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Summary of Part 1: Clas

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating function Fg (¢; x, ) is D-finite

(2) the excursions generating function Fg (#;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Proof

(1) = (2) Easy

(2) = (3) [Denisov & Wachtel 2013] + [Chudnovsky'85, André'89, Katz'70]
(3) = (4) [B., Raschel & Salvy 2013]

(4) = (1) [Bousquet-Mélou & Mishna 2010] + [B. & Kauers 2010]

(5) < (4) A posteriori observation
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Summary of Part 1: Classificat

The Main Theorem Let & be a 2D non-singular model with small steps.
The following assertions are equivalent:

(1) The full generating function Fg (t; x, ) is D-finite

(2) the excursions generating function Fg (£;0,0) is D-finite

(3) the excursions sequence [t"] Fg(£;0,0) is ~ K- p" - n*, with xaeqQ
(4) the group Gg is finite (and |Gg| = 2 - min{f € N* 1x+1 eZy})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)—(5), Fs (£ x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(ij)e6 (iL)e6  (ij)e&

In this case, Fs (f; x, 1) is expressible using nested radicals.
If not, Fs (t; x,y) is expressible using iterated integrals of »F; expressions.

> Proof of the last statements: [B., Chyzak, van Hoeij, Kauers & Pech 2017]
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Two important mo

6={l« 7 Fs(tix,y) = K(t;x,y)

S={",,+,—} Fstxy) =Gtxy)

D
SRS
A

Example: A Kreweras excursion.
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Gessel’s co

o Gessel walks: walks in IN? using only steps in & = { 7, //,+, —}
e ¢(n;1,j) = number of walks from (0,0) to (i,j) with n steps in &

Question: Find the nature of the generating function

G(tx,y) = i g(n;i,j)xiyjt" € Q[[x,y,t]]

i,jn=0

Theorem (B.-Kauers 2010) G(t; x, ) is an algebraic function.

— Effective, computer-driven discovery and proof

1t Minimal polynomial P(x,y,t, G(t; x,y)) = 0 has > 10 terms; ~ 30Gb (!)
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First guess, then prove [Pdlya, 1954]

wnires | GUESSinG and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.
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Personal bias: Experimental Mathematics using Computer Algebra

David H. Bailey

Modern computer Algebra Second Edition

Joachim von zur Gathen and Jirgen Gerhard

Victor H. Moll

Experimental
Mathematics
in Action
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Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data

(52) Conjecture

(S3) Prove
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 Methodology for proving algebraicty

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess a candidate for the minimal polynomial of Fg (£ x, ), using
Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

10 / 35
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Meth

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess candidates for minimal polynomials of Fg (f; x,0) and Fg (£0,vy),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.
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 Methodologyfor provingalgebreiy

Experimental mathematics -Guess'n’Prove— approach:

(S1) Generate data
compute a high order expansion of the series Fg (£; ¥, );

(52) Conjecture
guess candidates for minimal polynomials of Fg (f; x,0) and Fg (£0,vy),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra

10 / 35
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fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.
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fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(ni—1,j—-1)
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Step (S1):

fe(n;i,j) satisfies the recurrence with constant coefficients

fen+Lij)= ), fe(mi-uj—v) for nij>0
(u0)e&

+ initial conditions fe& (0;7, /) = &g, and fe (n; —1,j) = fs(n;i,—1) = 0.

Example: for the Kreweras walks,

k(n+1;i,j) =k(n;i+1,j)

+k(n;i,j+1) *

+k(mi—1,j—1)

> Recurrence is used to compute Fg (t; x,y) mod tV for large N.

K(t;x,y) = 1+ xyt + (2% +y + )2 + (3 + 2xy% + 222y +2)1°
+ (w4 3x2y% + 3232 4+ 292 + by + 2x2)
+ (Y + 43yt + axty® + 5xyP + 1227 + 523y + 8y + 8x) 0 + - -

11/35
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Step (S

In terms of generating functions, the recurrence on k(n;1,j) reads

(xy — (x +y+ 22y*))K(5x,y)
=xy —xtK(t;x,0) —yt K(£;0,v) (KerEq)

> A similar kernel equation holds for Fg (t; x,y), for any &-walk.

Corollary. Fg (t; x,y) is algebraic (resp. D-finite) if and only if Fg (£ x,0) and
Fes (£;0,y) are both algebraic (resp. D-finite).

> Crucial simplification: equations for G(t; x, y) are huge (=~ 30 Gb)

12/35
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Task 1: Given the first N terms of S = Fg(¢;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:
v

'S aS
cr(x,t)-ﬁ+---+c1(x,t) . g-l—co(x,t)-s =0 mod V.
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Task 1: Given the first N terms of S = Fg(¢;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

s

'S aS
cr(x,t)oﬁ+---+c1(x,t) . g-l—co(x,t)‘s =0 mod V.

Task 2: Search for an algebraic equation Py((S) =0 mod tV.
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Step (52): gues

Task 1: Given the first N terms of S = Fg(£;x,0) € Q[x][[t]], search for a
differential equation satisfied by S at precision N:

s

'S aS
cr(x,t)oW +-Foop(x, ) §+c0(x,t)~5 =0 mod tV.

Task 2: Search for an algebraic equation Py((S) =0 mod tV.

o Both tasks amount to linear algebra in size N over Q(x).

o In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

o Fast (FFT-based) arithmetic in Fp[t] and F[t] ().

13/35
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 Stap (52 guesing equatons for K(:3.0)

Using N = 80 terms of K(f;x,0), one can guess

> a linear differential equation of order 4, degrees (14,11) in (t, x), such that
£ (3t —1)- (92 43t +1) - (3> + 24£2x> — 3xt — 2x2)-
- (1662x° + 4xt — 72t4%3 — 18x3t 4+ 51242 + 18xt3 — 9t4)-

_ 9*K(t;x,0)

- (4253 — 12 4 2xt — x?
(4t°x + 2xt — x%) pye!

=0 mod %

> a polynomial of tridegree (6,10, 6) in (T, t, x)
Pro = xHOTO — 3248 (x —26)T5+

+ x40 (12t2 +3#2x% — 12xt + ;xz) T 4 ...

such that P, o(K(t;x,0),t,x) = 0 mod 180,

14 /35
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 Stap (52 guesing equations for Gt2,0) and G(E0Y)

Using N = 1200 terms of G(; x,y), our guesser found candidates

o Pypin Z[T,t, x] of degree (24,43,32), coefficients of 21 digits
o Po,y in Z[T,t,y] of degree (24,44,40), coefficients of 23 digits

such that

Pro(G(t;x,0),t,x) =0 mod #1200, Poy(G(t;0,y),t,y) =0 mod #1200,
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Step (52): gu

Using N = 1200 terms of G(¢; x, ), our guesser found candidates

o Pypin Z[T,t, x| of degree (24,43,32), coefficients of 21 digits
o Po, in Z|T,t,y] of degree (24,44, 40), coefficients of 23 digits

such that

Pyo(G(£x,0),t,x) =0 mod 2%, Py, (G(£0,y),t,y) =0 mod t2%.

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!
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Step (S2): guessing equations for G(t;x,0) and G(£;0,y)

Using N = 1200 terms of G(t; x,y), our guesser found candidates
0 Pyo in Z[T, t, x] of degree (24,43,32), coefficients of 21 digits
o Pyy in Z[T,t,y] of degree (24, 44,40), coefficients of 23 digits
such that

Pro(G(t;x,0),t,x) =0 mod 2%, Poy(G(t0,y),t,y) =0 mod $1200,

> Guessing Py o by undetermined coefficients would have required to solve
a dense linear system of size ~ 100000, and ~ 1000 digits entries!

> We actually first guessed differential equations’, then computed their
p-curvatures to empirically certify them. This led us suspect the algebraicity
of G(t;x,0) and G(t;0,y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

1 of order 11, and bidegree (96,78) for G(t;x,0), and (68,28) for G(t;0,y)
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~ Guessing is good, proving is better [_

How to Solve It

A New Aspect of

e Guessing and Proving

George Pélya

Guessing is good, proving is better.



Theorem. g(t) := G(V/£0,0) Z (5(2?3 1(2)2 Jn (16t)" is algebraic.
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Theorem. g(t) := G(\/E;0,0) _ i (5/6)u(1/2)n

n o .
L 7(5/3),(2)n (16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y 5 gnt" as a root.
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Theorem. g(t) := G(\/E;0,0) _ i (5/6)u(1/2)n

n o .
L (5/3)4(2)n (161)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).
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 Stap (55 warmup - Gessl xcursionsarealgebraie

(5/6)n 1/2)

G/ @ (16t)" is algebraic.

Theorem. g(t) := G(V/£0,0) = Z

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Such a P can be guessed from the first 100 terms of g(¢).

@ Implicit function theorem: 3! root r(t) € QI[#]] of P.
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Step (S3):

(5/6)n 1/2
Z (5/6)u(1/2)n

Theorem. g(t) := G(V/£0,0) 573D

(16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y 5 gnt" as a root.
@ Such a P can be guessed from the first 100 terms of g(¢).
@ Implicit function theorem: 3! root r(t) € QI[#]] of P.
@ r(t)=Y;_orat" being algebraic, it is D-finite, and so is (r4):
(n+2)Bn+5)ry,11 —4(6n+5)2n+1)r, =0, ro=1

= solution r, = Wl@‘ = gn, thus g(t) = r(t) is algebraic.
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(£0,y)

!
=0
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@ Setting yo = VI IPIAD) 124 L4154 i the
kernel equation (diagonal symmetry lmphes K(t Y, x) = (t,' X, Y))
(xy — (x +y + 2y )DK (£ x,y) = xy — xtK(t; x,0) — ytK(t;y,0)

!
=0
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. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)
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. —t—/xE 20+ 2 (1—4x3) .
® Setting yo = VI OIIIA) 4 124 28 4 inthe

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
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!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
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. __\/ﬁ .
® Setting yp = S VT IEIET 4 1p L BB Ly e

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].

@ U = H(t,x) also satisfies (RKerEq) Resultant computations!
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_

' P P(E0) ]
@ Setting yo = * VI 2OEEITAD _y 4 124 PB4 in the

kernel equation

(xy — (x +y + 2y )DK(t %, y) = xy — xtK(t; x,0) — ytK(£;y,0)

!
=0
shows that U = K(t; x,0) satisfies the reduced kernel equation

| O=x-yo—x-t-U(t,x)—yo-t-U(tyo) | (RKerEq)

@ (RKerEq) admits a unique solution in Q[[x, t]], namely U = K(¢; x,0).
@ The guessed candidate P, (T, t, x) has a root H(t,x) in Q[[x, t]].
@ U = H(t,x) also satisfies (RKerEq) Resultant computations!

® Uniqueness = H(t,x) = K(t;x,0) = K(t;x,0) is algebraic!

18 /35
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Algebraicity of

[bostan@inria ~]$ maple

N"/1 Maple 19 (APPLE UNIVERSAL 0SX)
_INI |/1_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
S > Waterloo Maple Inc.

| Type 7 for help.

**

HIGH ORDER EXPANSION (S1)
st,bu:=time () ,kernelopts(bytesused) :
f:=proc(n,i,j)
option remember;
if i<0 or j<O or n<O then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi
end:
> S:=series(add(add(f(k,i,0)*x"i,i=0..k)*t"k,k=0..80),t,80):

v v

**

GUESSING (S2)

> libname:=".",libname:gfun:-version();
3.62

> gfun:-seriestoalgeq(S,Fx(t)):

> P:=collect (numer (subs (Fx(t)=T,%[11)),T):

# RIGOROUS PROOF (S3)

> ker := (T,t,x) —> (x+T+x"2*T"2)*t-x*T:

> pol := unapply(P,T,t,x):

> pl resultant (pol(z-T,t,x),ker(t*z,t,x),z):

> p2 := subs(T=x*T,resultant (numer(pol(T/z,t,z)),ker(z,t,x),z)):
>

normal (primpart (p1,T) /primpart (p2,T)) ;
1

#*

time (in sec) and memory consumption (in Mb)
trunc(time () -st) ,trunc((kernelopts(bytesused)-bu)/100072);
7, 617

v
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Step (S3):

Same strategy, but several complications:
o stepset diagonal symmetry is lost: G(t;x,y) # G(ty, x);
o G(+0,0) occurs in (KerEq) (because of the step /);
o equations are ~ 5000 times bigger.

— replace equation (RKerEq) by a system of 2 reduced kernel equations.

— fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).

Available onli directcom

.B.....,.@......:r- Journal of
Symbolic
e Computation
ELSEVIER Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/js

Fast computation of special resultants

Alin Bostan®*, Philippe Flajolet?, Bruno Salvy?, Eric Schost®

® Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
Y LIX, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005
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© Guess'n’Prove is a powerful method, especially when combined with
efficient computer algebra

© It is robust: it can be used to uniformly prove

® D-finiteness in all the cases with finite group

® algebraicity in all the cases with finite group and zero orbit sum

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t;x,y) ~ 30Gb.
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INSIDE THE BOX

—Hermite-Padé approximants—
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Definition: Given a column vector F = (fy,..., f1)T € K[[x]]" and an n-tuple
d=(dy,...,dy) € N", a Hermite-Padé approximant of type d for F is a row
vector P = (Py,...,Py) € K[x]", (P # 0), such that:

(1) P-F= P1f1 —+ e +Pnfn = O(X‘T) with 0 = Zi(di + 1) —1,
(2) deg(P;) < d for all i.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality/transcendence):
o [Hermite 1873]: e is transcendent.
o [Lindemann 1882]: 7 is transcendent; so does ¢* for any a« € Q \ {0}.
o [Apéry 1978, Beukers 1981]: {(3) = Y ;>1 515 is irrational.
o [Rivoal 2000]: there exist infinite values of k such that {(2k+ 1) ¢ Q.
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Worked example

Let us compute a Hermite-Padé approximant of type (1,1,1) for (1,C, CZ),
where C(x) = 1+ x + 2x% + 5x3 4+ 14x* + 42x° + O(x°).
This boils down to finding &g, &1, Bo, 1,70, 71 (not all zero) such that

agF+arx+(Bo + B1x) (14 x +2x% + 537 + 14x*)+ (70 + 1) (1 + 2x + 5x% + 14x° + 42x*) = O (%)
Identifying coefficients, this is equivalent to a homogeneous linear system:

10 1 0 1 0 ZO 10 1 0 1 g 0
01 1 1 2 1 ﬁl 01 1 1 2 a 1
000 2 1 5 2|x|2% =010 0 2 1 5|x|f|=-m]2
00 5 2 14 5 P 00 5 2 14 B1 5
0 0 14 5 42 14 3‘1) 0 0 14 5 42 Yo 14

By homogeneity, one can choose y; = 1.
Then, the violet minor shows that one can take (B, f1,70) = (—1,0,0).
The other values are oy =1, a7 = 0.

Thus the approximant is (1, —1, x), which corresponds to P = 1 — y + xy?
such that P(x,C(x)) = 0 mod x°.
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Algebraic and diff

o Hermite-Padé approximants of n = 2 power series are related to Padé
approximants, i.e. to approximation of series by rational functions

o algebraic approximants = Hermite-Padé approximants for f, = AT

where A € K[[x]] seriestoalgeq, listtoalgeq
o differential approximants = Hermite-Padé approximants for f, = A=),
where A € K][x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x));
2
[1-y& +xy& , ogfl

> listtodiffeq([1,1,2,5,14,42,132,429],y(x));
/ 2 \
/d \ ld |

{2y& + @-4x |--y&I| +x |-—— y&@I, y0) =1, D(y)(0) = 1}, egf]
\dx / | 2 |
\dx /
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Existence and naiv

Theorem For any vector F = (fi,..., fu)T € K[[x]]" and for any n-tuple
d = (dq,...,dn) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z;.i;o pi,jxf satisfy a linear
homogeneous system with o =) ;(d; + 1) — 1 eqs and ¢ + 1 unknowns.

Corollary Computation in O(¢0®), for 2 < w < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

o Derksen's algorithm (Gaussian-like elimination) O(c?)
o Beckermann-Labahn's algorithm (DAC) O(c) = O(clog? r)
o structured linear algebra algorithms for Toeplitz-like matrices O(U)
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Quasi-optimal ¢

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (fi,..., fu) in O(n“d) ops. in K.

Ideas:

o Compute a whole matrix of approximants
o Exploit divide-and-conquer
Algorithm:

@ If o =n(d+1)—1 < threshold, call the naive algorithm
@ Else:

® recursively compute P; € K[x]"*" s.t. Py - F = O(x%/2), deg(P;) ~ ¢
@ compute “residue” R such that P - F = x7/2 . (R + O(x7/2))
@ recursively compute P, € K[x]"*" s.t. Py - R = O(x7/2), deg(Py) ~ %

@ returnP:=P>-P;

> The precise choices of degrees is a delicate issue
> Corollary: Ged, extended gcd, Padé approximants in O(d)
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BACK TO THE EXERCISE
—A hint-
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Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.
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_

Let G = {1, +, \,}. A G-walk is a path in Z? using only steps from &.
Show that, for any integer 7, the following quantities are equal:

(i) the number a, of &-walks of length 1 confined to the upper half plane
Z x N that start and end at the origin (0,0);

(ii) the number b, of G-walks of length 1 confined to the quarter plane IN?
that start at the origin (0,0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3:

va::: i\'::
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A recurren

h(n;i,j) = nb. of {1, -, \,}-walks in Z x N of length n from (0,0) to (,})
The numbers h(n;1, j) satisfy

0 ifj<0orn <0,
e ]li='=0 ifn:O,
h(n;i,j) = t h(n—1;i—1i,j—j') otherwise.
(i",j)e&

> h:=proc(n,i,j)
option remember;
if j<O0 or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1)+h(n-1,i+1,j)+h(n-1,i-1,j+1) fi
end:

> A:=series(add(h(n,0,0)*t"n,n=0..12),t,12);

A =1+38 +30t° +420¢° + O(+1?)
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A recurren

q(n;i,j) = nb. of {1, -, \ }-walks in IN? of length 7 from (0,0) to (i, )
The numbers q(n; i, j) satisfy

0 ifi<Oorj<Oorn<0,
A - i=i=0 ifVl:O,
91, ) t gn—1;i—i,j—j) otherwise.
(i,/7eS

> q:=proc(n,i,j)
option remember;
if i<0 or j<0 or n<0 then O
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1)+q(n-1,i+1,j)+q(n-1,i-1,j+1) fi
end:

> B:=series(add(add(q(n,k,k),k=0..n)*t"n,n=0..12),t,12);

B =1+ 3t 4 30t° 4+ 4207 + O(t1?)

31/35

NN o Algebr fo Lattice Path Combinalorics



> seriestorec(series(add(h(n,0,0)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27n -81n-54) u(n) + (o + 9n + 18) u(n + 3),
u(0) =1, u(1) =0, u(2) = 0}

> rsolve(%, u(n));

{ @/3) 1/2

{27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)

{ irem(n, 3) =0
{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) = 0
{

{ 0 irem(n-2, 3) =0

> A:=sum(subs(n=3*n,0p(2,%))*t~(3*n) ,n=0..infinity);
3
A := hypergeom([1/3, 2/3], [2], 27 t )

> Thus, differential guessing predicts

0 3n
At) = oF, (1/322/3‘2”3) -y (Bn)! ¢

o a1
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> series(add(add(q(n,k,k),k=0..n)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27n -8 n-54) u@) + (n +9n + 18) uln + 3),
u(0) =1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n));

{ @/3) 1/2

{27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)

{ irem(n, 3) =0
{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) = 0
{

{ 0 irem(n-2, 3) =0

> B:=sum(subs(n=3#*n,0p(2,%))*t~(3*n) ,n=0..infinity);
3
B := hypergeom([1/3, 2/3], [2], 27 t )

> Thus, differential guessing predicts

A(t) = B(t) =k (1/322/3'27t3> _ i @Bn)!

13 :
= nt n+1l
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> series(add(add(q(n,k,k),k=0..n)*t"n,n=0..30),t,30), u(n))[1];
2 2
{(-27n -81n-54) u(n) + (m» + 9n + 18) u(n + 3),
u(0) =1, u(1) =0, u(2) = 0}

> rsolve(%, u(n));

{ @/3) 1/2

{27 GAMMA(n/3 + 2/3) GAMMA(n/3 + 1/3) 3 (n/3 + 1)

{ irem(n, 3) =0
{ 2

{ 2 Pi GAMMA(n/3 + 2)

{

{ 0 irem(n-1, 3) = 0
{

{ 0 irem(n-2, 3) = 0

> B:=sum(subs(n=3*n,0p(2,%))*t~(3*n) ,n=0..infinity);
3
B := hypergeom([1/3, 2/3], [2], 27 t )

> In Part 3, we will prove this using creative telescoping
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Thanks for your attention!
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