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Overview

Part 1: General presentation
Part 2: Guess’n’Prove
Part 3: Creative telescoping

Alin Bostan Computer Algebra for Lattice Path Combinatorics



2 / 35

Part 2: Guess’n’Prove
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Summary of Part 1: Walks with unit steps in N2

quadrant models: 79

|G|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|G| = ∞: 56

asymptotics + GB

not D-finite
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Summary of Part 1: Classification of 2D non-singular walks

The Main Theorem Let S be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating function FS(t; x, y) is D-finite

(2) the excursions generating function FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Proof
(1)⇒ (2) Easy
(2)⇒ (3) [Denisov & Wachtel 2013] + [Chudnovsky’85, André’89, Katz’70]
(3)⇒ (4) [B., Raschel & Salvy 2013]
(4)⇒ (1) [Bousquet-Mélou & Mishna 2010] + [B. & Kauers 2010]
(5)⇔ (4) A posteriori observation
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(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.

. Proof of the last statements: [B., Chyzak, van Hoeij, Kauers & Pech 2017]
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.
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Gessel’s conjecture

• Gessel walks: walks in N2 using only steps in S = {↗,↙,←,→}
• g(n; i, j) = number of walks from (0, 0) to (i, j) with n steps in S

Question: Find the nature of the generating function

G(t; x, y) =
∞

∑
i,j,n=0

g(n; i, j) xiyjtn ∈ Q[[x, y, t]]

Theorem (B.-Kauers 2010) G(t; x, y) is an algebraic function†.

→ Effective, computer-driven discovery and proof

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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First guess, then prove [Pólya, 1954]
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Personal bias: Experimental Mathematics using Computer Algebra
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Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra
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Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics



11 / 35

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics



11 / 35

Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ initial conditions fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

Alin Bostan Computer Algebra for Lattice Path Combinatorics



12 / 35

Step (S2): guessing equations for FS(t; x, y), a first idea

In terms of generating functions, the recurrence on k(n; i, j) reads(
xy− (x + y + x2y2)t

)
K(t; x, y)

= xy− xt K(t; x, 0)− yt K(t; 0, y) (KerEq)

. A similar kernel equation holds for FS(t; x, y), for any S-walk.

Corollary. FS(t; x, y) is algebraic (resp. D-finite) if and only if FS(t; x, 0) and
FS(t; 0, y) are both algebraic (resp. D-finite).

. Crucial simplification: equations for G(t; x, y) are huge (≈ 30 Gb)
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Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.
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Step (S2): guessing equations for K(t; x, 0)

Using N = 80 terms of K(t; x, 0), one can guess

. a linear differential equation of order 4, degrees (14, 11) in (t, x), such that

t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·
· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·

· (4t2x3 − t2 + 2xt− x2) · ∂4K(t; x, 0)
∂t4 + · · ·

= 0 mod t80

. a polynomial of tridegree (6, 10, 6) in (T, t, x)

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·

such that Px,0(K(t; x, 0), t, x) = 0 mod t80.
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Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), our guesser found candidates

Px,0 in Z[T, t, x] of degree (24, 43, 32), coefficients of 21 digits

P0,y in Z[T, t, y] of degree (24, 44, 40), coefficients of 23 digits

such that

Px,0(G(t; x, 0), t, x) = 0 mod t1200, P0,y(G(t; 0, y), t, y) = 0 mod t1200.

. Guessing Px,0 by undetermined coefficients would have required to solve
a dense linear system of size ≈ 100 000, and ≈ 1000 digits entries!

. We actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.
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Guessing is good, proving is better [Pólya, 1957]
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Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Such a P can be guessed from the first 100 terms of g(t).

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1 Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the

kernel equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; 0, y)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(t; x, 0).

3 The guessed candidate Px,0(T, t, x) has a root H(t, x) in Q[[x, t]].

4 U = H(t, x) also satisfies (RKerEq) Resultant computations!

5 Uniqueness =⇒ H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!
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shows that U = K(t; x, 0) satisfies the reduced kernel equation

0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0) (RKerEq)

2 (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(t; x, 0).

3 The guessed candidate Px,0(T, t, x) has a root H(t, x) in Q[[x, t]].

4 U = H(t, x) also satisfies (RKerEq) Resultant computations!

5 Uniqueness =⇒ H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!
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Algebraicity of Kreweras walks: a computer proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 19 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617
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Step (S3): rigorous proof for Gessel walks �	
�@
@
-��

Same strategy, but several complications:
stepset diagonal symmetry is lost: G(t; x, y) 6= G(t; y, x);
G(t; 0, 0) occurs in (KerEq) (because of the step↙);
equations are ≈ 5 000 times bigger.

−→ replace equation (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).
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Summary

Guess’n’Prove is a powerful method, especially when combined with
efficient computer algebra

It is robust: it can be used to uniformly prove

, D-finiteness in all the cases with finite group

, algebraicity in all the cases with finite group and zero orbit sum

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30 Gb.
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INSIDE THE BOX

–Hermite-Padé approximants–
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Definition

Definition: Given a column vector F = ( f1, . . . , fn)T ∈ K[[x]]n and an n-tuple
d = (d1, . . . , dn) ∈Nn, a Hermite-Padé approximant of type d for F is a row
vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1 f1 + · · ·+ Pn fn = O(xσ) with σ = ∑i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

[Hermite 1873]: e is transcendent.

[Lindemann 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.
[Apéry 1978, Beukers 1981]: ζ(3) = ∑n≥1

1
n3 is irrational.

[Rivoal 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),
where C(x) = 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + O(x6).
This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0 + β1x)(1+ x+ 2x2 + 5x3 + 14x4)+(γ0 +γ1x)(1+ 2x+ 5x2 + 14x3 + 42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:
1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1.
Then, the violet minor shows that one can take (β0, β1, γ0) = (−1, 0, 0).
The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P(x, C(x)) = 0 mod x5.
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Algebraic and differential approximation = guessing

Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

algebraic approximants = Hermite-Padé approximants for f` = A`−1,
where A ∈ K[[x]] seriestoalgeq, listtoalgeq
differential approximants = Hermite-Padé approximants for f` = A(`−1),
where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2

[1 - y(x) + x y(x) , ogf]

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \

/d \ |d |
[{-2 y(x) + (2 - 4 x) |-- y(x)| + x |--- y(x)|, y(0) = 1, D(y)(0) = 1}, egf]

\dx / | 2 |
\dx /
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Existence and naive computation

Theorem For any vector F = ( f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple
d = (d1, . . . , dn) ∈Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi = ∑di
j=0 pi,jxj satisfy a linear

homogeneous system with σ = ∑i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(σω), for 2 ≤ ω ≤ 3 (linear algebra exponent)

. There are better algorithms (the linear system is structured, Sylvester-like):

Derksen’s algorithm (Gaussian-like elimination) O(σ2)

Beckermann-Labahn’s algorithm (DAC) Õ(σ) = O(σ log2 σ)

structured linear algebra algorithms for Toeplitz-like matrices Õ(σ)
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Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d, . . . , d) for F = ( f1, . . . , fn) in Õ(nωd) ops. in K.

Ideas:
Compute a whole matrix of approximants

Exploit divide-and-conquer

Algorithm:

1 If σ = n(d + 1)− 1 ≤ threshold, call the naive algorithm
2 Else:

1 recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

2 compute “residue” R such that P1 · F = xσ/2 ·
(
R + O(xσ/2)

)
3 recursively compute P2 ∈ K[x]n×n s.t. P2 · R = O(xσ/2), deg(P2) ≈ d

2
4 return P := P2 · P1

. The precise choices of degrees is a delicate issue

. Corollary: Gcd, extended gcd, Padé approximants in Õ(d)
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BACK TO THE EXERCISE

–A hint–
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The exercise

Let S = {↑,←,↘}. A S-walk is a path in Z2 using only steps from S.
Show that, for any integer n, the following quantities are equal:

(i) the number an of S-walks of length n confined to the upper half plane
Z×N that start and end at the origin (0, 0);

(ii) the number bn of S-walks of length n confined to the quarter plane N2

that start at the origin (0, 0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

(i)

(ii)
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A recurrence relation for {↑,←,↘}-walks in Z×N

h(n; i, j) = nb. of {↑,←,↘}-walks in Z×N of length n from (0, 0) to (i, j)

The numbers h(n; i, j) satisfy

h(n; i, j) =


0 if j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

h(n− 1; i− i′, j− j′) otherwise.

> h:=proc(n,i,j)
option remember;

if j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1)+h(n-1,i+1,j)+h(n-1,i-1,j+1) fi

end:

> A:=series(add(h(n,0,0)*t^n,n=0..12),t,12);

A = 1 + 3t3 + 30t6 + 420t9 + O(t12)
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A recurrence relation for {↑,←,↘}-walks in N2

q(n; i, j) = nb. of {↑,←,↘}-walks in N2 of length n from (0, 0) to (i, j)

The numbers q(n; i, j) satisfy

q(n; i, j) =


0 if i < 0 or j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(i′ ,j′)∈S

q(n− 1; i− i′, j− j′) otherwise.

> q:=proc(n,i,j)
option remember;

if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1)+q(n-1,i+1,j)+q(n-1,i-1,j+1) fi

end:

> B:=series(add(add(q(n,k,k),k=0..n)*t^n,n=0..12),t,12);

B = 1 + 3t3 + 30t6 + 420t9 + O(t12)
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Guessing the answer for {↑,←,↘}-excursions in Z×N

> seriestorec(series(add(h(n,0,0)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> A:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

A := hypergeom([1/3, 2/3], [2], 27 t )

. Thus, differential guessing predicts

A(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.
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Guessing the answer for diagonal {↑,←,↘}-walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t )

. Thus, differential guessing predicts

A(t) = B(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.
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Guessing the answer for diagonal {↑,←,↘}-walks in N2

> series(add(add(q(n,k,k),k=0..n)*t^n,n=0..30),t,30), u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ (n/3) 1/2
{ 27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)
{ ----------------------------------------------------- irem(n, 3) = 0
{ 2
{ 2 Pi GAMMA(n/3 + 2)
{
{ 0 irem(n-1, 3) = 0
{
{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,op(2,%))*t^(3*n),n=0..infinity);
3

B := hypergeom([1/3, 2/3], [2], 27 t )

. In Part 3, we will prove this using creative telescoping Tomorrow, we will prove
this using creative telescoping Tomorrow, we will prove this using creative telescoping
Tomorrow, we will prove this using creative telescoping
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End of Part 2

Thanks for your attention!
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