Efficient experimental mathematics for combinatorics and number theory

Alin Bostan

Vienna Summer School of Mathematics

Weissensee, Austria September 23–27, 2019

Overview

Lecture 1: Context, Motivation, Examples Lecture 2: Exp. Math. for Combinatorics Lecture 3: Inside the Exp. Math. Toolbox

BASIC TOOLS

Fast elementary operations

Complexity yardsticks

```
\mathsf{M}(n) = \mathsf{complexity} \ \mathsf{of} \ \mathsf{multiplication} \ \mathsf{in} \ \mathbb{K}[x]_{< n}, \ \mathsf{and} \ \mathsf{of} \ n\text{-bit integers} = O(n^2) \ \mathsf{by} \ \mathsf{the} \ \mathsf{naive} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{Karatsuba}'\mathsf{s} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{Karatsuba}'\mathsf{s} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{Toom-Cook} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{Toom-Cook} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{Sch\"{o}nhage-Strassen} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{naive} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{naive} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \ \mathsf{the} \ \mathsf{coppersmith-Winograd} \ \mathsf{algorithm} = O(n^{1.58}) \ \mathsf{by} \
```

Fast polynomial multiplication in practice

Practical complexity of multiplication in $\mathbb{F}_p[x]$, for $p = 29 \times 2^{57} + 1$.

What can be computed in 1 second (in maple, on a laptop)

- Integer numbers:
 - product of two integers with 30 000 000 digits
 - factorial of 1300 000 (output: 7 000 000 digits)
 - factorization of an integer with 42 digits
- ② Polynomials in $\mathbb{F}_p[x]$:
 - product of two polynomials of degree 650 000
 - gcd and resultant of two polynomials of degree 12500
 - factorization of a polynomial of degree 170
- **③** Polynomials in $\mathbb{F}_p[x,y]$:
 - resultant of two polynomials of total degree 20 (output degree 400)
 - factorization of a polynomial of degree 160
- Matrices:
 - product of two 850 × 850 matrices with coefficients in \mathbb{F}_p
 - determinant of a 1400×1400 matrix with coefficients in \mathbb{F}_p
 - characteristic polynomial of a 500×500 matrix with coefficients in \mathbb{F}_p
 - determinant of a 200×200 matrix with 32-bits integer entries.

Discrete Fourier Transform [Gauss 1866, Cooley-Tukey 1965]

DFT Problem: Given $n = 2^k$, $f \in \mathbb{K}[x]_{< n}$, and $\omega \in \mathbb{K}$ a primitive n-th root of unity, compute $(f(1), f(\omega), \dots, f(\omega^{n-1}))$

Idea: Write
$$f = f_{\text{even}}(x^2) + x f_{\text{odd}}(x^2)$$
, with $\deg(f_{\text{even}}), \deg(f_{\text{odd}}) < n/2$. Then $f(\omega^j) = f_{\text{even}}(\omega^{2j}) + \omega^j f_{\text{odd}}(\omega^{2j})$, and $(\omega^{2j})_{0 \le j < n} = \frac{n}{2}$ -roots of 1.

Complexity:
$$F(n) = 2 \cdot F(n/2) + O(n) \implies F(n) = O(n \log n)$$

Inverse DFT

IDFT Problem: Given $n = 2^k$, $v_0, \ldots, v_{n-1} \in \mathbb{K}$ and $\omega \in \mathbb{K}$ a primitive n-th root of unity, compute $f \in \mathbb{K}[x]_{< n}$ such that $f(1) = v_0, \ldots, f(\omega^{n-1}) = v_{n-1}$

- $V_{\omega} \cdot V_{\omega^{-1}} = n \cdot I_n \rightarrow \text{ performing the inverse DFT in size } n \text{ amounts to:}$
 - performing a DFT at

$$\frac{1}{1}$$
, $\frac{1}{\omega}$, ..., $\frac{1}{\omega^{n-1}}$

- dividing the results by *n*.
- this new DFT is the same as before:

$$\frac{1}{\omega^i}=\omega^{n-i},$$

so the outputs are just shuffled.

Consequence: the cost of the inverse DFT is $O(n \log(n))$

FFT polynomial multiplication

Suppose the basefield K contains enough roots of unity

To multiply two polynomials f, g in $\mathbb{K}[x]$, of degrees < n:

- find $N = 2^k$ such that h = fg has degree less than N
- $N \le 4n$ $O(N\log(N))$

• compute $\mathsf{DFT}(f,N)$ and $\mathsf{DFT}(g,N)$

O(N)

ullet multiply pointwise these values to get $\mathsf{DFT}(h,N)$

 $O(N\log(N))$

- recover h by inverse DFT
- Complexity: $O(N \log(N)) = O(n \log(n))$
- ▷ General case: Create artificial roots of unity $O(n \log(n) \log \log n) = \tilde{O}(n)$
- \triangleright Similarly for integers: *N*-bit integers can be multiplied in $\tilde{O}(N)$ bit ops.

TOOLS FOR GENERATING DATA Binary splitting

Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$

Naive iterative way: unbalanced multiplicands

 $\tilde{O}(N^2)$

 Binary Splitting: balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

$$N! = \underbrace{(1 \times \dots \times \lfloor N/2 \rfloor)}_{\text{size } \frac{1}{2} N \log N} \times \underbrace{((\lfloor N/2 \rfloor + 1) \times \dots \times N)}_{\text{size } \frac{1}{2} N \log N}$$

and recurse. Complexity $\tilde{O}(N)$.

• Extends to matrix factorials $A(N)A(N-1)\cdots A(1)$ $\tilde{O}(N)$ \longrightarrow recurrences of arbitrary order.

Application to recurrences

Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \qquad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence

 $\tilde{O}(N^2)$ bit ops.

Binary splitting: $U_n = (u_n, \dots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & & & \\ & \ddots & & \\ -p_0(n) & -p_1(n) & \dots & -p_{r-1}(n) \end{bmatrix}.$$

 $\Longrightarrow u_N$ reads off the matrix factorial $A(N-1)\cdots A(0)$

[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy

 $\tilde{O}(N)$ bit ops.

Application: fast computation of $e = \exp(1)$ [Brent 1976]

$$e_n = \sum_{k=0}^n \frac{1}{k!} \longrightarrow \exp(1) = 2.7182818284590452...$$

Recurrence
$$e_n - e_{n-1} = 1/n! \iff n(e_n - e_{n-1}) = e_{n-1} - e_{n-2}$$
 rewrites

$$\begin{bmatrix} e_{N-1} \\ e_N \end{bmatrix} = \frac{1}{N} \underbrace{\begin{bmatrix} 0 & N \\ -1 & N+1 \end{bmatrix}}_{C(N)} \underbrace{\begin{bmatrix} e_{N-2} \\ e_{N-1} \end{bmatrix}} = \frac{1}{N!} C(N) C(N-1) \cdots C(1) \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- $\triangleright e_N$ in $\tilde{O}(N)$ bit operations [Brent 1976]
- ightharpoonup generalizes to the evaluation of any D-finite series at an algebraic number [Chudnovsky-Chudnovsky 1987] $\tilde{O}(N)$ bit ops.

Implementation in gfun [Mezzarobba, S. 2010]

```
> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));
```

```
pro := proc(n::nonnegint)
local i1, loc0, loc1, loc2, tmp2, tmp1, i2;
 if n \le 22 then
   loc0 := 1; loc1 := 2;
   if n = 0 then return loc0
      else for i1 to n - 1 do
         loc2 := (-loc0 + loc1 + loc1*(i1 + 1))/(i1 + 1);
        loc0 := loc1: loc1 := loc2
      end do
    end if; loc1
 else
  tmp1 := 'gfun/rectoproc/binsplit'([
    'ndmatrix' (Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, 0, n,
    matrix ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...]],
     datatype = anything, storage = empty, shape = [identity]), 1)),
     expected_entry_size], Vector(2, [...], datatype = anything));
 tmp1 := subs({e(0) = 1, e(1) = 2}, tmp1); tmp1
 end if
end proc
```

```
> tt:=time(): x:=pro(210000): time()-tt;
> tt:=time(): y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000);
```

Application: record computation of π

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

$$\frac{1}{\pi} = \frac{1}{53360\sqrt{640320}} \sum_{n \geq 0} \frac{(-1)^n (6n)! (13591409 + 545140134n)}{n!^3 (3n)! (8 \cdot 100100025 \cdot 327843840)^n}.$$

ightharpoonup Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits per iteration \longrightarrow 4 billion digits [Chudnovsky-Chudnovsky 1994]

▶ Current record: 31.4 trillion digits [Iwao 2019]

TOOLS FOR GENERATING DATA

2. Newton iteration

Newton's tangent method: real case [Newton, 1671]

$$x_{\kappa+1} = \mathcal{N}(x_{\kappa}) = x_{\kappa} - (x_{\kappa}^2 - 2)/(2x_{\kappa}), \quad x_0 = 1$$

 $x_3 = 1.4142156862745098039215686274510$

 $x_4 = 1.4142135623746899106262955788901$

 $x_5 = 1.4142135623730950488016896235025$

Newton's tangent method: power series case

In order to solve $\varphi(x,g) = 0$ in $\mathbb{K}[[x]]$ iterate

$$g_{\kappa+1} = g_{\kappa} - \frac{\varphi(g_{\kappa})}{\varphi_{y}(g_{\kappa})} \mod x^{2^{\kappa+1}}$$

- ▶ The number of correct coefficients doubles after each iteration
- ightharpoonup Total cost = 2 \times (the cost of the last iteration)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975] Division, logarithm and exponential of power series in $\mathbb{K}[[x]]$ can be computed at precision N using $\tilde{O}(N)$ operations in \mathbb{K}

TOOLS FOR CONJECTURES Hermite-Padé approximants

Definition

Definition: Given a column vector $\mathbf{F} = (f_1, \dots, f_n)^T \in \mathbb{K}[[x]]^n$ and an n-tuple $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb{N}^n$, a Hermite-Padé approximant of type \mathbf{d} for \mathbf{F} is a row vector $\mathbf{P} = (P_1, \dots, P_n) \in \mathbb{K}[x]^n$, ($\mathbf{P} \neq 0$), such that:

- (1) $\mathbf{P} \cdot \mathbf{F} = P_1 f_1 + \dots + P_n f_n = O(x^{\sigma})$ with $\sigma = \sum_i (d_i + 1) 1$,
- (2) $\deg(P_i) \leq d_i$ for all i.

 σ is called the order of the approximant **P**.

- ▶ Very useful concept in number theory (irrationality/transcendence):
 - [Hermite, 1873]: *e* is transcendent.
 - [Lindemann, 1882]: π is transcendent; so does e^{α} for any $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$.
 - **●** [Apéry, 1978; Beukers, 1981]: $\zeta(3) = \sum_{n\geq 1} \frac{1}{n^3}$ is irrational.
 - [Rivoal, 2000]: there exist infinite values of k such that $\zeta(2k+1) \notin \mathbb{Q}$.

Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for $(1,C,C^2)$, where $C(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + O(x^6)$.

This boils down to finding α_0 , α_1 , β_0 , β_1 , γ_0 , γ_1 (not all zero) such that

$$\alpha_0 + \alpha_1 x + (\beta_0 + \beta_1 x)(1 + x + 2x^2 + 5x^3 + 14x^4) + (\gamma_0 + \gamma_1 x)(1 + 2x + 5x^2 + 14x^3 + 42x^4) = O(x^5)$$

Identifying coefficients, this is equivalent to a homogeneous linear system:

$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{2} & \mathbf{1} & \mathbf{5} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{5} & \mathbf{2} & \mathbf{14} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{14} & \mathbf{5} & \mathbf{42} & \mathbf{14} \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_1 \end{bmatrix} = \mathbf{0} \Longleftrightarrow \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{2} & \mathbf{1} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{5} & \mathbf{2} & \mathbf{14} \\ \mathbf{0} & \mathbf{0} & \mathbf{14} & \mathbf{5} & \mathbf{42} \end{bmatrix} \times \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \beta_0 \\ \beta_1 \\ \gamma_0 \end{bmatrix} = -\gamma_1 \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{5} \\ \mathbf{14} \end{bmatrix}.$$

By homogeneity, one can choose $\gamma_1 = 1$.

Then, the violet minor shows that one can take $(\beta_0, \beta_1, \gamma_0) = (-1, 0, 0)$. The other values are $\alpha_0 = 1$, $\alpha_1 = 0$.

Thus the approximant is (1, -1, x), which corresponds to $P = 1 - y + xy^2$ such that $P(x, C(x)) = 0 \mod x^5$.

Algebraic and differential approximation = guessing

- Hermite-Padé approximants of n = 2 power series are related to Padé approximants, i.e. to approximation of series by rational functions
- algebraic approximants = Hermite-Padé approximants for $f_\ell = A^{\ell-1}$, where $A \in \mathbb{K}[[x]]$ seriestoalgeq, listtoalgeq
- differential approximants = Hermite-Padé approximants for $f_\ell = A^{(\ell-1)}$, where $A \in \mathbb{K}[[x]]$ seriestodiffeq, listtodiffeq

$$>$$
 listtoalgeq([1,1,2,5,14,42,132,429],y(x));

$$1 - y(x) + xy(x)^2$$

> listtodiffeq([1,1,2,5,14,42,132,429],y(x))[1];

$$\left\{-2y(x) + (2-4x)\frac{d}{dx}y(x) + x\frac{d^2}{dx^2}y(x), y(0) = 1, D(y)(0) = 1\right\}$$

Existence and naive computation

Theorem For any vector $\mathbf{F} = (f_1, ..., f_n)^T \in \mathbb{K}[[x]]^n$ and for any n-tuple $\mathbf{d} = (d_1, ..., d_n) \in \mathbb{N}^n$, there exists a Hermite-Padé approx. of type \mathbf{d} for \mathbf{F} .

Proof: The undetermined coefficients of $P_i = \sum_{j=0}^{d_i} p_{i,j} x^j$ satisfy a linear homogeneous system with $\sigma = \sum_i (d_i + 1) - 1$ eqs and $\sigma + 1$ unknowns.

Corollary Computation in $O(\sigma^{\omega})$, for $2 \le \omega \le 3$ (linear algebra exponent)

- ▶ There are better algorithms (the linear system is structured, Sylvester-like):
 - Derksen's algorithm (Euclidean-like elimination)

$$O(\sigma^2)$$

Beckermann-Labahn algorithm (DAC)

$$\tilde{O}(\sigma) = O(\sigma \log^2 \sigma)$$

ullet structured linear algebra algorithms for Toeplitz-like matrices $ilde{O}(\sigma)$

Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé approximant of type (d, \ldots, d) for $\mathbf{F} = (f_1, \ldots, f_n)$ in $\tilde{O}(n^\omega d)$ ops. in \mathbb{K} .

Ideas:

- Compute a whole matrix of approximants
- Exploit divide-and-conquer

Algorithm:

- ① If $\sigma = n(d+1) 1 \le$ threshold, call the naive algorithm
- 2 Else:
 - ① recursively compute $\mathbf{P}_1 \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_1 \cdot \mathbf{F} = O(x^{\sigma/2})$, $\deg(\mathbf{P}_1) \approx \frac{d}{2}$
 - **2** compute "residue" **R** such that $\mathbf{P}_1 \cdot \mathbf{F} = x^{\sigma/2} \cdot (\mathbf{R} + O(x^{\sigma/2}))$
 - **3** recursively compute $\mathbf{P}_2 \in \mathbb{K}[x]^{n \times n}$ s.t. $\mathbf{P}_2 \cdot \mathbf{R} = O(x^{\sigma/2})$, $\deg(\mathbf{P}_2) \approx \frac{d}{2}$
- ▶ The precise choices of degrees is a delicate issue
- ightharpoonup Corollary: Gcd, extended gcd, Padé approximants in $\tilde{O}(d)$ ops. in \mathbb{K} .

An (innocent looking) combinatorial question

- Let $\mathscr{S} = \{\uparrow, \leftarrow, \searrow\}$. An \mathscr{S} -walk is a path in \mathbb{Z}^2 using only steps from \mathscr{S} . Show that, for any integer n, the following quantities are equal:
- (*i*) number a_n of n-steps \mathscr{S} -walks confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and finish at the origin (0,0) (*excursions*);
- (ii) number b_n of n-steps \mathscr{S} -walks confined to the quarter plane \mathbb{N}^2 that start at the origin (0,0) and finish on the diagonal of \mathbb{N}^2 (diagonal walks).

An (innocent looking) combinatorial question

Let $\mathscr{S} = \{\uparrow, \leftarrow, \searrow\}$. An \mathscr{S} -walk is a path in \mathbb{Z}^2 using only steps from \mathscr{S} . Show that, for any integer n, the following quantities are equal:

(*i*) number a_n of n-steps \mathscr{S} -walks confined to the upper half plane $\mathbb{Z} \times \mathbb{N}$ that start and finish at the origin (0,0) (*excursions*);

(ii) number b_n of n-steps \mathscr{S} -walks confined to the quarter plane \mathbb{N}^2 that start at the origin (0,0) and finish on the diagonal of \mathbb{N}^2 (diagonal walks).

For instance, for n = 3, this common value is $a_3 = b_3 = 3$:

A recurrence relation for $\{\uparrow, \leftarrow, \searrow\}$ -walks in $\mathbb{Z} \times \mathbb{N}$

h(n;i,j) = nb. of $\{\uparrow,\leftarrow,\searrow\}$ -walks in $\mathbb{Z}\times\mathbb{N}$ of length n from (0,0) to (i,j) The numbers h(n;i,j) satisfy

$$h(n;i,j) = \begin{cases} 0 & \text{if } j < 0 \text{ or } n < 0, \\ \mathbb{1}_{i=j=0} & \text{if } n = 0, \\ \sum_{(i',j') \in \mathscr{S}} h(n-1;i-i',j-j') & \text{otherwise.} \end{cases}$$

```
> h:=proc(n,i,j)
  option remember;
   if j<0 or n<0 then 0
    elif n=0 then if i=0 and j=0 then 1 else 0 fi
    else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi
end:</pre>
```

> A:=series(add(h(n,0,0)*t^n, n=0..12), t,12);

$$A = 1 + 3t^3 + 30t^6 + 420t^9 + O(t^{12})$$

A recurrence relation for $\{\uparrow, \leftarrow, \searrow\}$ -walks in \mathbb{N}^2

q(n;i,j) = nb. of $\{\uparrow,\leftarrow,\searrow\}$ -walks in \mathbb{N}^2 of length n from (0,0) to (i,j) The numbers q(n;i,j) satisfy

$$q(n;i,j) = \left\{ \begin{array}{ll} 0 & \text{if } i < 0 \text{ or } j < 0 \text{ or } n < 0, \\ \mathbb{1}_{i=j=0} & \text{if } n = 0, \\ \sum\limits_{(i',j') \in \mathcal{S}} q(n-1;i-i',j-j') & \text{otherwise.} \end{array} \right.$$

```
> q:=proc(n,i,j)
  option remember;
   if i<0 or j<0 or n<0 then 0
    elif n=0 then if i=0 and j=0 then 1 else 0 fi
    else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi
end:</pre>
```

> B:=series(add(add(q(n,k,k), k=0..n)*t^n, n=0..12), t,12);

$$B = 1 + 3t^3 + 30t^6 + 420t^9 + O(t^{12})$$

Guessing the answer

> A:=series(add(h(n,0,0)*t^n, n=0..30), t, 25):
> recA:=seriestorec(A, a(n))[1];

$$(n+6)(n+3)u(n+3) - 27(n+2)(n+1)u(n) = 0$$

$$_{2}F_{1}\left(\begin{array}{c|c} 1/3 & 2/3 \\ 2 & \end{array} \middle| 27t^{3}\right)$$

Guessing the answer

- > A:=series(add(h(n,0,0)*t^n, n=0..30), t, 25):
- > recA:=seriestorec(A, a(n))[1];

$$(n+6)(n+3)u(n+3) - 27(n+2)(n+1)u(n) = 0$$

- > an:=rsolve(recA, a(n)):

$$_{2}F_{1}\left(\begin{array}{c|c} 1/3 & 2/3 \\ 2 & 2 \end{array} \middle| 27t^{3}\right)$$

$$A(t) = B(t) = {}_{2}F_{1}\left(\frac{1/3}{2}, \frac{2/3}{2} \right) = \sum_{n=0}^{\infty} \frac{(3n)!}{n!^{3}} \frac{t^{3n}}{n+1}.$$

Guessing the answer

- > A:=series(add(h(n,0,0)*t^n, n=0..30), t, 25):
 > recA:=seriestorec(A, a(n))[1];

$$(n+6)(n+3)u(n+3) - 27(n+2)(n+1)u(n) = 0$$

- > an:=rsolve(recA, a(n)):
- $> sum(subs(n=3*n, op(2,an))*t^(3*n), n=0..infinity)$ assuming t>0 and t<1/9;

$$_{2}F_{1}\left(\begin{array}{c|c} 1/3 & 2/3 \\ 2 & 2 \end{array} \middle| 27t^{3}\right)$$

▶ Thus, differential guessing predicts

$$A(t) = B(t) = {}_{2}F_{1}\left(\frac{1/3}{2}, \frac{2/3}{2} \right) = \sum_{n=0}^{\infty} \frac{(3n)!}{n!^{3}} \frac{t^{3n}}{n+1}.$$

▶ This can be algorithmically proved using creative telescoping

Example: Flea from SIAM 100-Digit Challenge


```
> proba:=proc(i,j,n,c)
option remember;
  if abs(i)+abs(j)>n then 0 elif n=0 then 1 else
       expand(proba(i-1,j,n-1,c)*(1/4+c)+proba(i+1,j,n-1,c)*(1/4-c)
       +proba(i,j+1,n-1,c)*1/4+proba(i,j-1,n-1,c)*1/4)
  fi
end:
> seq(proba(0,0,k,c),k=0..6);
```

$$1,0,\frac{1}{4}-2c^2,0,\frac{9}{64}-\frac{9}{4}c^2+6c^4,0,\frac{25}{256}-\frac{75}{32}c^2+15c^4-20c^6$$

> gfun:-listtodiffeq([seq(proba(0,0,2*k,c),k=0..20)],y(x));

$$\begin{split} \left(-1+8\,c^{2}+48\,xc^{4}\right)y\left(x\right)+\left(4-8\,x+64\,xc^{2}+192\,x^{2}c^{4}\right)\frac{d}{dx}y\left(x\right) \\ +\left(4\,x+64\,x^{3}c^{4}-4\,x^{2}+32\,x^{2}c^{2}\right)\frac{d^{2}}{dx^{2}}y\left(x\right),\,y\left(0\right)=1,D\left(y\right)\left(0\right)=1/4-2\,c^{2}\right\} \end{split}$$

Example: guessing equations for $F_{\mathcal{S}}(t; x, 0)$ and $F_{\mathcal{S}}(t; 0, y)$

Task 1: Given the first N terms of $S = F_{\mathscr{S}}(t; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N:

$$c_r(x,t) \cdot \frac{\partial^r S}{\partial t^r} + \dots + c_1(x,t) \cdot \frac{\partial S}{\partial t} + c_0(x,t) \cdot S = 0 \mod t^N.$$

Example: guessing equations for $F_{\mathscr{S}}(t; x, 0)$ and $F_{\mathscr{S}}(t; 0, y)$

Task 1: Given the first N terms of $S = F_{\mathscr{S}}(t; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N:

$$c_r(x,t) \cdot \frac{\partial^r S}{\partial t^r} + \dots + c_1(x,t) \cdot \frac{\partial S}{\partial t} + c_0(x,t) \cdot S = 0 \mod t^N.$$

Task 2: Search for an algebraic equation $\mathcal{P}_{x,0}(S) = 0 \mod t^N$.

Example: guessing equations for $F_{\mathscr{S}}(t; x, 0)$ and $F_{\mathscr{S}}(t; 0, y)$

Task 1: Given the first N terms of $S = F_{\mathscr{S}}(t; x, 0) \in \mathbb{Q}[x][[t]]$, search for a differential equation satisfied by S at precision N:

$$c_r(x,t) \cdot \frac{\partial^r S}{\partial t^r} + \dots + c_1(x,t) \cdot \frac{\partial S}{\partial t} + c_0(x,t) \cdot S = 0 \bmod t^N.$$

Task 2: Search for an algebraic equation $\mathcal{P}_{x,0}(S) = 0 \mod t^N$.

- Both tasks amount to linear algebra in size N over $\mathbb{Q}(x)$.
- In practice: use many modular Hermite-Padé approximations (via the Beckermann-Labahn algorithm) combined with (rational) evaluation-interpolation and rational number reconstruction.
- Fast (FFT-based) arithmetic in $\mathbb{F}_p[t]$ and $\mathbb{F}_p[t]\langle \frac{t}{\partial t} \rangle$.

Example: guessing equations for Kreweras' K(t; x, 0)

Using N = 80 terms of K(t; x, 0), one can guess

 \triangleright a linear differential equation of order 4, degrees (14, 11) in (t, x), such that

$$\begin{split} t^3 \cdot (3t-1) \cdot (9t^2 + 3t + 1) \cdot (3t^2 + 24t^2x^3 - 3xt - 2x^2) \cdot \\ \cdot (16t^2x^5 + 4x^4 - 72t^4x^3 - 18x^3t + 5t^2x^2 + 18xt^3 - 9t^4) \cdot \\ \cdot (4t^2x^3 - t^2 + 2xt - x^2) \cdot \frac{\partial^4 K(t; x, 0)}{\partial t^4} + \cdots \\ &= 0 \bmod t^{80} \end{split}$$

 \triangleright a polynomial of tridegree (6, 10, 6) in (T, t, x)

$$\mathcal{P}_{x,0} = x^6 t^{10} T^6 - 3x^4 t^8 (x - 2t) T^5 +$$

$$+ x^2 t^6 \left(12t^2 + 3t^2 x^3 - 12xt + \frac{7}{2}x^2 \right) T^4 + \cdots$$

such that $\mathcal{P}_{x,0}(K(t;x,0),t,x) = 0 \mod t^{80}$.

Example: guessing equations for Gessel's G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), one can guess candidates

- $\mathcal{P}_{x,0}$ in $\mathbb{Z}[T,t,x]$ of degree (24,43,32), coefficients of 21 digits
- $\mathcal{P}_{0,y}$ in $\mathbb{Z}[T,t,y]$ of degree (24,44,40), coefficients of 23 digits

such that

$$\mathcal{P}_{x,0}(G(t;x,0),t,x) = 0 \mod t^{1200}, \quad \mathcal{P}_{0,y}(G(t;0,y),t,y) = 0 \mod t^{1200}.$$

Example: guessing equations for Gessel's G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), one can guess candidates

- $\mathcal{P}_{x,0}$ in $\mathbb{Z}[T,t,x]$ of degree (24, 43, 32), coefficients of 21 digits
- $\mathcal{P}_{0,y}$ in $\mathbb{Z}[T,t,y]$ of degree (24, 44, 40), coefficients of 23 digits

such that

$$\mathcal{P}_{x,0}(G(t;x,0),t,x) = 0 \mod t^{1200}, \quad \mathcal{P}_{0,y}(G(t;0,y),t,y) = 0 \mod t^{1200}.$$

▷ Guessing $\mathcal{P}_{x,0}$ by undetermined coefficients would have required to solve a dense linear system of size $\approx 100\,000$, and ≈ 1000 digits entries!

Example: guessing equations for Gessel's G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), one can guess candidates

- $\mathcal{P}_{x,0}$ in $\mathbb{Z}[T,t,x]$ of degree (24, 43, 32), coefficients of 21 digits
- $\mathcal{P}_{0,y}$ in $\mathbb{Z}[T,t,y]$ of degree (24,44,40), coefficients of 23 digits

such that

$$\mathcal{P}_{x,0}(G(t;x,0),t,x) = 0 \mod t^{1200}, \quad \mathcal{P}_{0,y}(G(t;0,y),t,y) = 0 \mod t^{1200}.$$

▷ Guessing $\mathcal{P}_{x,0}$ by undetermined coefficients would have required to solve a dense linear system of size $\approx 100\,000$, and ≈ 1000 digits entries!

▶ [B., Kauers '09] actually first guessed differential equations[†], then computed their p-curvatures to empirically certify them. This led them suspect the algebraicity of G(t;x,0) and G(t;0,y), using a conjecture of Grothendieck's (on differential equations modulo p) as an oracle.

[†] of order 11, and bidegree (96,78) for G(t; x, 0), and (68,28) for G(t; 0, y)

Guessing is good, proving is better [Pólya, 1957]

Guessing and Proving

George Pólya

Guessing is good, proving is better.

TOOLS FOR PROOFS

Resultants

Definition

The Sylvester matrix of $A = a_m x^m + \cdots + a_0 \in \mathbb{K}[x]$, $(a_m \neq 0)$, and of $B = b_n x^n + \cdots + b_0 \in \mathbb{K}[x]$, $(b_n \neq 0)$, is the square matrix of size m + n

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

▶ Definition extends to polynomials over a commutative ring R.

Basic observation

If
$$A = a_m x^m + \dots + a_0$$
 and $B = b_n x^n + \dots + b_0$, then

$$\begin{bmatrix} a_{m} & a_{m-1} & \dots & a_{0} \\ & \ddots & \ddots & & \ddots \\ & & a_{m} & a_{m-1} & \dots & a_{0} \\ b_{n} & b_{n-1} & \dots & b_{0} & & \\ & \ddots & \ddots & & \ddots & \\ & & b_{n} & b_{n-1} & \dots & b_{0} \end{bmatrix} \times \begin{bmatrix} \alpha^{m+n-1} \\ \vdots \\ \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^{n-1}A(\alpha) \\ \vdots \\ A(\alpha) \\ \alpha^{m-1}B(\alpha) \\ \vdots \\ B(\alpha) \end{bmatrix}$$

Corollary: If $A(\alpha) = B(\alpha) = 0$, then Res (A, B) = 0.

Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A'. E.g. for $A = ax^2 + bx + c$,

$$\mathsf{Disc}(A) = \mathsf{Res}\,(A,A') = \det \left[\begin{array}{ccc} a & b & c \\ 2a & b \\ & 2a & b \end{array} \right] = -a(b^2 - 4ac).$$

E.g. for $A = ax^{3} + bx + c$,

$$\mathsf{Disc}(A) = \mathsf{Res}\,(A,A') = \det \left[\begin{array}{cccc} a & 0 & b & c \\ & a & 0 & b & c \\ 3a & 0 & b & & \\ & 3a & 0 & b & \\ & & 3a & 0 & b \end{array} \right] = a^2(4b^3 + 27ac^2).$$

 \triangleright The discriminant vanishes when A and A' have a common root, that is when A has a multiple root.

Main properties

- Link with gcd Res(A, B) = 0 if and only if gcd(A, B) is non-constant.
- Elimination property

There exist $U, V \in \mathbb{K}[x]$ not both zero, with $\deg(U) < n$, $\deg(V) < m$ and such that the following Bézout identity holds:

$$Res(A, B) = UA + VB$$
 in $\mathbb{K} \cap (A, B)$.

Poisson formula

If
$$A = a(x - \alpha_1) \cdots (x - \alpha_m)$$
 and $B = b(x - \beta_1) \cdots (x - \beta_n)$, then
$$\operatorname{Res}(A, B) = a^n b^m \prod_{i,j} (\alpha_i - \beta_j) = a^n \prod_{1 \le i \le m} B(\alpha_i).$$

Application: computation with algebraic numbers

Let
$$A=\prod_i(x-\alpha_i)$$
 and $B=\prod_j(x-\beta_j)$ be polynomials of $\mathbb{K}[x]$. Then
$$\operatorname{Res}_x(A(x),B(t-x))=\prod_{i,j}(t-(\alpha_i+\beta_j)),$$

$$\operatorname{Res}_x(A(x),B(t+x))=\prod_{i,j}(t-(\beta_j-\alpha_i)),$$

$$\operatorname{Res}_x(A(x),x^{\deg B}B(t/x))=\prod_{i,j}(t-\alpha_i\beta_j),$$

$$\operatorname{Res}_x(A(x),t-B(x))=\prod_i(t-B(\alpha_i)).$$

In particular, the set of algebraic numbers is a field.

Proof: Poisson's formula. E.g., first one:
$$\prod_i B(t - \alpha_i) = \prod_{i,j} (t - \alpha_i - \beta_j).$$

▶ The same formulas apply mutatis mutandis to algebraic power series.

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

$$\triangleright$$
 If $a = \pi/7$ and $x = e^{ia}$, then $x^7 = -1$ and $\cos(ka) = \frac{x^k + x^{-k}}{2}$

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

- \triangleright If $a = \pi/7$ and $x = e^{ia}$, then $x^7 = -1$ and $\cos(ka) = \frac{x^k + x^{-k}}{2}$
- ▷ Since $x \in \overline{\mathbb{Q}}$, any polynomial expression in the $\cos(ka)$ is in $\mathbb{Q}(x)$, thus in $\overline{\mathbb{Q}}$

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

- \triangleright If $a = \pi/7$ and $x = e^{ia}$, then $x^7 = -1$ and $\cos(ka) = \frac{x^k + x^{-k}}{2}$
- ▷ Since $x \in \overline{\mathbb{Q}}$, any polynomial expression in the $\cos(ka)$ is in $\mathbb{Q}(x)$, thus in $\overline{\mathbb{Q}}$
- ▷ In particular $v = F(x) = \frac{N(x)}{D(x)}$ is an algebraic number
 - > f:=sin(2*a)/sin(3*a)^2-sin(a)/sin(2*a)^2+sin(3*a)/sin(a)^2:
 > expand(convert(f,exp)):
 > F:=normal(subs(exp(I*a)=x,%)):
 - $\frac{2 i \left(x^{16}+5 x^{14}+12 x^{12}+x^{11}+20 x^{10}+3 x^{9}+23 x^{8}+3 x^{7}+20 x^{6}+x^{5}+12 x^{4}+5 x^{2}+1\right)}{x \left(x^{2}-1\right) \left(x^{2}+1\right)^{2} \left(x^{4}+x^{2}+1\right)^{2}}$

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

- \triangleright If $a = \pi/7$ and $x = e^{ia}$, then $x^7 = -1$ and $\cos(ka) = \frac{x^k + x^{-k}}{2}$
- ▷ Since $x \in \overline{\mathbb{Q}}$, any polynomial expression in the $\cos(ka)$ is in $\mathbb{Q}(x)$, thus in $\overline{\mathbb{Q}}$
- ▷ In particular $v = F(x) = \frac{N(x)}{D(x)}$ is an algebraic number

```
> f:=sin(2*a)/sin(3*a)^2-sin(a)/sin(2*a)^2+sin(3*a)/sin(a)^2:
> expand(convert(f,exp)):
> F:=normal(subs(exp(I*a)=x,%)):
```

$$\frac{2 i \left(x^{16}+5 x^{14}+12 x^{12}+x^{11}+20 x^{10}+3 x^{9}+23 x^{8}+3 x^{7}+20 x^{6}+x^{5}+12 x^{4}+5 x^{2}+1\right)}{x \left(x^{2}-1\right) \left(x^{2}+1\right)^{2} \left(x^{4}+x^{2}+1\right)^{2}}$$

▷ Get polynomial in $\mathbb{Q}[t]$ with root v: resultant $\operatorname{Res}_x(x^7 + 1, t \cdot D(x) - N(x))$

$$-1274 i \left(t^2-28\right)^3$$

TOOLS FOR PROOFS

D-Finiteness

D-finite Series & Sequences

Definition: A power series $f(x) \in \mathbb{K}[[x]]$ is D-finite over \mathbb{K} if its derivatives generate a finite-dimensional vector space over $\mathbb{K}(x)$.

Definition: A sequence u_n is **D-finite** (or **P-recursive**) over \mathbb{K} if its shifts (u_n, u_{n+1}, \dots) generate a finite-dimensional vector space over $\mathbb{K}(n)$.

$$p_r(n)u_{n+r} + p_{r-1}(n)u_{n+r-1} + \cdots + p_0(n)u_n = 0, \qquad n \ge 0.$$

equation + init conditions = data structure

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun

Examples: exp, log, sin, cos, sinh, cosh, arccos, arccosh, arcsin, arcsinh, arctan, arctanh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, $_pF_q$ (includes Bessel J, Y, I and K, Airy Ai and Bi and polylogarithms), Struve, Weber and Anger functions, the large class of algebraic functions,...

Link D-finite \leftrightarrow P-recursive

Theorem: A power series $f \in \mathbb{K}[[x]]$ is D-finite if and only if the sequence f_n of its coefficients is P-recursive

Proof (idea): $x\partial \leftrightarrow n$ and $x^{-1} \leftrightarrow S_n$ give a ring isomorphism between

$$\mathbb{K}[x, x^{-1}, \partial]$$
 and $\mathbb{K}[S_n, S_n^{-1}, n]$.

Snobbish way of saying that the equality $f = \sum_{n \geq 0} f_n x^n$ implies

$$[x^n] x f'(x) = n f_n$$
, and $[x^n] x^{-1} f(x) = f_{n+1}$.

- ▶ Both conversions implemented in gfun: diffeqtorec and rectodiffeq
- \triangleright Differential operators of order r and degree d give rise to recurrences of order d+r and coefficients of degree r

Closure properties

Th. D-finite series in $\mathbb{K}[[x]]$ form a \mathbb{K} -algebra closed by Hadamard product. P-recursive sequences over K form an algebra closed by Cauchy product.

Proof by linear algebra: If

$$a_r(x)f^{(r)}(x) + \dots + a_0(x)f(x) = 0, \quad b_s(x)g^{(s)}(x) + \dots + b_0(x)g(x) = 0, \text{ then}$$

$$f^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)}\left(f, f', \dots, f^{(r-1)}\right), \quad g^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)}\left(g, g', \dots, g^{(s-1)}\right),$$

so that
$$(f+g)^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(f, f', \dots, f^{(r-1)}, g, g', \dots, g^{(s-1)} \right)$$
, and $(fg)^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(f^{(i)}g^{(j)}, i < r, j < s \right)$.

and
$$(fg)^{(i)} \in \text{Vect}_{\mathbb{K}(x)} \left(f^{(i)} g^{(j)}, i < r, j < s \right).$$

So, f + g satisfies LDE of order $\leq (r + s)$ and fg satisfies LDE of order $\leq (rs)$.

Corollary: D-finite series can be multiplied mod x^N in linear time O(N).

▶ Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct, rec+rec, rec*rec, cauchyproduct

Proof of Identities

```
> series(sin(x)^2+cos(x)^2,x,4);
```

$$1 + O(x^4)$$

This proves $\sin(x)^2 + \cos(x)^2 = 1$. Why?

- (1) \sin and \cos satisfy a 2nd order LDE: y'' + y = 0;
- (2) their squares (and their sum) satisfy a 3rd order LDE;
- (3) the constant 1 satisfies a 1st order LDE: y' = 0;
- (4) $\implies \sin^2 + \cos^2 1$ satisfies a LDE of order at most 4;
- (5) Since it is not singular at 0, Cauchy's theorem concludes.
- \triangleright Cassini's identity (same idea): $F_n^2 F_{n+1}F_{n-1} = (-1)^{n+1}$

```
for n to 8 do
    fibonacci(n)^2-fibonacci(n+1)*fibonacci(n-1)+(-1)^n
od;
```

0,0,0,0,0,0,0,0

Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite, i.e., they satisfy linear differential equations with polynomial coefficients.

Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite, thus, their coefficients satisfy linear recurrences with polynomial coefficients.

Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Algebraic series are D-finite.

Proof: Let $f(t) \in \mathbb{Q}[[t]]$ such that P(t, f(t)) = 0, with $P \in \mathbb{Q}[t, T]$ irreducible.

Differentiate w.r.t. t:

$$P_t(t, f(t)) + f'(t)P_T(t, f(t)) = 0 \implies f' = -\frac{P_t}{P_T}(t, f(t)).$$

Extended gcd: $gcd(P, P_T) = 1 \implies UP + VP_T = 1$, for $U, V \in \mathbb{Q}(t)[T]$

$$\implies f' = -\left(P_t V \bmod P\right)(t, f) \in \operatorname{Vect}_{\mathbb{Q}(t)}\left(1, f, f^2, \dots, f^{\deg_T(P) - 1}\right).$$

By induction,
$$f^{(\ell)} \in \mathsf{Vect}_{\mathbb{Q}(f)}\left(1, f, f^2, \dots, f^{\deg_T(P)-1}\right)$$
, for all ℓ .

- ▶ Implemented, e.g., in maple's package gfun algeqtodiffeq, diffeqtorec
- \triangleright Generalization: g D-finite, f algebraic $\rightarrow g \circ f$ D-finite algebraic subs

TOOLS FOR PROOFS

Creative Telescoping

Creative Telescoping

General framework in computer algebra –initiated by Zeilberger in the '90s–for proving identities on multiple integrals and sums with parameters.

Examples I: hypergeometric summation

• $A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$ satisfies the recurrence [Apéry 1978]:

$$(n+1)^3 A_{n+1} = (34n^3 + 51n^2 + 27n + 5)A_n - n^3 A_{n-1}.$$

(Neither Cohen nor I had been able to prove this in the intervening two months [Van der Poorten 1979])

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 = \sum_{k=0}^{n} {n \choose k} {n+k \choose k} \sum_{j=0}^{k} {k \choose j}^3$$
 [Strehl 1992]

Examples I: hypergeometric summation

• $A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$ satisfies the recurrence [Apéry 1978]:

$$(n+1)^3 A_{n+1} = (34n^3 + 51n^2 + 27n + 5)A_n - n^3 A_{n-1}.$$

(The specific problem was mentioned to Don Zagier, who solved it with irritating speed [Van der Poorten 1979])

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 = \sum_{k=0}^{n} {n \choose k} {n+k \choose k} \sum_{j=0}^{k} {k \choose j}^3$$
 [Strehl 1992]

Examples II: Integrals and Diagonals

$$\int_{0}^{+\infty} x J_{1}(ax) I_{1}(ax) Y_{0}(x) K_{0}(x) dx = -\frac{\ln(1-a^{4})}{2\pi a^{2}}$$

[Glasser-Montaldi 1994];

$$\bullet \frac{1}{2\pi i} \oint \frac{(1+2xy+4y^2) \exp\left(\frac{4x^2y^2}{1+4y^2}\right)}{y^{n+1}(1+4y^2)^{\frac{3}{2}}} dy = \frac{H_n(x)}{\lfloor n/2 \rfloor!}$$
 [Doetsch 1930];

• Diag
$$\frac{1}{(1-x-y)(1-z-u)-xyzu} = \sum_{n\geq 0} A_n t^n$$
 [Straub 2014].

Summation by Creative Telescoping

$$I_n := \sum_{k=0}^n \binom{n}{k} = 2^n.$$

IF one knows Pascal's triangle:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = 2\binom{n}{k} + \binom{n}{k-1} - \binom{n}{k},$$

then summing over k gives

$$I_{n+1}=2I_n.$$

The initial condition $I_0 = 1$ concludes the proof.

Creative Telescoping for Sums

$$F_n = \sum_k u_{n,k} = ?$$

IF one knows $P(n, S_n)$ and $R(n, k, S_n, S_k)$ such that

$$(P(n,S_n) + \Delta_k R(n,k,S_n,S_k)) \cdot u_{n,k} = 0$$

(where Δ_k is the difference operator, $\Delta_k \cdot v_{n,k} = v_{n,k+1} - v_{n,k}$), then the sum "telescopes", leading to

$$P(n,S_n)\cdot F_n=0.$$

Zeilberger's Algorithm [1990]

Input: a hypergeometric term $u_{n,k}$, i.e., $\frac{u_{n+1,k}}{u_{n,k}}$ and $\frac{u_{n,k+1}}{u_{n,k}}$ are in $\mathbb{Q}(n,k)$ Output:

- a linear recurrence, called telescoper, (*P*) satisfied by $F_n = \sum_k u_{n,k}$
- a certificate (Q), such that checking the result is easy from $P(n, S_n) \cdot u_{n,k} = \Delta_k Q \cdot u_{n,k}$.

```
> T := binomial(n,k);
> Zpair:=SumTools[Hypergeometric][Zeilberger](T,n,k,Sn):
> tel:=Zpair[1];
```

$$S_n - 2$$

- ▶ This is a proof that $\sum_{k=0}^{n} {n \choose k} = 2^n$
- ▶ Can check using the certificate:

```
> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2*T) - (subs(k=k+1,cert) - cert);
> simplify(convert(%,GAMMA));
```

Alin Bostan

Example: Back to the SIAM flea

$$U_{n,k} := \binom{2n}{2k} \binom{2k}{k} \binom{2n-2k}{n-k} \left(\frac{1}{4}+c\right)^k \left(\frac{1}{4}-c\right)^k \frac{1}{4^{2n-2k}},$$

$$p_n = \sum_{k=0}^n U_{n,k} = \text{probability of return to } (0,0) \text{ at step } 2n.$$

> p:=SumTools[Hypergeometric][Zeilberger](U,n,k,Sn);

$$\left[\left(4\,n^2+16\,n+16\right)Sn^2+\left(-4\,n^2+32\,c^2n^2+96\,c^2n-12\,n+72\,c^2-9\right)Sn\right.\\ \left.+128\,c^4n+64\,c^4n^2+48\,c^4,\,...(BIG\;certificate)...\right]$$

Creative Telescoping for Integrals

$$I(t) = \oint_{\gamma} H(t, x) \, dx = ?$$

IF one knows $P(t, \partial_t)$ and $R(t, x, \partial_t, \partial_x)$ such that

$$(P(t,\partial_t)+\partial_x R(t,x,\partial_t,\partial_x))\cdot H(t,x)=0,$$

then the integral "telescopes", leading to

$$P(t, \partial_t) \cdot I(t) = 0.$$

Diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or vertically in one step. How many paths can a Rook take from the lower-left corner square to the upper-right corner square of an $N \times N$ chessboard? Assume that the Rook moves right or up at each step.

 $(r_n)_{n\geq 0}$: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

Diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or vertically in one step. How many paths can a Rook take from the lower-left corner square to the upper-right corner square of an $N \times N$ chessboard? Assume that the Rook moves right or up at each step.

$$(r_n)_{n\geq 0}$$
: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

Answer: $r_N = N$ th coefficient in the Taylor expansion of $\frac{1}{2} \left(1 + \sqrt{\frac{1-x}{1-9x}} \right)$.

Diagonal Rook paths via Creative Telescoping

Generating function of the sequence

is

Diag
$$(F) = [x^0] F(x, t/x) = \frac{1}{2\pi i} \oint F(x, t/x) \frac{dx}{x}$$
, where $F = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y}}$.

By creative telescoping, Diag(F) satisfies the differential equation

- > F:=1/(1-x/(1-x)-y/(1-y)):
- > G:=normal(1/x*subs(y=t/x,F)):
- > Zeilberger(G, t, x, Dt)[1];

$$(9t^2 - 10t + 1)\partial_t^2 + (18t - 14)\partial_t$$

Answer: Generating series of diagonal Rook paths is $\frac{1}{2}\left(1+\sqrt{\frac{1-t}{1-9t}}\right)$.

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity *e*, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \iint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity *e*, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \iint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

$$\begin{split} \left((e - e^3) \partial_e^2 + (1 - e^2) \partial_e + e \right) \cdot \left(\frac{1}{1 - \frac{1 - e^2 u^2}{(1 - u^2) v^2}} \right) &= \\ \partial_u \left(- \frac{e(-1 - u + u^2 + u^3) v^2 (-3 + 2u + v^2 + u^2 (-2 + 3e^2 - v^2))}{(-1 + v^2 + u^2 (e^2 - v^2))^2} \right) \\ &+ \partial_v \left(\frac{2e(-1 + e^2) u (1 + u^3) v^3}{(-1 + v^2 + u^2 (e^2 - v^2))^2} \right) \end{split}$$

Conclusion:
$$p(e) = \frac{\pi}{2} \cdot {}_{2}F_{1} \left(-\frac{1}{2} \cdot \frac{1}{2} \mid e^{2} \right) = 2\pi - \frac{\pi}{2}e^{2} - \frac{3\pi}{32}e^{4} - \cdots$$

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

$$p(e) = 4 \int_0^1 \sqrt{\frac{1 - e^2 u^2}{1 - u^2}} du = 4 \iint \frac{du dv}{1 - \frac{1 - e^2 u^2}{(1 - u^2)v^2}}$$

Principle: Find algorithmically

$$\begin{split} \left((e - e^3) \partial_e^2 + (1 - e^2) \partial_e + e \right) \cdot \left(\frac{1}{1 - \frac{1 - e^2 u^2}{(1 - u^2) v^2}} \right) &= \\ \partial_u \left(- \frac{e(-1 - u + u^2 + u^3) v^2 (-3 + 2u + v^2 + u^2 (-2 + 3e^2 - v^2))}{(-1 + v^2 + u^2 (e^2 - v^2))^2} \right) \\ &+ \partial_v \left(\frac{2e(-1 + e^2) u (1 + u^3) v^3}{(-1 + v^2 + u^2 (e^2 - v^2))^2} \right) \end{split}$$

▷ Drawback: Size(certificate) ≫ Size(telescoper).

4G Creative Telescoping

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

- Input: $R(e, \mathbf{x})$ a rational function in e and $\mathbf{x} = x_1, \dots, x_n$.
- Output: A linear ODE $T(e, \partial_e)y = 0$ satisfied by $y(e) = \iint R(e, \mathbf{x}) d\mathbf{x}$.
- Complexity: $\mathcal{O}(D^{8n+2})$, where $D = \deg R$.
- Output size: *T* has order $\leq D^n$ in ∂_e and degree $\leq D^{3n+2}$ in *e*.

- \triangleright Avoids the (costly) computation of certificates, of size $\Omega(D^{n^2/2})$.
- \triangleright Previous algorithms: complexity (at least) doubly exponential in n.
- ▶ Very efficient in practice.

Exercises

- ① Explain why $\sum_n F_n t^n$ is rational, where $F_{n+2} = F_{n+1} + F_n$, $F_0 = 0$, $F_1 = 1$. Find a general statement.
- 2 Show that the series $\sum_{n} {2n \choose n} t^n$ and $\sum_{n} {5n \choose n} t^n$ are both algebraic.
- ② Prove that the series

$$\sqrt{1-4t} = 1 - 2t - 2t^2 - 4t^3 - 10t^4 - 28t^5 - \cdots$$

$$\sqrt[3]{1-9t} = 1 - 3t - 9t^2 - 45t^3 - 270t^4 - 1782t^5 - \dots$$

have only integer coefficients. Try to generalize.

- **4** Prove that $\tan(t) = t + \frac{1}{3}t^3 + \frac{2}{15}t^5 + \frac{17}{315}t^7 + \frac{62}{2835}t^9 + \cdots$ is not D-finite.
- ⑤ Let $M_{n,k}$ be the number of $\{(1,1), (1,-1)\}$ -walks in \mathbb{N}^2 of length n that start at (0,0) and end at vertical altitude k. Let $M(x,y) = \sum_{n,k} M_{n,k} x^n y^k$.
 - (a) Show that $(y x(1 + y^2)) \cdot M(x, y) = y x \cdot M(x, 0)$
 - (b) Deduce that $M(x,y) = \frac{\sqrt{1-4x^2+2xy-1}}{2x(y-x(1+y^2))}$