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An (innocent looking) combinatorial question

Let S = {↑,←,↘}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number an of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0);

(ii) the number bn of S-walks of length n confined to the quarter plane N2

that start at the origin (0, 0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

(i)

(ii)
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Teasers

Teaser 1: This problem can be solved using computer algebra!

Teaser 2: The answer has a nice closed form!

a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.

Teaser 3: A certain group attached to the step set {↑,←,↘} is finite!
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Combinatorial context: lattice paths confined to cones

Let S be a subset of Zd (step set, or model) and p0 ∈ Zd (starting point).

A path (walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn) of
elements in Zd such that pi+1 − pi ∈ S for all i.

Let C be a cone of Rd (if x ∈ C and r ≥ 0 then r · x ∈ C).

Example: S = {(1, 0), (−1, 0), (1,−1), (−1, 1)}, p0 = (0, 0)

and C = R2
+
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(i, j) = (5, 1)

Questions

What is the number an of n-step walks contained in C?

For i ∈ C, what is the number an;i of such walks that end at i?

What about their GF’s A(t) = ∑n antn and A(t; x) = ∑n,i an;ixitn?
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Why count walks in cones?

Many discrete objects can be encoded in that way:

• discrete mathematics (permutations, trees, words, urns, . . . )

• statistical physics (Ising model, . . . )

• probability theory (branching processes, games of chance, . . . )

• operations research (queueing theory, . . . )
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An old topic: ballot problem [Bertrand, 1887]

Lattice path reformulation: find the number of paths that start at the origin
and never touch the x-axis, consisting of a upsteps↗ and b downsteps↘
Reflection principle [Aebly, 1923]: paths in N2 from (1, 1) to T(a + b, a− b)
that do touch the x-axis are in bijection with paths in Z2 from (1,−1) to T

Answer: (paths in Z2 from (1, 1) to T) − (paths in Z2 from (1,−1) to T)(
a + b− 1

a− 1

)
−
(

a + b− 1
b− 1

)
=

a− b
a + b

(
a + b

a

)
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Reflection principle [Aebly, 1923]: paths in N2 from (1, 1) to T(a + b, a− b)
that do touch the x-axis are in bijection with paths in Z2 from (1,−1) to T

Answer: when a = n + 1 and b = n, this is the Catalan number

Cn =
1

2n + 1

(
2n + 1
n + 1

)
=

1
n + 1

(
2n
n

)
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An old topic: Pólya’s “promenade au hasard” / “Irrfahrt”

[Pólya, 1921] Simple random walk {±1}d on Zd is recurrent in dimensions
d = 1, 2 (“Alle Wege führen nach Rom”), and transient in dimension d ≥ 3
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. . . but still a topical issue

Many recent contributors:

Arquès, Bacher, Banderier, Bernardi, Bostan, Bousquet-Mélou, Budd,
Chyzak, Cori, Courtiel, Denisov, Dreyfus, Du, Duchon, Dulucq, Duraj,
Fayolle, Fisher, Flajolet, Fusy, Garbit, Gessel, Gouyou-Beauchamps,
Guttmann, Guy, Hardouin, van Hoeij, Hou, Iasnogorodski, Johnson, Kauers,
Kenyon, Koutschan, Krattenthaler, Kreweras, Kurkova, Malyshev, Melczer,
Miller, Mishna, Niederhausen, Pech, Petkovšek, Prellberg, Raschel,
Rechnitzer, Roques, Sagan, Salvy, Sheffield, Singer, Viennot, Wachtel, Wang,
Wilf, D. Wilson, M. Wilson, Yatchak, Yeats, Zeilberger, . . .

etc.

Specific question

Ad hoc solution
Systematic approach
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Approach: Experimental Mathematics using Computer Algebra
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Approach: Experimental Mathematics using Computer Algebra
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Example: From the SIAM 100-Digit Challenge [Trefethen, 2002]

1/4

1/4

1/4-ε 1/4+ε

Chapter 6

Biasing for a Fair Return

Folkmar Bornemann

It was often claimed that [direct and “exact” numeri-
cal solution of the equations of physics] would make the
special functions redundant. ... The persistence of spe-
cial functions is puzzling as well as surprising. What
are they, other than just names for mathematical objects
that are useful only in situations of contrived simplicity?
Why are we so pleased when a complicated calculation
“comes out” as a Bessel function, or a Laguerre polyno-
mial? What determines which functions are “special”?

— Sir Michael Berry [Ber01]

People who like this sort of thing will find this the sort
of thing they like.

— Barry Hughes, quoting Abraham Lincoln at the
beginning of an appendix on “Special Functions for Ran-
dom Walk Problems” [Hug95, p. 569]

Problem 6

A flea starts at (0, 0) on the infinite two-dimensional integer lattice and
executes a biased random walk: At each step it hops north or south with
probability 1/4, east with probability 1/4 + ε, and west with probability
1/4 − ε. The probability that the flea returns to (0, 0) sometime during
its wanderings is 1/2. What is ε?

Asking for the ε that gives a certain probability p of return yields a problem hardly
any more difficult than calculating the probability for a given ε: it just adds the
need to use a numerical root-finder. But the problem looks more interesting the way
it is stated. In §6.1 we give a short argument, why the problem is solvable.

We will discuss several methods for calculating the probability of return. In
§6.2, using virtually no probability theory, we transform the problem to one of lin-
ear algebra. Solving a sparse linear system of dimension 25 920 gives us 15 correct

123

. Computer algebra conjectures and proves
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p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2.
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ε ≈ 0.0619139544739909428481752164732121769996387749983

6207606146725885993101029759615845907105645752087861 . . .
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A (very) basic cone: the full space

Rational series [folklore]

If S ⊂ Zd is finite and C = Rd, then

an = |S|n , i.e. A(t) = ∑
n≥0

antn =
1

1− |S| t .

More generally:

A(t; x) = ∑
n,i

an;ixitn =
1

1− t ∑s∈S xs .
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Also well-known: a (rational) half-space

Algebraic series [Bousquet-Mélou, Petkovšek, 2000]

If S ⊂ Zd is finite and C is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

Example: For Dyck paths (ballot problem), A(t; 1) = ∑
n≥0

Cntn =
1−
√

1− 4t
2t

Alin Bostan Computer Algebra for Lattice Path Combinatorics
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The “next” case: intersection of two half-spaces

i

j

f (i, j; n) =

 0 if i < 0 or j < 0 or n < 0,
∑

i′ j′∈S
f (i− i′, j− j′; n− 1) otherwise.
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Lattice walks with small steps in the quarter plane

. From now on: we focus on nearest-neighbor walks in the quarter plane,
i.e. walks in N2 starting at (0, 0) and using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.
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Generating functions and combinatorial problems

. Complete generating function:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]].

. Specializations:
GF of excursions: F(t; 0, 0);
GF of walks: F(t; 1, 1) = ∑

n≥0
fntn;

GF of horizontal returns: F(t; 1, 0);
GF of diagonal returns: “F(t; 0, ∞)“ :=

[
x0] F(t; x, 1/x).

Combinatorial questions:
Given S, what can be said about F(t; x, y), resp. fn;i,j, and their variants?

Structure of F: algebraic? transcendental? solution of ODE?

Explicit form: of F? of fn;i,j?

Asymptotics of fn;0,0? of fn?

Our goal: Use computer algebra to give computational answers.
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Small-step models of interest

Among the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models
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The 79 models
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



20 / 55

“Special” models

Dyck: �
@
@R
��

Motzkin: �
@
@R
-��

Pólya: �
�@
?
6
@
-�

Kreweras: �
�@
?@
��

Gessel: �	
�@
@
-��

Gouyou-Beauchamps: �
�@I
@R
-�

King walks: �	
�@I
?
6
@R
-��

Tandem walks: �
�@6
@R
�
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Gessel’s walks

S = {↗,↙,←,→}
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Gessel’s conjectures (≈ 2001)

G{↗,↙,←,→}

Conjecture 1 The generating function of Gessel excursions is equal to

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)

=
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n

= 1 + 2t2 + 11t4 + 85t6 + 782t8 + · · ·

Conjecture 2
The full generating function G(t; x, y) is not D-finite.
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the plane

-

6 6
?
-�

[Pólya, 1921]:

. Formula (2n
n )

2
for 2n-excursions

. Rational generating function

The simple walk in the half-plane and in the quarter-plane

-

6 6
?
-�

-�6 -

6 6
?
-�

-�6

-6
?

-6

. Formulas (2n+1
n )Cn, resp. CnCn+1, for 2n-excursions [Arquès, 1986]

. Full generating functions: algebraic [Bousquet-Mélou, Petkovšek, 2000],
resp. D-finite [Bousquet-Mélou, 2002]
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Genesis of Gessel’s questions – the “simple walk” in different cones

The simple walk in the cone with angle 45◦

-�
�
�
�
��� 6

?
-�

�6-

-
?

- -

6
@@I
@@R
-�

-�@@I

@@R
-

-

. Formula CnCn+2 − C2
n+1 for 2n-excursions [Gouyou-Beauchamps, 1986]

. D-finite generating function [Gessel, Zeilberger, 1992]

What about the simple walk in the cone with angle 135◦?

-@
@

@
@

@@I 6
?
-�

�6-

-6

-6 -

6
���

��	
-�

-����

-���

-���
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Algebraic reformulation: solving a functional equation

Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

gn;i,jtnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G (t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: Solve this functional equation!
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Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

gn;i,jtnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G (t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: For the other models – solve 78 similar equations!
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Classification of univariate power series

algebraic

hypergeometric

D-finite power series

S(t) = ∑∞
n=0 sntn ∈ Q[[t]] is

. algebraic if P
(
t, S(t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0};

. D-finite if cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0 for some ci ∈ Z[t], not all zero;

. hypergeometric if sn+1
sn
∈ Q(n).
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Classification of univariate power series

algebraic

hypergeometric
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S(t) = ∑∞
n=0 sntn ∈ Q[[t]] is

. algebraic if P
(
t, S(t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0};

. D-finite if cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0 for some ci ∈ Z[t], not all zero;

. hypergeometric if sn+1
sn
∈ Q(n). E.g.,

ln(1− t);
arcsin(

√
t)√

t
; (1− t)α, α ∈ Q
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Classification of univariate power series
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hypergeometric
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. D-finite if cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0 for some ci ∈ Z[t], not all zero;

. hypergeometric if sn+1
sn
∈ Q(n). E.g.,

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).
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a b c
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Classification of univariate power series

algebraic

hypergeometric

D-finite power series

S(t) = ∑∞
n=0 sntn ∈ Q[[t]] is

. algebraic if P
(
t, S(t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0};

. D-finite if cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0 for some ci ∈ Z[t], not all zero;

. hypergeometric if sn+1
sn
∈ Q(n).

Theorem [Schwarz, 1873; Beukers, Heckman, 1989]

Characterization of { hypergeometric } ∩ { algebraic }.

Alin Bostan Computer Algebra for Lattice Path Combinatorics



27 / 55

Classification of multivariate power series

algebraic series

D-finite series

. S ∈ Q[[x, y, t]] is algebraic if it is the root of a polynomial P ∈ Q[x, y, t, T].

. S ∈ Q[[x, y, t]] is D-finite if it satisfies a system of linear partial differential
equations with polynomial coefficients

∑
i

ai(t, x, y)
∂iS
∂xi = 0, ∑

i
bi(t, x, y)

∂iS
∂yi = 0, ∑

i
ci(t, x, y)

∂iS
∂ti = 0.
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras, 1965; 100 pages long combinatorial proof!]

K(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n.

Theorem [Kauers, Koutschan, Zeilberger, 2009: former Gessel’s conj. 1]

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, y) is algebraic.

Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.
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Theorem [Gessel, 1986; Bousquet-Mélou, 2005] K(t; x, y) is algebraic.

Theorem [B., Kauers, 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.

. Computer-driven discovery and proof.

. Guess’n’Prove method, using Hermite-Padé approximants†

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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. Computer-driven discovery and proof.
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. Recent (human) proofs [B., Kurkova, Raschel, 2013; Bousquet-Mélou, 2015]

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers, van Hoeij, 2010]
Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V − 1)(V + 1)U3 − 2V(3x + 5xV − 8Vt)U2

−xV(V2 − 24V − 9)U + 2V2(xV − 9x− 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be a root of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V − 1 = 0.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 − y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof.
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First guess, then prove [Pólya, 1954]
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A typical guess’n’prove algorithmic proof

Theorem

g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Find P such that P(t, g(t)) = 0 mod t100 by (structured) linear algebra.

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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A typical guess’n’prove algorithmic proof

Theorem

g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Find P such that P(t, g(t)) = 0 mod t100 by (structured) linear algebra.
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Main results (III): Models with D-Finite F(t; 1, 1)

OEIS S Pol size LDE size Rec size OEIS S Pol size LDE size Rec size

1 A005566 — (3, 4) (2, 2) 13 A151275 — (5, 24) (9, 18)
2 A018224 — (3, 5) (2, 3) 14 A151314 — (5, 24) (9, 18)
3 A151312 — (3, 8) (4, 5) 15 A151255 — (4, 16) (6, 8)
4 A151331 — (3, 6) (3, 4) 16 A151287 — (5, 19) (7, 11)
5 A151266 — (5, 16) (7, 10) 17 A001006 (2, 2) (2, 3) (2, 1)
6 A151307 — (5, 20) (8, 15) 18 A129400 (2, 2) (2, 3) (2, 1)
7 A151291 — (5, 15) (6, 10) 19 A005558 — (3, 5) (2, 3)
8 A151326 — (5, 18) (7, 14)
9 A151302 — (5, 24) (9, 18) 20 A151265 (6, 8) (4, 9) (6, 4)
10 A151329 — (5, 24) (9, 18) 21 A151278 (6, 8) (4, 12) (7, 4)
11 A151261 — (4, 15) (5, 8) 22 A151323 (4, 4) (2, 3) (2, 1)
12 A151297 — (5, 18) (7, 11) 23 A060900 (8, 9) (3, 5) (2, 3)

Equation sizes = (order, degree)

. Computerized discovery: enumeration + guessing [B., Kauers, 2009]

. 1–22: Confirmed by human proofs in [Bousquet-Mélou, Mishna, 2010]

. 23: Confirmed by a human proof in [B., Kurkova, Raschel, 2013]
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Main results (III): Models with D-Finite F(t; 1, 1)

OEIS S algebraic? asymptotics OEIS S algebraic? asymptotics

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Computerized discovery: conv. acc. + LLL/PSLQ [B., Kauers, 2009]

. Confirmed by human proofs using ACSV in [Melczer, Wilson, 2015]
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The group of a model: the simple walk case

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.
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The group of a model: the general case

The polynomial χS := ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)xi =
1

∑
j=−1

Aj(x)yj

is left

invariant under

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group

GS :=
〈
ψ, φ

〉
.
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Examples of groups

Order 4,

order 6, order 8, order ∞.
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An important concept: the orbit sum (OS)

When GS is finite, the orbit sum of S is the polynomial in Q[x, x−1, y, y−1]:

OSS := ∑
θ∈GS

(−1)θθ(xy)

. E.g., for the simple walk, with GS =
{
(x, y),

(
x, 1

y

)
,
(

1
x , 1

y

)
,
(

1
x , y
)}

:

OS

�
�@
?
6
@
-�

= x · y− 1
x
· y +

1
x
· 1

y
− x · 1

y

. For 4 models, the orbit sum is zero:

�
�@
?@
��

�	
@6
@
-�

�	
�@
?
6
@
-��

�	
�@
@
-��

E.g., for the Kreweras model:

OS

�
�@
?@
��

= x · y− 1
xy
· y +

1
xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0
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The 79 models: finite and infinite groups

79 models

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou, Mishna’10]

all F(t; x, y) D-finite

19 transcendental
(OS 6= 0)

[Gessel, Zeilberger’92]

[Bousquet-Mélou’02]

4 algebraic (OS = 0)
(3 Kreweras-type + Gessel)

[BMM’10] + [B., Kauers’10]

−→ all non-D-finite
• [Mishna, Rechnitzer’07] and

[Melczer, Mishna’13] for 5 singular models

• [Kurkova, Raschel’13] and

[B., Raschel, Salvy’13] for all others
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D-Finiteness via the finite group [Bousquet-Mélou, Mishna, 2010]

The kernel J = 1− t ·∑(i,j)∈S xiyj = 1− t
(

x + 1
x + y + 1

y

)
is

invariant under the change of (x, y) into, respectively:( 1
x , y
)
,
( 1

x , 1
y
)
,
(

x, 1
y
)
.

Kernel equation:

J(t; x, y)xyF(t; x, y) = xy− txF(t; x, 0)− tyF(t; 0, y)

− J(t; x, y) 1
x yF(t; 1

x , y) = − 1
x y + t 1

x F(t; 1
x , 0) + tyF(t; 0, y)

J(t; x, y) 1
x

1
y F(t; 1

x , 1
y ) =

1
x

1
y − t 1

x F(t; 1
x , 0)− t 1

y F(t; 0, 1
y )

− J(t; x, y)x 1
y F(t; x, 1

y ) = − x 1
y + txF(t; x, 0) + t 1

y F(t; 0, 1
y )

xy F(t; x, y) =
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Summing up yields the orbit equation:

∑
θ∈G

(−1)θθ
(

xy F(t; x, y)
)
=

xy− 1
x y + 1

x
1
y − x 1

y

J(t; x, y)
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Taking positive parts yields:

[x>y>] ∑
θ∈G

(−1)θθ
(

xy F(t; x, y)
)
= [x>y>]

xy− 1
x y + 1

x
1
y − x 1

y

J(t; x, y)
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invariant under the change of (x, y) into, respectively:( 1
x , y
)
,
( 1

x , 1
y
)
,
(

x, 1
y
)
.

Kernel equation:

J(t; x, y)xyF(t; x, y) = xy− txF(t; x, 0)− tyF(t; 0, y)

− J(t; x, y) 1
x yF(t; 1

x , y) = − 1
x y + t 1

x F(t; 1
x , 0) + tyF(t; 0, y)

J(t; x, y) 1
x

1
y F(t; 1

x , 1
y ) =

1
x

1
y − t 1

x F(t; 1
x , 0)− t 1

y F(t; 0, 1
y )

− J(t; x, y)x 1
y F(t; x, 1

y ) = − x 1
y + txF(t; x, 0) + t 1

y F(t; 0, 1
y )

Summing up and taking positive parts yields:

xy F(t; x, y) = [x>y>]
xy− 1

x y + 1
x

1
y − x 1

y

J(t; x, y)
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Summing up and taking positive parts yields:
xy F(t; x, y) =

GF = PosPart
(

OS
kernel

)
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y )

xy F(t; x, y) =

GF = PosPart
(
OS
ker

)
= D-finite [Lipshitz, 1988]
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y )
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GF = PosPart
(
OS
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)
= D-finite [Lipshitz, 1988]

. Argument works if OS 6= 0: algebraic version of the reflection principle
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GF = PosPart
(
OS
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= D-finite [Lipshitz, 1988]

. Creative Telescoping finds a differential equation for PosPart(OS/ker)
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Main results (IV): explicit expressions for models 1–19

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2016]

Let S be one of the 19 models with finite group GS, and non-zero orbit sum.
Then

FS is expressible using iterated integrals of 2F1 expressions.

Among the 19× 4 specializations of FS(t; x, y) at (x, y) ∈ {0, 1}2, only 4

are algebraic: for S = at (1, 1), and S = at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

F (t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

. Computer-driven discovery and proof; no human proof yet.

. Proof uses creative telescoping, ODE factorization, ODE solving.
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Hypergeometric Series Occurring in Explicit Expressions for F(t; x, y)

S occurring 2F1 w S occurring 2F1 w

1 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 11 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

4t2+1

2 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 12 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

3 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2

(12t2+1)2 13 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

4 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t(t+1)
(4t+1)2 14 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

5 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t4 15 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t4

6 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2 16 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2

7 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

4t2+1 17 2F1

(
1
3

2
3

1

∣∣∣∣w
)

27t3

8 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2 18 2F1

(
1
3

2
3

1

∣∣∣∣w
)

27t2(2t + 1)

9 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2 19 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

10 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

. All related to the complete elliptic integrals
∫ π/2

0 (1− k2 sin2 θ)±
1
2 dθ

K(k) =
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ =

π

2 2F1

( 1
2 , 1

2
1

∣∣∣∣ k2
)

,

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ =

π

2 2F1

(
− 1

2 , 1
2

1

∣∣∣∣ k2
)

.
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Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Raschel, Salvy, 2013]

Let S be one of the 51 non-singular models with infinite group GS.
Then FS(t; 0, 0), and in particular FS(t; x, y), are non-D-finite.

. Algorithmic proof. Uses Gröbner basis computations, polynomial
factorization, cyclotomy testing.
. Based on two ingredients: asymptotics + irrationality.

. [Kurkova, Raschel, 2013] Human proof that FS(t; x, y) is non-D-finite.

. No human proof yet for FS(t; 0, 0) non-D-finite.

. [Bernardi, Bousquet-Mélou, Raschel, 2016] For 9 of these 51 models,
FS(t; x, y) is nevertheless D-algebraic!
. [Dreyfus, Hardouin, Roques, Singer, 2017]: hypertranscendence of the
remaining 42 models.
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The 56 models with infinite group
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In blue, non-singular models, solved by [B., Raschel, Salvy, 2013]
In red, singular models, solved by [Melczer, Mishna, 2013]
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Example: the scarecrows

[B., Raschel, Salvy, 2013]: FS(t; 0, 0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .
[Denisov, Wachtel, 2013]

The irrationality of α prevents FS(t; 0, 0) from being D-finite.
[Katz, 1970; Chudnovsky, 1985; André, 1989]
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Summary: Classification of 2D non-singular walks

The Main Theorem Let S be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating function FS(t; x, y) is D-finite

(2) the excursions generating function FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and
cardinality different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.
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Summary: Walks with small steps in N2

quadrant models S: 79

|GS|<∞: 23

orbit sum 6= 0: 19

Kernel method + CT

D-finite

orbit sum = 0: 4

Guess’n’Prove

algebraic

|GS| = ∞: 56

asymptotics + GB

non-D-finite
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Extensions: Walks in N2 with small repeated steps

2D quadrant models: 527

|GS| < ∞: 118

orbit sum 6= 0: 95

kernel method: 94

D-finite

CA:

D-finite

orbit sum = 0: 23

22: reducible to
Kreweras/Gessel

D-finite

CA:

algebraic

|GS| = ∞?: 409

non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2015]

. [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 409 cases,
and GF are non-D-finite in 366 cases.

. [Kauers, Yatchak, 2015]: extension to 48 = 65536 models with mult. ≤ 3.
1457 D-finite, 79 algebraic, 3 pearls:
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A pearl among models in N2 with small but repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2015]

Let en = #
{

−walks of length n in N2 from (0, 0) to (0, 0)
}

(en)n≥0 = (1, 0, 3, 0, 26, 0, 323, 0, 4830, 0, 80910, . . .)

Then

e2n =
6(6n + 1)!(2n + 1)!

(3n)!(4n + 3)!(n + 1)!
.

. Current proof is computer-driven.

. Open problem: find a human proof .
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Extensions: Walks in N2 with large steps

quadrant models with steps in {−2,−1, 0, 1}2: 13 110

|orbit| < ∞: 240

OS 6= 0: 431

D-finite

OS = 0: 9

D-finite?

|orbit| = ∞: 12 870

α rational: 16

non-D-finite?

α irrational: 12 854

non-D-finite

[B., Bousquet-Mélou, Melczer, 2017]

• Example: For the model

xyF(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)
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Two pearls among the 9 difficult models with large steps

Conjecture 1 [B., Bousquet-Mélou, Melczer, 2017]

For the model , writing φ(t) = 108 t(1+4t)2

(12t−1)3 , then F(t1/2; 0, 0) is equal to

1
3t
−
√

1− 12t
6t

(
2F1

( 1
6

1
3

1

∣∣∣∣ φ(t)
)
+ 2F1

(
− 1

6
2
3

1

∣∣∣∣ φ(t)
))

.

Conjecture 2 [B., Bousquet-Mélou, Melczer, 2017]

For the model , F(t; 0, 0) is equal to

(1− 24 U + 120 U2 − 144 U3) (1− 4 U)

(1− 3 U) (1− 2 U)3/2 (1− 6 U)9/2 ,

where U = t4 + 53 t8 + 4363 t12 + · · · is the unique series in Q[[t]] satisfying

U (1− 2 U)3 (1− 3 U)3 (1− 6 U)9 = t4 (1− 4 U)4.
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Extensions: Walks with small steps in N3

233−1 ≈ 67 million models, of which ≈ 11 million inherently 3D

3D octant models S with ≤ 6 steps: 20804

|GS| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

non-D-finite?

|GS| = ∞?: 20634

non-D-finite?

[B., Bousquet-Mélou, Kauers, Melczer, 2015]

. Open question: are there non-D-finite models with a finite group?

. [Du, Hou, Wang, 2015]: proofs that groups are infinite in the 20634 cases

. [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |GS| < ∞ and orbit sum 0 (instead of 19)
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19 mysterious 3D-models
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Open question: 3D Kreweras

Two different computations suggest:

k4n ≈ C · 256n/n3.3257570041744...,

so excursions are very probably transcendental
(and even non-D-finite)
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Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t; x, y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
• Guess’n’Prove
• Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.

Lack of “purely human” proofs for some results.

Open: is F(t; 1, 1) non-D-finite for all 56 models with infinite group?

Many beautiful open questions for 2D models with repeated or large
steps, and in dimension > 2.
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