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CONTEXT
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Experimental Mathematics

A 3-step process

1. Compute a high-order approximation

—high precision numerical approximation,
power series truncated to high order,

large number of terms in a sequence,. . . —

2. Guess/conjecture a general formula

—with the help of a computer—

3. Prove it

—using computer-algebra algorithms—
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Guess-and-Prove
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Guess-and-Prove
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Computer Algebra

Effective mathematics: what can we compute exactly?

And complexity: how fast? (also, how big is the result?)

Systems with several million users

50+ years of algorithmic progress
in computational mathematics!
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Experimental Mathematics using Computer Algebra
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Experimental mathematics books
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Experimental mathematics journal

https://www.tandfonline.com/loi/uexm
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Computer algebra books
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Main computer algebra journal and conference

https://www.journals.elsevier.com/journal-of-symbolic-computation
http://www.issac-conference.org
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MOTIVATION
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A Philosopher of Science perspective [Sørensen, 2010]
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A Philosopher of Science perspective [Sørensen, 2010]
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An Experimental Mathematician perspective [Wilf, 2007]
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An Experimental Mathematician perspective [Wilf, 2007]
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Role of computers in mathematics [Borwein, Bailey, 2004]

heuristics
gaining insight and intuition
discovering new patterns and relationships
using graphical displays to vizualize underlying mathematical principles

refining and evaluating conjectures
testing (and falsifying) conjectures
exploring a possible result to see if it is worth formal proof

aiding in the procedure of proving conjectures
suggesting approaches for formal proof
replacing lengthy hand derivations with computer-based calculations
confirming analytically derived results
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Role of computers in Experimental Mathematics

check huge number of cases (but finitely many)

. E.g. an algorithm checks 1 936 configurations to complete the proof of
the four-color conjecture [Appel, Haken, 1976]

guess patterns

. E.g. an algorithm guesses a new (and useful!) formula for π

π = ∑
n≥0

1
16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)
[Bailey, Borwein, Plouffe, 1997]

prove theorems

. E.g. an algorithm proves a classification of lattice walks according to
properties of generating functions −→ details on Wednesday!
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Some tools and methods from the Exp. Math. toolbox

Computer Algebra Systems: Maple, Mathematica, Sage, Magma, Pari, . . .

Databases
OEIS (large searchable table of integer sequences),
ISC (online service to identify real constants given with good numerical
precision)

Algorithmic tools for guessing patterns
guessing recurrences satisfied by truncated sequences
guessing equations (algebraic / differential) from truncated power series
integer relation detection satisfied by truncated numbers
constant recognition

Algorithmic tools for proving theorems
polynomial elimination (resultants, Gröbner bases)
D-finiteness
Creative Telescoping
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EXAMPLES
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Discovering Pascal

Question: Find Bi,j := the number of {→, ↑}-walks in N2 from (0, 0) to (i, j)

1 There are 2 ways to get to (i, j), either from (i− 1, j), or from (i, j− 1):

Bi,j = Bi−1,j + Bi,j−1

2 There is only one way to get to a point on an axis: Bi,0 = B0,j = 1

. These two rules completely determine all the numbers Bi,j

...

1 7 28 84 210 462 924

1 6 21 56 126 252 462

1 5 15 35 70 126 210

1 4 10 20 35 56 84

1 3 6 10 15 21 28 · · ·
1 2 3 4 5 6 7

1 1 1 1 1 1 1 · · ·
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Discovering Pascal

Question: Find Bi,j := the number of {→, ↑}-walks in N2 from (0, 0) to (i, j)

1 There are 2 ways to get to (i, j), either from (i− 1, j), or from (i, j− 1):

Bi,j = Bi−1,j + Bi,j−1

2 There is only one way to get to a point on an axis: Bi,0 = B0,j = 1

. These two rules completely determine all the numbers Bi,j

...

1 7 28 84 210 462 924

1 6 21 56 126 252 462

1 5 15 35 70 126 210

1 4 10 20 35 56 84 −→ · · ·
1 3 6 10 15 21 28 · · · −→ (i+1)(i+2)

2

1 2 3 4 5 6 7 −→ i + 1

1 1 1 1 1 1 1 −→ 1

(I) Generate data:

(II) Guess:
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Discovering Pascal
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=
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Question: Find Bi,j := the number of {→, ↑}-walks in N2 from (0, 0) to (i, j)

1 There are 2 ways to get to (i, j), either from (i− 1, j), or from (i, j− 1):

Bi,j = Bi−1,j + Bi,j−1

2 There is only one way to get to a point on an axis: Bi,0 = B0,j = 1

. These two rules completely determine all the numbers Bi,j

...

1 7 28 84 210 462 924

1 6 21 56 126 252 462

1 5 15 35 70 126 210

1 4 10 20 35 56 84

1 3 6 10 15 21 28 · · ·
1 2 3 4 5 6 7

1 1 1 1 1 1 1 · · ·

(I) Generate data:
(III) Prove: If

Ci,j
def
=

(i+j)!
i!j! , then

Ci−1,j

Ci,j
+

Ci,j−1

Ci,j
=

i
i + j

+
j

i + j
= 1

and Ci,0 = C0,j = 1.

Thus Bi,j = Ci,j
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Biasing for a Fair Return [Trefethen, 2002; Bornemann, 2004]

1/4

1/4

1/4-ε 1/4+ε

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

. Computer algebra conjectures and proves

Alin Bostan Efficient experimental mathematics for combinatorics and number theory



20 / 45

Biasing for a Fair Return [Trefethen, 2002; Bornemann, 2004]

1/4

1/4

1/4-ε 1/4+ε

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

. Computer algebra conjectures and proves

p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2.
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ε ≈ 0.0619139544739909428481752164732121769996387749983

6207606146725885993101029759615845907105645752087861 . . .
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Another (innocent looking) combinatorial question

Let S = {↑,←,↘}. An S -walk is a path in Z2 using only steps from S .
Show that, for any integer n, the following quantities are equal:
(i) number an of n-steps S -walks confined to the upper half plane Z×N

that start and finish at the origin (0, 0) (excursions);
(ii) number bn of n-steps S -walks confined to the quarter plane N2 that
start at the origin (0, 0) and finish on the diagonal of N2 (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

(i)

(ii)

. Can be solved using Exp. Math. and Computer Algebra
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A money changing problem

Question†: The number of ways one can change any amount of banknotes of
10e, 20e, . . . using coins of 50 cents, 1e and 2e is always a perfect square.

This is equivalent to finding the number
† Inspired by Pb. 1, Ch. 1, p. 1, vol. 1 of Pólya and Szegö’s Problems Book (1925).
. Can be solved using Exp. Math. and Computer Algebra
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Euler’s pentagonal theorem – masterpiece of (early) experimental math

Def. A partition of n ∈N? is a representation n = x1 + x2 + · · ·+ xk as a
sum of positive integers x1 ≥ · · · ≥ xk.

. Denote by p(n) the number of partitions of n (by convention, p(0) = 1)

E.g., there are p(5) = 7 partitions of n = 5:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

Pentagonal theorem [Euler, 1780] The inverse of the generating function

∑
n≥0

p(n)xn = 1 + x + 2 x2 + 3 x3 + 5 x4 + 7 x5 + 11 x6 + 15 x7 + · · ·

is equal to
∞

∏
n=1

(1− xn) = 1 +
∞

∑
n=1

(−1)n
(

xn(3n+1)/2 + xn(3n−1)/2
)

= 1−x1−x2+x5+x7−x12−x15+x22+· · · .
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Euler’s pentagonal theorem – masterpiece of (early) experimental math

[Andrews, 1983]
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Euler’s pentagonal theorem – a short digression

Thm [Kolberg, 1959] p(n) takes both even and odd values infinitely often.

Modern proof . Assume the contrary. Then,
∞

∑
k=−∞

(−1)k xk(3k−1)/2 is a rational

function modulo 2. By Christol’s thm. (1978), the sequence of coefficients
would be 2-automatic. Contradiction with Ritchie’s thm (1963).

. Conjecture [Subbarao, 1966]: same for any arithmetic progression p(an + b).

. Proved by [Ono, 1996] (even case) and [Radu, 2012] (odd case)

. Transcendence and automata version by [B., Radu, 2019]
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Euler’s pentagonal theorem – another short digression

Thm [Ramanujan, 1919] The numbers in the arithmetic progression

(p(5n + 4))n = (5, 30, 135, 490, 1575, 4565, 12310, 31185, . . .)

are all divisible by 5.

. This is a simple consequence of the following identity

∞

∑
n=0

p(5n + 4)xn = 5
∞

∏
n=1

1− x5n

(1− xn)6

also conjectured by Ramanujan.

. Radu’s algorithms can automatically discover this kind of identity!
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Two beautiful Monthly (AMM) problems
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Gessel walks (2000)

• g(n) = number of n-steps {↗,↙,←,→}-walks in N2

1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880, . . .

Question: What is the nature of the generating function

G(t) =
∞

∑
n=0

g(n) tn ?

Alin Bostan Efficient experimental mathematics for combinatorics and number theory



29 / 45

Gessel walks (2000)

• g(i, j; n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

Question: What is the nature of the generating function

G(x, y; t) =
∞

∑
i,j,n=0

g(i, j; n) xiyjtn ?
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Gessel walks (2000)

• g(i, j; n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

Question: What is the nature of the generating function

G(x, y; t) =
∞

∑
i,j,n=0

g(i, j; n) xiyjtn ?

Theorem [B., Kauers, 2010]

G(x, y; t) is an algebraic function†.

. computer-driven discovery/proof via algorithmic Guess-and-Prove

† Minimal polynomial P(G(x, y; t); x, y, t) = 0 has > 1011 terms; ≈ 30 Gb (6 DVDs!)
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Gessel walks (2000)

• g(n) = number of n-steps {↗,↙,←,→}-walks in N2

1, 2, 7, 21, 78, 260, 988, 3458, 13300, 47880, . . .

Question: What is the nature of the generating function

G(t) =
∞

∑
n=0

g(n) tn ?

Corollary [B., Kauers, 2010] (former conjecture of Gessel’s)

(3n + 1) g(2n) = (12n + 2) g(2n− 1) and (n + 1) g(2n + 1) = (4n + 2) g(2n)

. computer-driven discovery/proof via algorithmic Guess-and-Prove
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An Integrality Question

Question: Let (an) be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1.

Show that all an is an integer for all n.

. Computer-aided solution: Let’s compute the first 10 terms of the sequence:

> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
> pro:=gfun:-rectoproc({rec,ini}, a(n), list);
> pro(10);

[1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188]

. gfun’s seriestoalgeq command allows to guess that ∑n anxn is algebraic:

> pol:=gfun:-listtoalgeq(%,y(x))[1];

1 + (x− 1)y(x) + x2y(x)2

Alin Bostan Efficient experimental mathematics for combinatorics and number theory
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An Integrality Question

Question: Let (an) be a sequence with a0 = a1 = 1 satisfying the recurrence

(n + 3)an+1 = (2n + 3)an + 3nan−1.

Show that all an is an integer for all n.

. Thus it is very likely that y = ∑n≥0 anxn verifies 1 + (x− 1)y + x2y2 = 0.

. By coefficient extraction, (an) conjecturally verifies the nonlinear recurrence

an+2 = an+1 +
n

∑
k=0

ak · an−k. (1)

. Clearly (1) implies an ∈N. To prove (1), we proceed the other way around:
we start with P(x, y) = 1 + (x− 1)y + x2y2, and show that it admits a power
series solution whose coefficients satisfy the same linear recurrence as (an):

> deq:=gfun:-algeqtodiffeq(pol,y(x)):
> recb:=gfun:-diffeqtorec(deq,y(x),b(n));

{(3 n + 3) b(n) + (2 n + 5) b (n + 1)− (n + 4) b (n + 2) , b (0) = 1, b (1) = 1}
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Other Integrality Questions

Let m and n be nonnegative integers. Prove that the following are integers:

(2m)!(2n)!
m!n!(m + n)!

[Catalan, 1874]; [von Szily, 1894], [Feemster, 1910], [IMO 1972/3]

m!(2m + 2n)!
(2m)!n!(m + n)!

[Gessel, 1985]

(3m + 3n)!(3n)!(2m)!(2n)!
(2m + 3n)!(m + 2n)!(m + n)!m!n!2

[Askey, 1986]

(5m)!(5n)!
m!n!(3m + n)!(m + 3n)!

[USAMO 1975]
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More Integrality Questions

. [Putnam, 1999/6]
The sequence (an)n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and, for n ≥ 4,

an =
6a2

n−1an−3 − 8an−1a2
n−2

an−2an−3
.

Show that an is an integer multiple of n, for all n.

. [Romanian TST, 2004/10]
Prove that if n, m ∈N? and m odd, the following number is an integer

1
3m n

m

∑
k=0

(
3m
3k

)
(3n− 1)k.
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A non-trivial non-vanishing

Thm. [Conca, Krattenthaler, Watanabe, 2009] For for any h ≥ 1, the rational

ah =
bh/3c
∑
b=0

(−1)h−b

h− b

(
h− b

2 b

)(
2
3

)b

is non-zero, except for h = 3.

. Exp. Math. proof [B., 2018]:

1 GF ∑n≥3 ahzh−3 = − 5
12 z + 4

5 z2 − 19
18 z3 + · · · of (ah)h≥3 is equal to

− 1
z3

ˆ
(2 z− 5) z3

2 z3 − 3 z2 − 6 z− 3
dz.

2 The (integer) coefficients of G(z) =
6 z− 5

18 z3 − 9 z2 − 6 z− 1
are all 6= 0:

1 Coefficients of Geven(z) = 5 + 171 z + 1485 z2 + · · · satisfy

un+3 = 324 un − 297 un+1 + 18 un+2,

thus un+3 = un+1 mod 2 for all n, so all coeffs of Geven are odd.
2 Similarly, all coefficients of Godd(z)/36 = 1 + 17 z + 9 z2 + · · · are all odd.
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All roots on the unit circle

Conjecture [Furter]. For all n, the polynomial

Pn(x) = ∑
i+j=n

(
n + i

n

)(
n + j

n

)
xi

has only roots of modulus 1.

2 x + 2

6 x2 + 9 x + 6

20 x3 + 40 x2 + 40 x + 20

70 x4 + 175 x3 + 225 x2 + 175 x + 70

252 x5 + 756 x4 + 1176 x3 + 1176 x2 + 756 x + 252

924 x6 + 3234 x5 + 5880 x4 + 7056 x3 + 5880 x2 + 3234 x + 924
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All roots on the unit circle

Conjecture [Furter]. For all n, the polynomial

Pn(x) = ∑
i+j=n

(
n + i

n

)(
n + j

n

)
xi

has only roots of modulus 1.

. Proved [B., 2019] using Experimental Mathematics.
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Pólya polygons

Def. Pairs (π, σ) of {↑,→}-paths in N2 of the same length n, such that:

(i) Both π and σ start at (0, 0) and end at the same point;

(ii) π begins with a ↑ step and σ with a→ step;

(iii) π and σ do not meet between the origin and their common endpoint.
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Pólya polygons

Thm. [Levine, 1959; Pólya, 1969; Fürlinger, Hofbauer, 1985]

(i) The number of n-Pólya polygons is Cn−1 = 1
n (

2n−2
n−1 )

(ii) The total area of all n-Pólya polygons is 4n−1.
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Pólya polygons: a crazy conjecture

Conjecture [Schwärzler, 1985] One may tile a square of side 2n−1 with the
n-Pólya polygons.

. Partial answer [Doligez, Sibut-Pinote, Varloot, 2016] This is true for n ≤ 7.
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Pólya polygons: a crazy conjecture

Conjecture [Schwärzler, 1985] One may tile a square of side 2n−1 with the
n-Pólya polygons.

. Partial answer [Lemoine, Zimmermann, 2017] Even more is true for n ≤ 7:
one can find symmetric tilings!

n = 5 n = 7
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Catalan’s last digit: an amusing conjecture

Let

Cn =
1

n + 1

(
2n
n

)
be the nth Catalan number. Then:

The last digit (in base 10) of Cn is never 3;

For n� 0, the last digit of any odd Cn is always 5.

. Behavior of Cn modulo 2 and modulo 5 is well understood
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The Bank of Bath and Dyck paths

https://www.imo-official.org/year_info.aspx?year=2019
Alin Bostan Efficient experimental mathematics for combinatorics and number theory
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The Mykonos reformulation
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The Mykonos reformulation

Let DN be the set of {↗,↘}-paths in N2, such that:
(i) they start from the vertical axis and end at the horizontal axis;

(ii) their maximum height is N;
(iii) each “turn” is bigger than the preceding one.
Show that

(i) there are exactly 2N paths in DN ;
(ii) the sum of the lengths of walks in DN is 2N−1(N+1

2 );
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Two beautiful identities of Ramanujan’s

Question: What is the value of

sin 2π
7

sin2 3π
7
− sin π

7

sin2 2π
7

+
sin 3π

7

sin2 π
7

?

Answer:
2
√

7

Question: What is the value of

3

√
cos

2π

7
+

3

√
cos

4π

7
+

3

√
cos

8π

7
?

Answer:

3

√
5− 3 3

√
7

2
.
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Exercises for tomorrow – short list

1. What is the value of

cos
(π

7

)
− cos

(
2 π

7

)
+ cos

(
3 π

7

)
?

2. Show that number of ways one can change any amount of banknotes of
10e, 20e, . . . using coins of 50 cents, 1e and 2e is always a perfect square.

3???. Show that if a, b, q are positive integers with

q =
a2 + b2

ab + 1

then q is a perfect square.
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Exercises for tomorrow – long list

4. Let m, n be nonnegative integers. Prove that the following is an integer:

(2m)!(2n)!
m!n!(m + n)!

5?. Let f (n) be the sum of the first one-third of the coefficients in the
expansion of (1 + x)3n, i.e., f (n) = ∑n

k=0 (
3n
k ), for n = 0, 1, 2, . . . Prove that

∞

∑
n=0

f (n)
(

4u2

27

)n

=
u

u− 2 sin
(

1
3 arcsin u

) − 2u

2u− 3 sin
(

1
3 arcsin u

)
Hint: Prove that

∞

∑
n=0

f (n)
an

(1 + a)3n+1 =
1

(1− a)(1− 2a)
for |a| < 1

2

6??. Prove that if n, m ∈N? and m odd, the following number is an integer

1
3m n

m

∑
k=0

(
3m
3k

)
(3n− 1)k.
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