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Context
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This book will probably be ignored by pure mathematicians. It will
appeal only to those applied mathematicians who are willing to share
the author's idée fixe. The subject is as quaint and improbable as the
title of the book itself, and the author pursues it armed only with the
most ordinary of weapons and a relentless preoccupation with detail.

[From a 1967 math book review]
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Algebraic

> Fundamental question in mathematics: arithmetic nature of numbers;
motivated by old problems, e.g., squaring a circle (compass & straightedge).

&

N

o A complex number « is called algebraic if it is a root of some algebraic
equation P(a) = 0, where P(x) € Z[x] \ {0} Notation: Q
o A complex number that is not algebraic is called transcendental.

> Given some particular constant (e.g., obtained by some limiting process), it
is usually very hard to determine whether it is algebraic or transcendental.
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A bit of histo

e Liouville (1844): transcendental numbers do exist
(algebraic irrationals cannot be approximated “too well” by rationals)

o Eisenstein (1850): the set of algebraic numbers forms a field

e Cantor (1874): “almost all” numbers are transcendental

First explicit examples of transcendental numbers:

o Liouville (1844): Z % = 0.110001000000000000000001000.. . .
n>0

o Hermite (1873): e = Z % = 2.7182818284590452354 . . .
n>0 """

1)
o Lindemann (1882): 7t = 4 x Z (-1) = 3.1415926535897932385 . . .
10 2n+1

o Mahler (1937): Champernowne’s number 0.123456789101112131415. ..
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 Advanced tarseendencereslts

e Hermite-Lindemann (1882): If & € Q \ {0}, then e* is transcendental.

Eg: e, 10g(2),e\/E are transcendental.

e Lindemann-Weierstrass (1885): If ay, ..., &, € Q are distinct, then the
exponentials e"1,...,e% are Q-linearly independent.

E.g: sin(1),cos(v/2), tan(14Y5) are transcendental.

e Gel’fond-Schneider (1934): If a € Q\ {0,1} and b € Q\ Q, then a’ ¢ Q.

E.g.: 2ﬁ, e, it log,(3) are transcendental.
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 Advanced ranscendence rsults

e Baker (1966_): Iflogay,...,logay , are Q-linearly independent, with
a1, ...,0, € Q, then they are also Q-linearly independent.

E.g: alog(2) + Blog(3) + 7log(5) is transcendental for a, B,y € Q \ {0}.

e Schneider (1940): Let a,b € Q \ Z be such that a + b ¢ Z. Then

B(a,b) = T(a + b / 7= 1(1 —)=1dt s transcendental.

e Chudnovsky (1976): T(1/3),T'(1/4) and I'(1/6) are transcendental.
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o m+e=>5859874..., mxe=8539734... and 7° =22.459158...

o log(2) x log(3) = 0.761500...

1
K

1=

o Euler’s constant y = lgn ( —log n) =0.577215...

(=1)"
o Catalan’s constant G = ———— = 0.915966. ..
n;) (2n+1)2

1
o Apéry’s constant 7(3) = ) -3 = 1.202057 ...
n>1

(o]
o Chudnovsky’s constant I'(1/5) = /0 t4%t dt = 4590844 . . .
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Zz—n!

is transcendental by Liouville (1844)

rz”

is transcendental by Nesterenko-Bertrand (1996)

rz”

is very probably transcendental, but no proof is known yet
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In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

o A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P(x,y) € Z[x,y] \ {0}.

o A power series that is not algebraic is called franscendental.

> Task: Given a power series, either in explicit or in implicit form, determine
whether it is algebraic or transcendental.
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o Number theory: first step towards proving the transcendence of a
complex number is to prove that a power series is transcendental

o Combinatorics: a generating series is algebraic if the counted objects
have strong underlying structures

o Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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Examples
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One of the author's most wearisome idiosyncrasies is to work from the
special case to the more general, which only serves to emphasize the
caprice with which the material was selected.

[From a 1967 math book review]
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o Yo, Y nlem Y, poly(n) "
n n

o) lt‘", ) Lo Y, rational(n) "
— 1 = n2+1 "

o Y 2", Y Fut" Y., rec. seq. ct. coeffs(n) "
n n

1 n 1 n 1
e ; z_nt 4 ; Et Lon rec. seq. ct. coeffs() t
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1., (2n)! "
Pl Lot

n N n

o Y Hut", Y (i:’) Hyt"
n

n

2n\ 2016 1 20161\ ,
°;<n> r ;(2015114-1)( n >t

exp-trig

harmonic sums

binomial series

binomial sums series



(2n)!(5n)!2 (30n)!n! . . .
Z (Bn)1 et Z mt integer ratios of factorials

nn=1
° 2P1< ‘ > Zt H (a+b+i) Gaussian hypergeometric series

c+i
. 3
0 F ( 12 1 1211728 t) =1+60t+ 39780 t* + 38454000 £ +
1 2 1 ) 4n (371)
o3k (32 5 ’ 27 t) nzo m hypergeometric series
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o (1—1)" ”—21:1(“ 1"*)

1+t 11

)
)

o Pu(t) :2n2F1<—n n—i—l‘ 1+t)

arcsin(t 11
: 7<>=2F1(z§z
2

1 2

Legendre polynomials

Py(t) = L(d/d)"(1—£2)"

o Ty(t) = (—1)%(‘"% "

%) Chebyshev polynomials

Ty (cosa) = cos(na)
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° Ztn! =t 26 2A 20 Liouville

R Zf?":t+t2+t4+t8+t16+t32+t64+t128+"' Mahler

0 @=Y " =1t A OO P 20 Jacobi
n

° EtF"=1+2t+i’2+t3+t5+t8+t13+i’21-|-i’34+t55+'~~

where p;, is the nth prime number
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o Y put" =2t 4+32 +56 + 7 + 115 + 1366 + 17+ + 195 + 23410 + - ..

o Ylaut" =4+t +4 428 + 4 430 + 500 6t + 284,
where 4, is the nth decimal digit of V2

o Y ltan(n)|t" =t —3t2 — 3+ t* — 4> — 16— 78 — 17 — 20611 — 4124 ...

o Y [ntanh(m)|t" = £* + 262 +3t* + .. 4267168

2
+267129 1+ 268170 + . . . = T tl)z — 1209 770 .

o Y [nv2 " =t +2> + 483 + 5t* + 765 + 81 + 97 + 1148 + 127 + - .-
n
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o Euler’s totient function ¢(n) = #{1 <k <n:gecd(n k) =1}

o the Mobius function p(n) = parity of the number of prime factors of n,
if n is square-free; 0 if not

o the divisor function oy (1) = Ly, dk
o 0p(n) = d(n) = number of positive divisors of n
o 01(n) = o(n) = sum of positive divisors of n
o w(n) = number of distinct prime factors of n
o O(n) = number of distinct prime factors of #n, counted with multiplicity
o the Liouville function A(n) = (—=1)2®)
o p(n) =290 = number of squarefree positive divisors of 1

o rp(n) =#{(a,b) € Z*: 2> + V* =n} Y ro(n)t" = O(t)?
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Power series fro

o Perimeter of an ellipse of eccentricity e, semi-major axis 1 [Euler, 1733]
/ 1 - ezx2 , 37 A
—4/ 27‘(—56 32

o Complete elliptic integrals 5

£ the first kind dr=",r(2 1|2
o of the first kin K(e) = / A= =) 1—ezx2) EZFl( 1 e)
& 2n)t 1% k= Vi 1],
2
o of the second kind E(e) = 5 Z [22”(11' } 1%~ % 2F1< 1 2e )
o Elliptic integrals f(t) = ( A/ P(t) ) dt, where R is a bivariate

rational function, P a squarefree polynomial of degree 3 or 4

o Weierstrass elliptic function: inverse y = p(t) of the elliptic integral

t_/°° ds
y /4% — 925 — g3

80,8 4, & 6, 388 5 498+75083 19
plt) = t2 + 20t + 28t + 1200t * 6160 F+ 7644000 !
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Power seri

o Eisenstein modular series

Eq= 1+240) o3(n)g" =1+240q+ 21604° + 67204° + -
n

Ee= 1-504) o5(n)q" =1—504q —16632¢% — 122976 4° + - - -
n

o Ramanujan’s modular discriminant

3_r2
A Ea—Ee
1728

—q[J(1—g"* =qg—2442 +2524° + - -
=

o Klein’s modular invariant

E3
J= K4 = % + 744 + 196884 g + 21493760 > + 864299970 ¢° + - - -
1 5 12
> [Fricke, Klein, 1897] A = % iy (12 . 12 1—7,2—8) ,

4 1 5 6
1728 _ _ 1728 | 12 12 | 1728
Y, e T (b, B[
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1 5
Ey :21:1<12112
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Power series fr

o Thue-Morse: Y s(m)t" =t + 2+t + + 8+ 1 43 4140
where s(n) is the parity of number of 1s in the base-2 expansion of n

o Baum-Sweet: Y b,t" =1+t + £ + 4+ 17 + £ + 12 + 1154 .. where
by, = 1 if the base-2 expansion of n contains no block of consecutive Os
of odd length, and b, = 0 otherwise

o Rudin-Shapiro: Y (=1)"t" =1+t -+ -+ 4+ — 1+ ...
a, = the number of pairs of consecutive 1’s in the base-2 expansion of n

o Stern:
Yo fut" =t 2428+ 30 4210+ 37 + 8 a4 +
with fopi1 = fu + fus1, fon = fus
fo=0f=1
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Power series from the

° Partitions -
1
Z:p H(ﬁ):1+t+2t2+3t3+5t4+7t5+11t6+15t7
1

5—4+1—3+2 3+1+1=242+1=2+1+14+1=14+1+1+1+1

o Permutations in S, containing 3 subsequences of type 132 [Béna, 1997]
Y 53(n)t" = 1t4 4+ 1485 + 8215 + 410t° + 19187 + - - - (s3(4) = 1: 1432)

o Alternating permutations [André, 1881]
1 2 5 16 5
Z—t" =tan(t) +sec(t) =14+ t4+ 1>+ =2+ 4 5 +.

TR TR T R
ay=5: {1324}{1423}{2314}{2413}{3412}5‘M

g3 €3 63
o Labeled trees [Borchardt, 1860], [Cayley, 1889] 300y 63
Yo T =162 4 367 + 164 + 12567 + 129615 + 6807t + - - -
) g3 63 03 63
e A& AL
o Planar maps with n edges Z (CESNCES)] ( ”) n [Tutte, 1968]
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A last family of exotic p

Syracuse problem [Collatz, 1937]
T:N* - N*

2
T(n) = {;,i+ 1

O(m) = {n: T (n) = m for some j}
> Open: O(1) = N*
fu)y=") "

neO(m)

ifn =0 (mod 2)
ifn=1 (mod 2).

Theorem [Bell, Lagarias, 2015]
o fu is transcendental for m ¢ {1,2,4,8,16}

o fy is rational for m € {1,2,4,8,16} iff
the Collatz conjecture is true

THE COLLATZ (ONJECTORE STATES THAT IF YU
PICK A NUMBER, AND IF ITSEVEN DIVIDE 17 BY
TwO AND IF IT5 00D MULTIPLY IT BY THREE AND
ADD ONE, AND YoU REPEAT THIS PROCEDURE. LONG
ENOUGH, EVENTUALLY YOUR FRIENDS WILL SToP
CALUNG TU SEE IF YOU WANT TO HANG QUT.

N ity and transcendence of power seris
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Power seri

The problem whether a given power series
is algebraic or transcendental at a given algebraic point
may be very deep and involved

[Mahler, 1976]

> Easy: Algebraic series take algebraic values at algebraic points and
transcendental values at transcendental points

> Intuition: Transcendental series tend to take transcendental values at
algebraic points — finitely many exceptions?

Theorem [Stiackel 1895, 1902] -
There exists a transcendental f € Q[[t]] such that f(Q) C Q.

Theorem [Mahler 1965]
There exists a transcendental f € Q[[t]] with f(v/2) € Q and f(—/2) ¢ Q.
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Power seri

The problem whether a given power series
is algebraic or transcendental at a given algebraic point
may be very deep and involved

[Mahler, 1976]

> Easy: Algebraic series take algebraic values at algebraic points and
transcendental values at transcendental points

> Intuition: Transcendental series tend to take transcendental values at
algebraic points — false in general, more structure needed

Theorem [Stiackel 1895, 1902] -
There exists a transcendental f € Q[[t]] such that f(Q) C Q.

Theorem [Mahler 1965]
There exists a transcendental f € Q[[t]] with f(v/2) € Q and f(—/2) ¢ Q.
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Power se

> [Siegel, 1949], [Shidlovski, 1962] For special classes of power series (e.g.,
E-functions), transcendental power series can take algebraic values at only
finitely many algebraic points.

(—t2/4)"

> Includes ef and the Bessel function Jy = Z 5
m n!

> False for G-functions, e.g. for many »F; <acb ‘ t) ’s.

Theorem [Beukers, Wolfart, 1988]
Letz € C, |z| < 1. Then:

1 5 _
2F1(12112 z) eQifandonlyifzzl—%forsomeTEQ(i), Imt > 0.
2
> Example:
L 511323 3.4
(1212|2222 _ 29
“( ! 1331) 4
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[Borwein, Borwein, 1992]:

o If e(n) and o(n) are the number of even and odd decimal digits of n,

then
o 0(2") _ 1 2 e(2") 3166 .
n;l on 9’ but ngl o~ 3060 +107" is transcendental

o If a = ¢™V103/9 then

Z naJ ~ 1280640 (to half a billion digits!) is transcendental
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Thanks for your attention!
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