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BASIC TOOLS

Fast elementary operations
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Complestyyardsicks

M(n) = complexity of multiplication in K[x],, and of n-bit integers
O(n?) by the naive algorithm

O(n'>®) by Karatsuba’s algorithm

O(n'°8: 2*=1)) by the Toom-Cook algorithm (« > 3)

= O(nlognloglogn) by the Schénhage-Strassen algorithm

MM(r) = complexity of matrix product in M, (K)

O(r) by the naive algorithm

O(r*81) by Strassen’s algorithm

= O(r**) by the Coppersmith-Winograd algorithm
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Practical complexity of multiplication in F, [x], for p = 29 x 2% + 1.
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What can be computed i

@ Integer numbers:

© product of two integers with 30 000000 digits
© factorial of 1300000 (output: 7000000 digits)
© factorization of an integer with 42 digits

@ Polynomials in IF[x]:

© product of two polynomials of degree 650 000
© gcd and resultant of two polynomials of degree 12500
© factorization of a polynomial of degree 170

@ Polynomials in IF[x, y]:

© resultant of two polynomials of total degree 20 (output degree 400)
© factorization of a polynomial of degree 160

@ Matrices:
© product of two 850 x 850 matrices with coefficients in IF,
© determinant of a 1400 x 1400 matrix with coefficients in IF),
© characteristic polynomial of a 500 x 500 matrix with coefficients in IF,
© determinant of a 200 x 200 matrix with 32-bits integer entries.
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DFT Problem: Given n = 2%, f € K[x]<y,, and w € K a primitive n-th root of
unity, compute (f(1), f(w),..., f(w"1))

Idea: Write f = feven(x )+xf0dd(x2) with deg(feven) deg(foqq) < n/2.
Then f(w/) = feven(w?) + @ fogq(w¥), and (w H)o<jcn = 3-roots of 1.

Complexity: F(n) =2-F(n/2)+0(n) = F(n)=0(nlogn)
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eseDRT

IDFT Problem: Given n = 2, vg,...,0y—1 € Kand w € K a primitive n-th
root of unity, compute f € K[x]<, such that f(1) = vy,..., f(w" 1) =0, 1

® VoV, =n-I, = performing the inverse DFT in size n amounts to:
© performing a DFT at
1 1 1
1/ ;/ ’ w"‘l

© dividing the results by #.

@ this new DFT is the same as before:

—1 ="
w' ’
so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is O(nlog(n))
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FFT polyno

Suppose the basefield K contains enough roots of unity

To multiply two polynomials f, g in K[x], of degrees < n:

© find N = 2F such that 1 = fg has degree less than N N <4n
© compute DFT(f, N) and DFT(g, N) O(N1log(N))
© multiply pointwise these values to get DFT (i, N) O(N)
© recover h by inverse DFT O(Nlog(N))

Complexity: O(Nlog(N)) = O(nlog(n))
> General case: Create artificial roots of unity ~ O(nlog(n)loglogn) = O(n)

> Similarly for integers: N-bit integers can be multiplied in O(N) bit ops.

9/ 60

B .1 xperiental mathemmaticsfo combinatoricsand number theory



TOOLS FOR GENERATING DATA

Binary splitting
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Bemple fostactonal

Problem: Compute N! =1 x --- x N

Naive iterative way: unbalanced multiplicands O(N?)

© Binary Splitting: balance computation sequence so as to take advantage
of fast multiplication (operands of same sizes):

Nl=(1x--x|N/2])x((|[N/2]+1) x---xN)

size %NlogN size %NlogN

and recurse. Complexity O(N).

© Extends to matrix factorials A(N)A(N — 1) --- A(1) O(N)
— recurrences of arbitrary order.
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Appl

Problem: Compute the N-th term uy of a P-recursive sequence

pr(n)unyr + -+ po(n)un =0, (n € N)

Naive algorithm: unroll the recurrence O(N?) bit ops.

Binary splitting: Uy, = (un, ..., Uy r_1)" satisfies the 1st order recurrence

pr(n)
1
u = ——AnU, with A(n) =
= oy AU ) pr(n)
—po(n) —pi(n) ... —pra(n)
= uy reads off the matrix factorial A(N —1)--- A(0)
[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy O(N) bit ops.
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1
en=) 5 — exp(l)=27182818284590452....

Recurrence e, —e, 1 =1/n! < n(e, —e, 1) = e,_1 — ;o rewrites

eEN-1| _ 1 0 N eEN-2| _ 1 o 0
{ en } N [—1 N+ 1} LN—J = CNEN =1 C) H '
| S
C(N)
> ey in O(N) bit operations [Brent 1976]

> generalizes to the evaluation of any D-finite series at an algebraic number
[Chudnovsky-Chudnovsky 1987] O(N) bit ops.
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Implementation in gfun [Mezzarobba, S. 2010]

> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)
local i1, locO, locl, loc2, tmp2, tmpl, i2;
if n <= 22 then
locO := 1; 1locl := 2;
if n = 0 then return locO
else for il to n - 1 do
loc2 := (-locO + locl + loci*(il + 1))/(i1 + 1);
locO := locl; locl := loc2

end do
end if; locl
else
tmpl := ‘gfun/rectoproc/binsplit‘([

‘ndmatrix’ (Matrix([[0, i2 + 2], [-1, i2 + 3]1), i2 + 2), i2, O, n,
matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...11,
datatype = anything, storage = empty, shape = [identityl), 1)),
expected_entry_size], Vector(2, [...], datatype = anything));
tmpl := subs({e(0) = 1, e(1) = 2}, tmpl); tmpl
end if
end proc

ro(210000) : time()-tt;
: y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000) ;

3.730, 24.037, 0.
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Application: record computation of 7

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

1_ Z 61)!(13591409 + 545140134n)
m 53360\/64032 =) n'3 3n (8100100025 - 327843840)" °

o 20600 20600 0000 20000 100000 120000

> Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits
per iteration — 4 billion digits [Chudnovsky-Chudnovsky 1994]

> Current record: 31.4 trillion digits [lwao 2019]
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TOOLS FOR GENERATING DATA

2. Newton iteration

16 / 60

Y .1 xperiental mathemmaticsfo combinatoricsand number theory



Newto

\

N(x)

Xep1 = N (o) = 2 — (g —2)/(2x¢), x =1

x1 = 1.5000000000000000000000000000000
xp = 1.4166666666666666666666666666667
x3 = 1.4142156862745098039215686274510
x4 = 1.4142135623746899106262955788901
x5 = 1.4142135623730950488016896235025
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In order to solve ¢(x,g) = 0 in K[[x]] iterate

P(gx) ortl
Sx+1 = &k — mod x
- @y (gx)
> The number of correct coefficients doubles after each iteration
> Total cost = 2 X ( the cost of the last iteration)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]
Division, logarithm and exponential of power series in K[[x]] can be
computed at precision N using O(N) operations in K
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TOOLS FOR CONJECTURES

Hermite-Padé approximants
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 —+ e +Pnfn = O(X‘T) with 0 = Zi(di + 1) —1,
(2) deg(P;) < d for all i.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality/transcendence):
© [Hermite, 1873]: e is transcendent.
© [Lindemann, 1882]: 7t is transcendent; so does e* for any & € Q \ {0}.
© [Apéry, 1978; Beukers, 1981]: {(3) = ¥ ;>1 n% is irrational.
© [Rivoal, 2000]: there exist infinite values of k such that {(2k + 1) ¢ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, CZ),
where C(x) = 1+ x + 2x% + 5x3 4+ 14x* + 42x° + O(x°).
This boils down to finding &g, &1, Bo, 1,70, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (70 + 1) (1 + 2x + 5x% + 14x° + 42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 ZO 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
000 2 1 5 2|x|2% =010 0 2 1 5|x|f|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 3‘1) 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are oy =1, a7 = 0.

Thus the approximant is (1, —1, x), which corresponds to P = 1 — y + xy?
such that P(x,C(x)) = 0 mod x°.
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Algebraic and differential app

© Hermite-Padé approximants of 1 = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

© algebraic approximants = Hermite-Padé approximants for f, = A1,
where A € K[[x]] seriestoalgeq, listtoalgeq

© differential approximants = Hermite-Padé approximants for f, = A=),
where A € K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));

1—y(x) +xy (x)?

> listtodiffeq([1,1,2,5,14,42,132,429],y(x)) [1];

2
{20+ @240 Sy 042 55y 0.5 0 = 1D0) 0) =1
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Existence and naive

Theorem For any vector F = (fi,..., fu)T € K[[x]]" and for any n-tuple
d = (dq,...,dn) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i;o pi,jxf satisfy a linear
homogeneous system with o =) ;(d; + 1) — 1 eqs and ¢ + 1 unknowns.

Corollary Computation in O(¢0®), for 2 < w < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

© Derksen's algorithm (Euclidean-like elimination) O(c?)
© Beckermann-Labahn algorithm (DAC) O(c) = O(clog? r)
@ structured linear algebra algorithms for Toeplitz-like matrices O(U)
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Quasi-optimal ¢

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (fi,..., fu) in O(n“d) ops. in K.

Ideas:
© Compute a whole matrix of approximants
© Exploit divide-and-conquer

Algorithm:

@ If o =n(d+1)—1 < threshold, call the naive algorithm
@ Else:

® recursively compute P; € K[x]"*" s.t. Py - F = O(x%/2), deg(P;) ~ ¢
@ compute “residue” R such that P - F = x7/2 . (R + O(x7/2))
@ recursively compute P, € K[x]"*" s.t. Py - R = O(x7/2), deg(Py) ~ %

@ returnP:=P>-P;

> The precise choices of degrees is a delicate issue
> Corollary: Ged, extended gcd, Padé approximants in O(d) ops. in K.
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~ An nnocentloking) combinaorial quesion

Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .#-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).
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Let ¥ = {1, +, \,}. An .-walk is a path in Z? using only steps from .7
Show that, for any integer 7, the following quantities are equal:

(i) number a, of n-steps .-walks confined to the upper half plane Z x IN
that start and finish at the origin (0,0) (excursions);

(ii) number by, of n-steps .#-walks confined to the quarter plane IN? that
start at the origin (0,0) and finish on the diagonal of IN? (diagonal walks).

For instance, for n = 3, this common value is a3 = b3 = 3:

HSREERN

(ii)
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A recurrence relation for {f,

h(n;i,j) =nb. of {1, -, \y}-walks in Z x N of length n from (0,0) to (i, )
The numbers h(n;i,j) satisfy

0 ifj<0orn <0,
U B P ifn =0,
h(nii,f) = t h(n—1;i—1i,j—j') otherwise.
(.j)es

> h:=proc(n,i,j)
option remember;
if j<O0 or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi
end:

> A:=series(add(h(n,0,0)*t"n, n=0..12), t,12);

A =143 430t° + 420t° + O(t12)
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A recurrence relation for {

q(n;i,j) = nb. of {1, +-, \,}-walks in IN? of length 1 from (0,0) to (i, )
The numbers q(n; i, j) satisfy

0 ifi<Oorj<Oorn<0,
o) Timj=o ifn=0,
a0nii,f) = t qgin—1i—i,j—j) otherwise.
(@jes

> q:=proc(n,i,j)
option remember;
if i<0 or j<O or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi
end:

> B:=series(add(add(q(n,k,k), k=0..n)*t"n, n=0..12), t,12);

B =1+ 3t +30t° + 420 + O(t'?)

27 / 60

B Y .1 cxperiental mathemmaticsfo combinatoricsand number theory



> A:=series(add(h(n,0,0)*t"n, n=0..30), t, 25):
> recA:=seriestorec(A, a(n))[1];

(n+6)(n+3)u(mn+3)—27 (n+2)(n+1)u(n)=0

> an:=rsolve(recA, a(n)):
> sum(subs(n=3*n, op(2,an))*t~(3*n), n=0..infinity)
assuming t>0 and t<1/9;

oF (1/322/3 ‘ 27t3>
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Guessing the answ

> A:=series(add(h(n,0,0)*t"n, n=0..30), t, 25):
> recA:=seriestorec(A, a(n))[1];

(m+6)(n+3)u(n+3)—27 (n+2)(n+1)u(n)=0

> an:=rsolve(recA, a(n)):
> sum(subs(n=3*n, op(2,an))*t~(3*n), n=0..infinity)
assuming t>0 and t<1/9;

oF (1/322/3 ‘ 27t3>

> Thus, differential guessing predicts

A(t) = B(t) = ,F <1/322/3 ‘ 27t3> = i

n=0

(3n)! 3"
n3 n+1
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Guessing the answer

> A:=series(add(h(n,0,0)*t"n, n=0..30), t, 25):
> recA:=seriestorec(A, a(n))[1];

(m+6)(n+3)u(n+3)—27 (n+2)(n+1)u(n)=0

> an:=rsolve(recA, a(n)):
> sum(subs(n=3*n, op(2,an))*t~(3*n), n=0..infinity)
assuming t>0 and t<1/9;

oF (1/322/3 ‘ 27t3>

> Thus, differential guessing predicts

A(t) = B(t) = »F, (1/322/3‘2”3) N i Bn)! £

13 :
i n° n+1

> This can be algorithmically proved using creative telescoping o
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Example: Flea from SIAM 1

> proba:=proc(i,j,n,c)
option remember;
if abs(i)+abs(j)>n then O elif n=0 then 1 else
expand (proba(i-1,j,n-1,c)*(1/4+c)+proba(i+l,j,n-1,c)*(1/4-c)
+proba(i,j+1,n-1,c)*1/4+proba(i,j-1,n-1,c)*1/4)
fi
end:
> seq(proba(0,0,k,c) ,k=0..6);

1 009 92 4,25 75, 4 06
1,0,4 2c,0,64 46 +6c,0,256 32c + 15¢ 20c¢

> gfun:-listtodiffeq([seq(proba(0,0,2%k,c),k=0..20)]1,y(x));

(71 +8c*+ 48xc4) y(x)+ (4 —8x+64xc2+192 xzc4> %y (x)

2
+ (4x+64x3c4 —4x2 +32x2c2) %y(x),y(o) =1,D(y) (0) = 1/472c2}
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Task 1: Given the first N terms of S = Fo (t;x,0) € Q[x][[¢]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.
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Task 1: Given the first N terms of S = Fo (t;x,0) € Q[x][[¢]], search for a
differential equation satisfied by S at precision N:

7

'S aS
cr(x,t) - W+~~~+c1(x,t) g +co(x,t) - S = 0 mod V.

Task 2: Search for an algebraic equation Py ((S) =0 mod V.
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Example: guessi

Task 1: Given the first N terms of S = F»(t;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

T

S _|_..-+c1(x,t)~Eg-l-co(x,t)-S:OmOdtN-

Cr(x, t) . W

Task 2: Search for an algebraic equation Py ((S) =0 mod V.

© Both tasks amount to linear algebra in size N over Q(x).

© In practice: use many modular Hermite-Padé approximations (via the
Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

© Fast (FFT-based) arithmetic in F)[t] and F [t] ().
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Using N = 80 terms of K(f;x,0), one can guess

> a linear differential equation of order 4, degrees (14,11) in (t, x), such that
£ (3t —1)- (92 43t +1) - (3> + 24£2x> — 3xt — 2x2)-
- (1662x° + 4xt — 72t4%3 — 18x3t 4+ 51242 + 18xt3 — 9t4)-

_ 9*K(t;x,0)

- (4253 — 12 4 2xt — x?
(4t°x + 2xt — x%) pye!

=0 mod %

> a polynomial of tridegree (6,10, 6) in (T, t, x)
Pro = xHOTO — 3248 (x —26)T5+

+ x40 (12t2 +3#2x% — 12xt + ;xz) T 4 ...

such that P, o(K(t;x,0),t,x) = 0 mod 180,
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 Bxample: uesing equationsfor Gessel' G(1;%,0) and G(10.4)

Using N = 1200 terms of G(f; x,y), one can guess candidates

® Pyoin Z[T,t,x] of degree (24,43,32), coefficients of 21 digits
© Po, in Z[T,t,y] of degree (24,44,40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod #1200, Po,y(G(t;0,y),t,y) = 0 mod #1200,
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Example: gues

Using N = 1200 terms of G(; x,y), one can guess candidates

® Pyoin Z[T,t,x] of degree (24,43,32), coefficients of 21 digits
© P, in Z|T,t,y] of degree (24,44, 40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) = 0mod 20, Py, (G(0,y),t,y) = 0 mod t'2%.

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!
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Example: guessing equations for Gessel’s G(t; x,0) and G(£;0,y)

Using N = 1200 terms of G(f;x,y), one can guess candidates
© Py in Z[T,t, x] of degree (24,43,32), coefficients of 21 digits
© Py, in Z[T,t,y] of degree (24, 44,40), coefficients of 23 digits
such that

Pro(G(t;x,0),t,x) = 0mod #1290, Poy(G(£0,y),t,y) = 0mod $1200,

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

> [B., Kauers '09] actually first guessed differential equations+, then
computed their p-curvatures to empirically certify them. This led them
suspect the algebraicity of G(t;x,0) and G(+,0,y), using a conjecture of
Grothendieck’s (on differential equations modulo p) as an oracle.

' of order 11, and bidegree (96,78) for G(t;x,0), and (68,28) for G(t;0,y)

Alin Bostan Efficient experimental mathematics for combinatorics and number theory



~ Guessing is good, proving is better [_

How to Solve It

A New Aspect of

e Guessing and Proving

{"lﬁtl; George Pélya

Guessing is good, proving is better.
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TOOLS FOR PROOFS

Resultants
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The Sylvester matrix of A = a,,x™ + - - +ag € K[x], (ay # 0), and of
B=Dbux"+---+by € Klx], (by #0), is the square matrix of size m + n

Am  Am—1 ap
Ay Ap_1 ... A
a Ay a
SIAB) = |y e ’
b byq ... b
i by byy ... by |

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

> Definition extends to polynomials over a commutative ring R.
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If A=aux™+---4+ay and B=Dby,x"+---+Dby, then

[ Gy Ay1 ... A 7 [ a*1A(a)
’xm+n—l
Ay A1 --- Ao y _ Aa)
by, b,_1 ... by N a™ 1B («)
A N 1 :
L bn bn—l b() i L B(OL)

Corollary: If A(a) = B(x) =0, then Res (A, B) = 0.
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Bamplethediseriminant

The discriminant of A is the resultant of A and of its derivative A’.
E.g. for A = ax? +bx +c,

a b c
Disc(A) = Res (A, A') = det [ 20 b ] = —a(b? — 4ac).
2a b

E.g. for A = ax3 +bx+ec,

a 0 b ¢
a 0 b c
Disc(A) = Res (A, A') =det| 32 0 b = a?(4b% + 27ac?).
3¢ 0 b
3¢ 0 b

> The discriminant vanishes when A and A’ have a common root, that is
when A has a multiple root.

37 / 60

B Y .1 periental mathemmaticsfo combinatoricsand number theory



© Link with gcd  Res (A, B) = 0 if and only if ged(A, B) is non-constant.

® Elimination property
There exist U, V € K[x] not both zero, with deg(U) < n, deg(V) < m
and such that the following Bézout identity holds:

Res(A,B) = UA+ VB in KN (A,B).

@ Poisson formula
IfA=a(x—a1) - (x—ay) and B=0b(x—pB1) - (x— Bn), then

Res(A,B) = a"b"[[(wi—B;) = a" [] B(w).

i 1<i<m

38 / 60



Applicatio

Let A = [];(x — ;) and B = [];(x — B;) be polynomials of K[x]. Then

Res(A(x), B(t —x)) = [ J(t = (i + B})),
ij
Resx(A(x), B(t+x)) = [J(t = (Bj — i),
ij
Res (A (x), x%8"B(t/x)) = [](t — wif;),
ij

Res(A(x),t — B(x)) = [ J(t - B(a;))-

1

In particular, the set of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: [ [ B(t —a;) = [ J(t — a; — Bj)-
i ij

> The same formulas apply mutatis mutandis to algebraic power series.
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sinz-7-" sin 7 sin3-7-"
ar oo -2n=2‘ﬁ'
sin” =% sin® %+ sin® 7

>Ifa= /7 and x = €, then x/ = —1 and cos(ka) = M
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sinz-7-" B sin 7 sin3-7-" W7

ia2 371 102 271 s22 T
sim va sm va S’ 7
: k —k
>Ifa=m/7and x = ¢, then x” = —1 and cos(ka) = 57—

> Since x € Q, any polynomial expression in the cos(ka) is in Q(x), thus in Q
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Two beautiful id

sin 2% _ sing sin%’r:zﬁ.

sin? 3 sin® & sin? %
>Ifa=7/7and x = ¢, then x’ = —1 and cos(ka) = 25"
> Since x € Q, any polynomial expression in the cos(ka) is in Q(x), thus in Q
> In particular v = F(x) = IE\)A(% is an algebraic number

> f:=sin(2xa)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a) "2:
> expand(convert (f,exp)):
> F:=normal (subs(exp(I*a)=x,%)):

2i(x16+5xl4+12x12+x“ +20x10 4339 +23x8 4327 + 2040 + 25 + 1214 +5x2+1)
x(@2-1) (22 +1)% (x4 +22+1)°
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Two beautiful identities of Ra

21 s T 3

sin sinZ  sin
7o _sing ST L
sin? 3 sin® & sin? %
>Ifa=7/7and x = ¢, then x’ = —1 and cos(ka) = 25"
> Since x € Q, any polynomial expression in the cos(ka) is in Q(x), thus in Q

> In particular v = F(x) = ggxg is an algebraic number

> f:=sin(2xa)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a) "2:
> expand(convert (f,exp)):
> F:=normal (subs(exp(I*a)=x,%)):

2 (%16 +5xM 4 12x12 4+ x11 42010 +32% 12358 +327 205 +25 + 1224 +5:2 +1)
x(x2=1) (2 +1)% (¢ 22+ 1)
& Get polynomial in Q[t] with root v: resultant Resy (x” 4+ 1,¢ - D(x)—N(x))

> factor(resultant (x~7+1,t*denom(F)-numer (F),x));

1274 (t2 - 28)3
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TOOLS FOR PROOFS

D-Finiteness
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~ D-finite Series & Sequences _

Definition: A power series f(x) € K][[x]] is D-finite over K if its derivatives
generate a finite-dimensional vector space over K(x).

Definition: A sequence i, is D-finite (or P-recursive) over K if its shifts
(tn, tty11, . .. ) generate a finite-dimensional vector space over K(n).

PR ttns + pra (Mitsr 1+ -+ po(miy =0, 1> 0,

| equation + init conditions = data structure |

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun

ENCYCTQEE)PEDIA Examples: exp, log, sin, cos, sinh,
INTEGER cosh, arccos, arccosh, arcsin, arcsinh,
SEQUENCES arctan, arctanh, arccot, arccoth, arccsc,
arccsch, arcsec, arcsech, ,F; (includes
Bessel J, Y, I and K, Airy Ai and
Bi and polylogarithms), Struve, Weber
and Anger functions, the large class of
algebraic functions,...

12 / 6
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Link D-fini

Theorem: A power series f € K][[x]] is D-finite if and only if the sequence f;
of its coefficients is P-recursive

Proof (idea): xd «<» nand x~! <+ S, give a ring isomorphism between
]K[x,x_l,a] and ]K[Sn,S;l,n].

Snobbish way of saying that the equality f = Y_,>( fnx" implies

(") xf'(x) = nfo, and  [2"]x7f(x) = furr.

> Both conversions implemented in gfun: diffeqtorec and rectodiffeq
> Differential operators of order r and degree d give rise to recurrences of

order d + r and coefficients of degree r
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Closure properti

Th. D-finite series in K[[x]] form a K-algebra closed by Hadamard product.
P-recursive sequences over K form an algebra closed by Cauchy product.

Proof by linear algebra: If
ar(x)f)(x) + -+ ap () f(x) = 0, bs(x)g1) (x) + -+ +bo(x)g(x) = 0, then

f(e) € VeCt]K(x) (f, f,/ e /f(r_l)) , g(e) S VECt]K(x) (g, g/, .. .,g(s_1)> ,

sothat(F+)() € Vet (£, Ferer 070, 5,808,
and  (fg)") € Vectyy) (f(i)g(j), i<rj< s).
So, f + g satisfies LDE of order < (r+s) and fg satisfies LDE of order < (rs).
Corollary: D-finite series can be multiplied mod x¥ in linear time O(N).

> Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct,
rectrec, rec¥rec, cauchyproduct

44 /60

B .1 xperiental mathemmaticsfo combinatoricsand number theory



Proof of Identities

> series(sin(x) " 2+cos(x)"2,x,4);

1+0(x%)
This proves sin(x)? + cos(x)? = 1. Why?

(1) sin and cos satisfy a 2nd order LDE: y"" +y = 0;

(2) their squares (and their sum) satisfy a 3rd order LDE;

(3) the constant 1 satisfies a 1st order LDE: y’ = 0;

(4) = sin? + cos? —1 satisfies a LDE of order at most 4;

(5) Since it is not singular at 0, Cauchy’s theorem concludes.

> Cassini's identity (same idea): F> — F, 1 F,_1 = (—1)"*!

for n to 8 do
fibonacci(n) “2-fibonacci(n+1)*fibonacci(n-1)+(-1) "n
od;

0,0,0,0,0,0,0,0
45 / 60
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Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite,
i.e., they satisfy linear differential equations with polynomial coefficients.

46 / 60



Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite,
thus, their coefficients satisfy linear recurrences with polynomial coefficients.
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Algebraic serie

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let f(t) € Q[[t]] such that P(t, f(t)) = 0, with P € Q[t, T] irreducible.

Differentiate w.r.t. t:

Pt f() +f(OPr(Lf(1) =0 =  f'=- P%(t,f(t))-

Extended ged: ged(P,Pr) =1 = UP+VPr=1, forU,V € Q(t)[T]

— f= —(ptv mod P)(t, f) € Vectgq (1, 2. fdegT(P>-1).

By induction, f(e) S VectQ(t) (1,f,f2, . ,fdegT(P)_1>, for all /4. Od

> Implemented, e.g., in maple’s package gfun algeqtodiffeq, diffeqtorec
> Generalization: ¢ D-finite, f algebraic — g o f D-finite algebraicsubs
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TOOLS FOR PROOFS

Creative Telescoping
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Creative Telescoping

General framework in computer algebra —initiated by Zeilberger in the "90s—
for proving identities on multiple integrals and sums with parameters.

Alin Bostan Efficient experimental mathematics for combinatorics and number theory



Exa

ok fatb\at+c\(b+c) _ (at+b+c)! .
e (a—i—k) (c+k> (b+k) = ape (Pon 1891

n 2 2
® A, = E (Z) (n : k) satisfies the recurrence [Apéry 1978]:
k=0

(n+1)3A,41 = (34n® +51n% +27n 4+ 5) Ay — 1> A, _1.

(Neither Cohen nor I had been able to prove this in the intervening two months
[Van der Poorten 1979])

CEECEY-EOCTEQ s
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Exa

o Y (—1) (“ +b) (“ +C> (b+c) _(atbtolt o on1891]

P a+k)\c+k)\b+k alb!c!
n 2 2
® A, = E (Z) (n 2— k) satisfies the recurrence [Apéry 1978]:
k=0
(n+1)3A,11 = (3413 +51n% +27n + 5) A, — n3A, 1.

(The specific problem was mentioned to Don Zagier, who solved it with
irritating speed [Van der Poorten 1979])

CECE QLR s
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 Famples I Inegrals and Diagonals

1 400 o3
° / cos(zu) du— sin(zu)
0 V1—u? 1 uz—1

—+o0
o / 1 (ax) Iy (ax) Yo (x)Ko (x) dx =
0

_ 4
— M [Glasser-Montaldi 1994];
27a?
2.2
(14 2xy +4y?) exp (2L
° ZL (31+4y2) dy = H"/ (2")| [Doetsch 1930];
i Yt (14 492)2 [n/2]!
. 1 - "
© Diag A= x =y —2 =)~ xyau — né:OAnt [Straub 2014].
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IF one knows Pascal’s triangle:

n+1 n n n n n
() =) (2 =20 () - 6)
then summing over k gives

Ipsq = 2I,.

The initial condition Iy = 1 concludes the proof.
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Fo=Y uy=?
k
IF one knows P(n,S,) and R(n,k,S,, Sy) such that
(P(n, Sn) + AkR(l’l, k, Sy, Sk)) Upf = 0

(where Ay is the difference operator, Ay - v,k = 0y k11 — Uy ),
then the sum “telescopes”, leading to

P(n,Sy)-F, =0.
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Zeilberger’s Algorithm [1990]

. . . Upnt+1k Up k- .
Input: a hypergeometric term u,,, i.e., T*k and ﬁ are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F; = ) u, ¢
© a certificate (Q), such that checking the result is easy from

P(Vl, Sn) cUpk = AQ - Uy k-

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

> This is a proof that Y3}_ (}) = 2"
> Can check using the certificate:

> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2*T) - (subs(k=k+1l,cert) - cert);
> simplify(convert (%,GAMMA)) ;

O 53 / 60
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Example: Back to the SIAM

The SIAM 100-Digit

U (21 (2K (21 -2k 1+C" l—ck 1
mkm\ok )\ k )\ n—k ) \4 4 4202k’

n
pn =Y U, = probability of return to (0,0)at step 2n.
k=0

> p:=SumTools [Hypergeometric] [Zeilberger] (U,n,k,Sn);

[(4n2 +16n+16) Sn® + (—4n2+3202n2+96::2n —12n+72¢ —9) Sn

+128c*n + 64 ctn® + 48 ¢*, ..(BIG certificate)...]
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I(t) = yﬁ H(t,x)dx =?
v
IF one knows P(t,0;) and R(t, x,d;,d) such that
(P(t,at) =+ axR(t, x,Bt, ax)) . H(t, x) =0,
then the integral “telescopes”, leading to

P(t,3y) - I(t) = 0.
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Diagonal Rook

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

56 / 60
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Diagonal Rook pat

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

Answer: ry = Nth coefficient in the Taylor expansion of % (1 +4/ 11_93;> .
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Generating function of the sequence
1, 2, 14, 106, 838, 6802, 56190, 470010, ...
is

Diag(P) = [xo] P(.x,t/.x) = % %P(x, t/x) d%, Where F = m.

By creative telescoping, Diag(F) satisfies the differential equation

> Fi=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> Zeilberger (G, t, x, Dt)[1];

912 — 10t +1)9? + (18t — 14)9;
t

1 1t
Answer: Generating series of diagonal Rook paths is 5 <1 +4/ 1—9t> .
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

e @
1-u2 1—c2u?
1-u (1- Zzl)lv2 * p

Principle: Find algorithmically %
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Creative Tele

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

4 1 - ezu2 dudo .
du = P
o \M

Principle: Find algorithmically "

((e — 2+ (1—¢*)o, + 8) ‘ (ﬁ) -

(1-u?)v?
3 _e(—l—u+u2+u3)vz(—3+2u+v2+u2(—2+332—02))
" (140?412 (2—0?) )2

—1+o4u2(e2—o?))’

T 11
> Conclusion: p(e) = 5 -2P1< % 2

2\ _op T2 _3Ta_
e)—27'r 26 32e

58 / 60

B Y .1 cxperiental mathemmaticsfo combinatoricsand mumber theory



Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1-— ezu2 _4 dudo .
1— u2 - 4 1-eu? e
o \w

A
B

Principle: Find algorithmically e

((e—e3)a§+(1—e2)ae+e)- (1_+) =

(1-u?)v?
5 _e(—l—u+u2+u3)vz(—3+2u+v2+u2(—2+3ez—02))
" (— 1402+ u2(e2—02))?

Lo, (26(71+e Yu(1+1 )v23>

(—1+02+u?(e2—0?))

> Drawback: Size(certificate) > Size(telescoper).
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4G Creative Telescop

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e,x) a rational function in e and x = x1, ..., xy.
Output: A linear ODE T/(e,d.)y = 0 satisfied by y(e) = {f R(e, x)dx.

®
© Complexity: O(D¥+2), where D = degR.
®

Output size: T has order < D" in 9, and degree < D¥*? inee.

> Avoids the (costly) computation of certificates, of size Q(D”z/ 2).
> Previous algorithms: complexity (at least) doubly exponential in 7.

> Very efficient in practice.
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Exercises

@ Explain why ), F,t" is rational, where F,,1» = F, 11 +F,, Fo =0, F = 1.
Find a general statement.

2n
@ Show that the series Z ( ) and Z ( >t” are both algebraic.
—\ n
@ Prove that the series
T—dt=1-2t—212—413 —10t* — 281 —
© V1-9t=1-3t—-91> 451 —270t* —1782¢° —
have only integer coefficients. Try to generalize.
@ Prove that tan(t) = t + 35 + &5 + /517 + 5835t” + - - - is not D-finite.

® Let M, ; be the number of {(1,1), (1, —1) }-walks in N? of length 7 that
start at (0,0) and end at vertical altitude k. Let M(x,y) = ZMn ex"yk.

(@) Show that (y — x(1+ 1)) - M(x,y) =y — x - M(x,0)
V1—4x?42xy—1
(b) Deduce that M(x,y) = 2y >0+ 7))
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