1-x—x*+x+x"—x2-x" ...

where the law, to your untrained eyes, may not be immediately apparent at first sight. In
modern notation, it is as follows:

l'II(l—q")= Z(_l)"qn(snﬂ)/z (1)

where I've changed x into ¢ since ¢ has become the standard notation in elliptic function-theory
since Jacobi. The exponents make up a progression of a simple nature. This became im-
mediately apparent to Euler after writing down some 20 terms; quite possibly he calculated
about a hundred. He very reasonably says, “this is quite certain, although I cannot prove it;”
ten years later he does prove it. He could not possibly guess that both series and product are
part of the theory of elliptic modular functions. It is another tie-up between number-theory and
elliptic functions [22, pp. 97-98].

[Andrews, 1983]
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Euler’s pentagon.

Thm [Kolberg, 1959] p(n) takes both even and odd values infinitely often.

o0
Modern proof. Assume the contrary. Then, Z (—1)k xk(Bk=1)/2 is a rational
k=—o00
function modulo 2. By Christol’s thm. (1978), the sequence of coefficients
would be 2-automatic. Contradiction with Ritchie’s thm (1963).

> Conjecture [Subbarao, 1966]: same for any arithmetic progression p(an + b).
> Proved by [Ono, 1996] (even case) and [Radu, 2012] (odd case)

> Transcendence and automata version by [B., Radu, 2019]

26 / 45
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Thm [Ramanujan, 1919] The numbers in the arithmetic progression
(p(5n+4))n = (5, 30, 135, 490, 1575, 4565, 12310, 31185,...)

are all divisible by 5.
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Thm [Ramanujan, 1919] The numbers in the arithmetic progression
(p(5n+4))n = (5, 30, 135, 490, 1575, 4565, 12310, 31185, .. .)

are all divisible by 5.

> This is a simple consequence of the following identity

© 1 xon

0p(5n+4)x = 5};[1 a8

agk

n

also conjectured by Ramanujan.

> Radu’s algorithms can automatically discover this kind of identity!

27 / 45
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Two beautiful Monthly (A

Expansion of a Symmetric Determinant

E2297 [1971, 543]. Proposed by Richard Stanley, Harvard University

Let L(n) be the total number of distinct monomials appearing in the expansion
of the determinant of an # x n symmetric matrix 4 = (a;;) . For instance, L(3) = 5.
Show that

E‘, L(n)x"n! = (1 — x)~ "2 exp(3x + 4x?),
n=0

where |x| <1, and where we define L(0) = 1.

The First Third
6637 [1990, 6211. Proposed by Herbert S. Wilf, University of Pennsylvania, Philadel-
phia, PA.
Let f(n) be the sum of the first one-third of the coefficients in the expansion of
1 +x)* ie.,
-~ (3n
f(n)=% ( & ) (n=0,1,2,...).
k=0
Prove that
i 4u?\" u 2u
,E’Of(n)(ﬁ) Tu- 2sin(3 arcsin u) T 2u-3 sin(3 arcsin u)

28 /45
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e ¢(n) = number of n-steps { , ./, -, — }-walks in IN?
1,2,7,21,78, 260, 988, 3458, 13300, 47880, . ..

Question: What is the nature of the generating function

G(t) = i‘bg(n) "2

29 /45
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e ¢(i,j;n) = number of n-steps { ', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

Question: What is the nature of the generating function

Glx,y;t)= Y g(i,j;n)x'y/t" 2

ijn=0

29 /45



e ¢(i,j;n) = number of n-steps { 7, ./, -, — }-walks in IN? from (0, 0) to (i, f)

Question: What is the nature of the generating function
o0

Glxyt)= Y, g(ij;n)xylt"?

i,j,n=0

b

e Qe

|
!
v

Theorem [B., Kauers, 2010] J

G(x,y;t) is an algebraic function®.

> computer-driven discovery/proof via algorithmic Guess-and-Prove

* Minimal polynomial P(G(x,y;t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)

29 /45
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e ¢(n) = number of n-steps { 7, /, <, — }-walks in N2
1,2,7, 21,78, 260, 988, 3458, 13300, 47880, . ..

A
Question: What is the nature of the generating function |

G(t) = ég(n) "2

(Bn+1)g(2n) = (12n+2)g(2n—1) and (n+1)g(2n+1) = (4n +2) g(2n)

> computer-driven discovery/proof via algorithmic Guess-and-Prove
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An Integrality Question

Question: Let (a,,) be a sequence with gy = a; = 1 satisfying the recurrence

(n+3)a,1 = (2n+3)a, + 3na, 1.

Show that all a, is an integer for all n.

> Computer-aided solution: Let’s compute the first 10 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(10);

[1,1,2,4,9,21,51,127,323,835,2188]

> gfun’s seriestoalgeq command allows to guess that ), a,x" is algebraic:

> pol:=gfun:-listtoalgeq(%,y(x)) [1];

2 2
1+ (x = Dy(x) + 2y (x)
30/ 45
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An Integrality Question

Question: Let (a,,) be a sequence with gy = a; = 1 satisfying the recurrence

(n+3)a, 1 = (2n+3)an + 3na, 1.
Show that all a, is an integer for all n.

> Thus it is very likely that y = 50 axx" verifies 1 + (x — 1)y + x*y* = 0.
> By coefficient extraction, (a,) conjecturally verifies the nonlinear recurrence

n
Apyp = Ayy1 + Z g - Ay —k- 1)
k=0
> Clearly (1) implies a,, € IN. To prove (1), we proceed the other way around:
we start with P(x,y) = 1+ (x — 1)y + x%y?, and show that it admits a power
series solution whose coefficients satisfy the same linear recurrence as (ay):

> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recb:=gfun:-diffeqtorec(deq,y(x),b(n));

{(Bu+3)b(n)+2n+5bn+1)—(n+4)b(n+2), b(0)=1,b(1) =1}

31/45
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 Other Inegralty Quesions

Let m and n be nonnegative integers. Prove that the following are integers:
(2m)!(2n)!

mln!(m + n)!
[Catalan, 1874]; [von Szily, 1894], [Feemster, 1910], [IMO 1972/3]

% [Gessel, 1985]
(3m 4 3n)!(3n)!(2m)!(2n)!
(2m +3n)!(m +2n)!(m + n)!m!n!2

[Askey, 1986]

(5m)!(5n)!
© m!n!(3m + n)!(m + 3n)!

[USAMO 1975]

32/45
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> [Putnam, 1999/6]
The sequence (a,),>1 is defined by a1 = 1,4, = 2,a3 = 24, and, for n > 4,

6ufl_1u,,_3 - Sun_lu%_z
ap = .
Ap—20n-3

Show that a; is an integer multiple of #, for all n.

> [Romanian TST, 2004/10]
Prove that if n,m € IN* and m odd, the following number is an integer

1 n 3m k
_3’"n,§)<3k>(3n_1) .
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_

Thm. [Conca, Krattenthaler, Watanabe, 2009] For for any / > 1, the rational
. /3] (_qyh=b ry _p\ 2\
b= b;) h—b <2b>(§>
is non-zero, except for h = 3.
> Exp. Math. proof [B., 2018]:
@ GF Y>3 ayz" =3 = —%z + ézz — %23 + -+ of (ay)y>3 is equal to

1 (2z—5)2°

- dz.
522 -32-62-3"

_ 6z—5

C 18283 -922 -6z -1

@ Coefficients of Geyen(z) =5+ 171z + 148522 + - - - satisfy
Upss =324 uy — 297 uy g + 181y40,

@ The (integer) coefficients of G(z) are all # O:

thus 43 = ;11 mod 2 for all n, so all coeffs of Geyen are odd.
@ Similarly, all coefficients of Gogq(z)/36 = 1+17z+922 + - - - are all odd.

34 /45
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Conjecture [Furter]. For all n, the polynomial

P = ¥ (n:z) (n:j)xi

i+j=n

has only roots of modulus 1.

2x+42
6x2+9x+6
20x% +40 % +40x + 20
70 x* +175x% 4 225x% +175x 4 70
252 % + 756 x* + 1176 x> + 1176 x% 4 756 x + 252

924 x® 4 3234 x° + 5880 x* + 7056 x> + 5880 x% + 3234 x + 924
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Conjecture [Furter]. For all 1, the polynomial
Pn(x) = E (n 1) (1’1 ]) xi
.= n n
i+j=n
has only roots of modulus 1.

> Proved [B., 2019] using Experimental Mathematics.
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Pbapolvgons

Def. Pairs (71,0) of {1, —}-paths in IN? of the same length 7, such that:
(i) Both 7t and ¢ start at (0,0) and end at the same point;

(if) 7 begins with a 1 step and o with a — step;

(iii) 7r and o do not meet between the origin and their common endpoint.

36 /45
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Pélya polygons

Thm. [Levine, 1959; Pélya, 1969; Fiirlinger, Hofbauer, 1985]

(i) The number of n-Pélya polygons is C,,_1 = %(2”":12)
(if) The total area of all n-Pélya polygons is 41
1 o
[ | 11
u u u Litll
- -
] ] ] ]
Ll | l
(] l

Alin Bostan Efficient experimental mathematics for combinatorics and number theory



Conjecture [Schwiérzler, 1985] One may tile a square of side 21 with the
n-Pélya polygons.

> Partial answer [Doligez, Sibut-Pinote, Varloot, 2016] This is true for n < 7.

1

E
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_ Pélya polygons: a crazy conjecture _

Conjecture [Schwiirzler, 1985] One may tile a square of side 2"~! with the
n-Pélya polygons.

> Partial answer [Lemoine, Zimmermann, 2017] Even more is true for n < 7:
one can find symmetric tilings!
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Let

1 2n
C, =
" n+1 ( n )
be the nth Catalan number. Then:

© The last digit (in base 10) of Cy, is never 3;
® For n > 0, the last digit of any odd Cj is always 5.

> Behavior of C;; modulo 2 and modulo 5 is well understood
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The Bank of Bath and

English (eng), day 2

IMO 2019

60" INTERNATIONAL
MATHEMATICAL OLYMPIAD

Wednesday, July 17, 2019

Problem 4. Find all pairs (k,n) of positive integers such that

k=" —1)(2" —2)(2" —4)--- (2" —2"71).

Problem 5.2 The Bank of Bath issues coins with an H on one side and a T on the other. Harry has

n of these coins arranged in a line from left to right. He repeatedly performs the following operation:
if there are exactly k > 0 coins showing H, then he turns over the k" coin from the left; otherwise,
all coins show T" and he stops. For example, if n = 3 the process starting with the configuration
THT would be THT — HHT — HTT — TTT, which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let L(C) be the number of operations before Harry stops. For
example, L(THT) = 3 and L(TTT) = 0. Determine the average value of L(C) over all 2"
possible initial configurations C.

https://www.imo-official.org/year_info.aspx?year=2019 .
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 The Mykonos reformulation.

Let Dy be the set of { 7, \ }-paths in IN?, such that:
(i) they start from the vertical axis and end at the horizontal axis;
(ii) their maximum height is N;
(iii) each “turn” is bigger than the preceding one.
Show that
(i) there are exactly 2N paths in Dy;
(ii) the sum of the lengths of walks in Dy is oN-1 (N ;’ 1) ;

b l PN

P Al i
TR RN
: .
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Question: What is the value of

s 27T ST s 31
Sm va _ Sm 7 T Sm 7 2
sin? 3-7-" sin? 2-7-" sin? 2
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Question: What is the value of

2

sin £ sin 7 sin 37" )
sin? 3-7-" sin? 2-7-" sin? 2 ’

Answer:
2V7
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Question: What is the value of

.2 T .
sin =7 sin = sin

5

NEIN

sin? 3-7-" sin? 2-7-" sin?

Answer:
2V7

Question: What is the value of

5 27 i/ 47 i,/ 8r
\/cos7+ cos7+ COS7.
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Question: What is the value of

s 27T ST FICYd

sin % sin sin 2%
7 7 7 5

sin? -7-3" sin? 2-7-" sin? 2

Answer:

27

Question: What is the value of

5 27 i/ 47 i/ 8r
\/cos7+ cos7+ cos7.
5[5 —3V/7
—

Answer:
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 Ferisesfo tomortow —short st

1. What is the value of

cos (E) — Cos (277I> -+ cos <377T> ?

N

2. Show that number of ways one can change any amount of banknotes of
10€,20%, ... using coins of 50 cents, 1€ and 2 € is always a perfect square.
3***. Show that if a, b, g are positive integers with

a2+ b?
7= ab+1

then g is a perfect square.

44745
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Exercises for

4. Let m, n be nonnegative integers. Prove that the following is an integer:

(2m)!(2n)!
min!(m+ n)!

5*. Let f(n) be the sum of the first one-third of the coefficients in the
expansion of (1 + x)3", ie, f(n) =Yi_, (3,("), forn=0,1,2,... Prove that

o (Be) =

n=0 u — 2sin (g arcsin u) 2u — 3sin (3 arcsin u)

a _ 1
1+a)3tl — (1—a)(1—2a)
6**. Prove that if n,m € IN* and m odd, the following number is an integer

L ()

k=0

for |a] < }

Hint: Prove that ) f(n) (
n=0
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