
Dense Linear Algebra

—From Gauss to Strassen—

Alin Bostan

Specfun, Inria

MPRI C-2-22
September 28, 2020

The exercise from last week

Let A be a ring.

1. Estimate the number of multiplications in A needed by Karatsuba’s

algorithm to compute the product AB of any two polynomials A and B of

degree at most 3 in A[X].

2. Let us assume that 2, 3, and 5 are invertible in A and that the divisions of

elements of A by 2, 3, and 5 are free. Propose an algorithm that multiplies

A and B of degree at most 3 using at most 7 multiplications in A.

3. Let us assume that 2, 3, and 5 are invertible in A. Propose an algorithm

for polynomial product in A[X] whose arithmetic complexity is O(n1,41).

In what follows, we assume that the ring A has characteristic zero.

4. Show that, for any integer α ≥ 2, there exists an algorithm for polynomial

multiplication in A[X] whose arithmetic complexity is O(nlogα(2α−1)).

5. Show that for all ε > 0, there exists an algorithm for polynomial

multiplication in A[X] whose arithmetic complexity is O(n1+ε),where the

implied constant in the O(·) depends on ε but not on n.

Solution, Q1.

1. Estimate the number of multiplications in A needed by Karatsuba’s

algorithm to compute the product AB of any two polynomials A and B of

degree at most 3 in A[X].

. The number of multiplications mulK(n) used by Karatsuba’s algorithm in

degree < n satisfies mulK(n) = 3 ·mulK(dn/2e), with the initial condition

mulK(1) = 1. Hence, mulK(2s) = 3s for all s ≥ 0. In particular mulK(4) = 9.

. More exactly, let A = a0 +a1x+a2x
2 +a3x

3 and B = b0 + b1x+ b2x
2 + b3x

3.

Then, Karatsuba’s algorithm writes A = A0 + x2A1 and B = B0 + x2B1, with

A0 = a0 + a1x, A1 = a2 + a3x and B0 = b0 + b1x, B1 = b2 + b3x, then

computes AB = A0B0 + x2(A0B1 +A1B0) + x4A1B1 by writing

A0B1 +A1B0 = (A0 +A1)(B0 +B1)−A0B0 −A1B1. The 9 products in A are

a0b0, a1b1, (a0 + a1)(b0 + b1), a2b2, a3b3, (a2 + a3)(b2 + b3),

(a0 + a2)(b0 + b2), (a1 + a3)(b1 + b3), (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3).

Solution, Q2.

2. Let us assume that 2, 3, and 5 are invertible in A and that the divisions of

elements of A by 2, 3, and 5 are free. Propose an algorithm that multiplies

A and B of degree at most 3 using at most 7 multiplications in A.

. Recall: Karatsuba’s algorithm in degree 1 can be interpreted as an

evaluation-interpolation algorithm at 0, 1,∞.

. Idea: generalize this remark to higher degrees. Here deg(AB) ≤ 6, so 7

points are enough. Take for instance E := {−3,−2,−1, 0, 1, 2, 3}. The

algorithm computes A(e), B(e) for e ∈ E , then the products A(e)B(e) and

finally, it interpolates C := AB from these values.

. Crucial remark: the evaluation/interpolation steps are for free w.r.t. ring

multiplications. Indeed, only multiplications by integers arise, and they can

be simulated by +/−.

> A:=add(a[k]*x^k, k=0..3):

> [seq(eval(A,x=i), i=-3..3)];

[a[0] - 3 a[1] + 9 a[2] - 27 a[3], a[0] - 2 a[1] + 4 a[2] - 8 a[3],

a[0] - a[1] + a[2] - a[3], a[0], a[0] + a[1] + a[2] + a[3],

a[0] + 2 a[1] + 4 a[2] + 8 a[3], a[0] + 3 a[1] + 9 a[2] + 27 a[3]]

. In the interpolation step, one computes similar linear combinations with

integer coefficients, plus a division by 720 = 24 · 32 · 5.

> P:=interp([seq(i,i=-3..3)],[seq(v[i],i=1..7)],x):

> denom(P);

720

> [seq(coeff(numer(P),x,k),k=0..6)];

[720 v[4], 12 v[7] - 108 v[6] + 540 v[5] - 540 v[3] - 12 v[1] + 108 v[2],

4 v[7] - 54 v[6] + 540 v[5] + 540 v[3] + 4 v[1] - 980 v[4] - 54 v[2],

-15 v[7] + 120 v[6] - 195 v[5] + 195 v[3] + 15 v[1] - 120 v[2],

-5 v[7] + 60 v[6] - 195 v[5] - 195 v[3] - 5 v[1] + 280 v[4] + 60 v[2],

3 v[7] - 12 v[6] + 15 v[5] - 15 v[3] - 3 v[1] + 12 v[2],

v[7] - 6 v[6] + 15 v[5] + 15 v[3] + v[1] - 20 v[4] - 6 v[2]]

. As divisions by 2, 3, 5 are assumed free, we conclude that 7 multiplications

in A are enough to compute AB.

Solution, Q3.

3. Let us assume that 2, 3, and 5 are invertible in A. Propose an algorithm

for polynomial product in A[X] whose arithmetic complexity is O(n1,41).

. We can use recursively the result from Q2. This yields a DAC

(divide-and-conquer) algorithm that “cuts” input polynomials of degree < n

into 4 polynomials of degree < dn/4e. Its complexity is driven by the

recurrence T(n) = 7 · T(dn/4e) +O(n), whose solution is T(n) = O(nlog4(7)) ;

as log4(7) = 1,403677461 . . ., the algorithm has complexity in O(n1,41).

. Note that this improves on Karatsuba’s algorithm.

. Remark that the assumption on free divisions by 2, 3, and 5 is not needed

anymore. However, we still need the assumption that they are invertible. (We

compute their inverses at the beginning of the algorithm.)

Solution, Q4.

In what follows, we assume that the ring A has characteristic zero.

4. Show that, for any integer α ≥ 2, there exists an algorithm for polynomial

multiplication in A[X] whose arithmetic complexity is O(nlogα(2α−1)).

. If A,B ∈ A[x] have degrees at most n = α− 1, then C = AB has degree at

most 2n = 2α− 2 < 2α− 1. We choose E = {−n, . . . , n− 1, n} and compute C

by evaluation-interpolation on the points of E .

. Basic algorithm:

1. Compute the evaluations A(e), B(e), for e ∈ E .

2. Compute the products ve := A(e)B(e), for e ∈ E .

3. Return the polynomial interpolating the values ve at the points in E .

. This algorithm performs 2n+ 1 = 2α− 1 products in A and O(n) = O(α)

scalar operations (+, −, and × of elements in A by precomputed scalars).

. Now, if A and B have degrees < n, for arbitrary n, one cuts them into α

polynomials of degree < dn/αe, (Karatsuba algo. corresponds to α = 2), that

one multiplies them using the basic algorithm, recursively.

. The complexity T(n) satisfies

T(n) = (2α− 1)T(n/α) +K(α)n,

where K(α) is some function (with K(2) = 4). The solution is given by the

DAC theorem (with p = q = α, s = 1,m = 2α− 1, so q < m, T (x) = K(α)x

and κ = 1):

T(n) = nlogα(2α−1)

(
1 +K(α) · α

α− 1

)
= O(nlogα(2α−1)),

where the constant in O(·) depends on α, but not on n.

Solution, Q5.

In what follows, we assume that the ring A has characteristic zero.

5. Show that for all ε > 0, there exists an algorithm for polynomial

multiplication in A[X] whose arithmetic complexity is O(n1+ε),where the

implied constant in the O(·) depends on ε but not on n.

. The sequence logα(2α− 1) tends to 1 :

logα(2α− 1) = 1 +
ln 2

lnα
+O

(
1

α ln a

)
, α→∞

> [seq(evalf(log[a](2*a-1)),a=2..10)];

[1.584962501, 1.464973520, 1.403677461, 1.365212390, 1.338290833,

1.318123223, 1.302296865, 1.289450961, 1.278753601]

. Thus, for all ε > 0, there exists α ∈ N depending on ε > 0, such that

logα(2α− 1) < 1 + ε.

. The preceding reasoning shows that there exists a multiplication algorithm

in A[X] of complexity O(nlogα(2α−1)), where the constant in O(·) depends on

α, but not on n. This algorithm has a complexity O(n1+ε), where the

constant in O(·) depends on ε, but not on n.

Dense Linear Algebra

—From Gauss to Strassen—

Alin Bostan

Specfun, Inria

MPRI C-2-22
September 28, 2020

Introduction

Context

. Customary philosophy in mathematics:

“a problem is trivialized when it is reduced to a linear algebra question”

. From a computational viewpoint, it is important to address efficiency issues

of the various linear algebra operations

. The most fundamental problems in linear algebra:

• linear system solving Ax = b,

• computation of the inverse A−1 of a matrix A,

• computation of determinant, rank,

• computation of minimal polynomial, characteristic polynomial,

• computation of canonical forms (LU / LDU / LUP decompositions,

echelon forms, Frobenius forms = block companion, ...),

• computation of row/column reduced forms.

Warnings

. Natural mathematical ideas may lead to highly inefficient algorithms!

E.g., the definition of det(A), with exponential complexity in the size of A.

Also, Cramer’s formulas for system solving are not very useful in practice.

. In all what follows, we will work with a commutative effective field K, and

with the algebra Mn(K) of square matrices with entries in K.

. NB: most results extend to the case where K is replaced by a commutative

effective ring A, and to rectangular (instead of square) matrices.

Gaussian elimination

Theorem 0

For any matrix A ∈Mn(K), one can compute in O(n3) operations in K:

1. the rank rk(A)

2. the determinant det(A)

3. the inverse A−1, if A is invertible

4. a (vector/affine) solutions basis of Ax = b, for any b in Kn

5. an LUP decomposition (L = unit lower triangular, U = upper triangular,

P = permutation matrix)

6. an LDU decomposition (L/U = unit lower/upper triangular, D = diag)

7. a reduced row echelon form (Gauss-Jordan) of A.

. based on elementary row operations: (1) swapping rows; (2) multiplying

rows by scalars; (3) adding a multiple of one row to another row.

Main messages

. One can do better than Gaussian elimination!

. There exists 2 ≤ ω < 3, the “matrix multiplication exponent”, which

controls the complexity of all linear algebra operations.

. One can classify linear algebra algorithms in three categories:

• dense, without any structure (today): their manipulation boils down

essentially to matrix multiplication O(n3)→ O(nω), where ω < 2.38

• sparse (lecture 6): algos based on linear recurrences: O(n3)→Õ(n2)

• structured (Vandermonde, Sylvester, Toeplitz, Hankel,.., lecture 7):

algorithms based on the theory of the displacement rank: O(n3)→ Õ(n)

Applications

. Linear algebra is ubiquitous:

• computations with (dense and D-finite) power series (lecture 3)

• computation of terms of a recurrent sequence (lecture 5)

• Hermite-Padé approximants (lecture 6)

• symbolic integration and summation, Zeilberger’s algorithm (lecture 9)

• solutions of linear differential equations (lecture 10)
...

• integer factorization (sparse, over F2) and polynomial factorization over

finite fields (dense, for Berlekamp’s and Shoup’s algorithms)

• PageRank webpage ranking system relies on (sparse) linear algebra

• crypto-analysis: discrete logs (sparse)

Matrix multiplication

Matrix multiplication

Together with integer and polynomial multiplication, matrix multiplication is

one of the most basic and most important operations in computer algebra.

Matrix-vector product

Theorem [Winograd’67]

The naive algorithm for multiplying a m× n generic matrix by a n× 1 vector

(using mn multiplications and m(n− 1) additions) is optimal.

. Natural question: is the naive matrix product in size n (using n3 ⊗ and

n3 − n2 ⊕) also optimal?

Complexity of matrix product: main results

Theorem 1 [“naive multiplication is not optimal”]

One can multiply two matrices A,B ∈Mn(K) in:

1. n2dn2 e+ 2nbn2 c '
1
2n

3 + n2 multiplications in K [Pan’66-Winograd’68]

2. n2dn2 e+ (2n− 1)bn2 c '
1
2n

3 + n2 − n
2 multiplications in K [Waksman’69]

3. O(nlog2 7) ' O(n2.81) operations in K [Strassen 1969]

4. O(n2.38) operations in K [Coppersmith-Winograd, 1990]

5. O(n2.3728639) operations in K [Le Gall, 2014]

Exponent of matrix multiplication

Def. θ ∈ [2, 3] is a feasible exponent for matrix multiplication over K if one can

multiply any A,B in Mn(K) using O(nθ) ops. in K.

Def. Exponent of matrix multiplication ω = inf{θ | θ is a feasible exponent}.

Def. MM : N→ N is a matrix multiplication function (for a field K) if:

• one can multiply any A,B in Mn(K) using at most MM(n) ops. in K

• MM satisfies MM(n) ≤ MM(2n)/4 for all n ∈ N

• n 7→ MM(n)/n2 is increasing

. ω ∈ [2, 2.38]

. if K ⊂ L then ωK = ωL [Schönhage’72], so ωK only depends on char(K)

. Conjectured: ω does not depend on K

. Big open problem: Is ω = 2?

Winograd’s algorithm

Naive algorithm for n = 2

R =

 a b

c d

×
 x y

z t

 =

 ax+ bz ay + bt

cx+ dz cy + dt


requires 8⊗ and 4⊕

. Naive algorithm for arbitrary n requires n3⊗ and (n3 − n2)⊕

Winograd’s idea (1967): Karatsuba-like scheme

R =

 (a+ z)(b+ x)− ab− zx (a+ t)(b+ y)− ab− ty
(c+ z)(d+ x)− cd− zx (c+ t)(d+ y)− cd− ty



. Drawbacks: uses commutativity (e.g., zb = bz); not yet profitable for n = 2

Winograd’s algorithm

Same idea for n = 2k: for ` := (a1, · · · , an) and c := (x1, · · · , xn)T

(`|c) = (a1 + x2)(a2 + x1) + · · ·+ (a2k−1 + x2k)(a2k + x2k−1)− σ(`)− σ(c),

where σ(`) := a1a2 + · · ·+ a2k−1a2k and σ(c) := x1x2 + · · ·+ x2k−1x2k

The element ri,j of R = AX is the scalar product (`i|cj), where `1, . . . , `n are

the rows of A and c1, . . . , cn are the columns of X

Winograd’s algorithm:

• precompute σ(`i) for 1 ≤ i ≤ n −→ nk = n2

2 ⊗ and n(k − 1) = n2

2 − n ⊕

• precompute σ(cj) for 1 ≤ j ≤ n −→ nk = n2

2 ⊗ and n(k − 1) = n2

2 − n ⊕

• compute all ri,j := (`i|cj) −→ n2k = n3

2 ⊗ and n2(n+ k+ 1) = 3n3

2 +n2 ⊕

. Total: 1
2n

3 + n2 ⊗ and 3
2n

3 + 2n2 − 2n ⊕

Waksman’s algorithm

Idea for n = 2: write

R =

 a b

c d

×
 x y

z t

 =

 ax+ bz ay + bt

cx+ dz cy + dt


as

R =
1

2

(a+ z)(b+ x)− (a− z)(b− x) (a+ t)(b+ y)− (a− t)(b− y)

(c+ z)(d+ x)− (c− z)(d− x) (c+ t)(d+ y)− (c− t)(d− y)

 ,
and observe that the sum of the 4 products in red is equal to the sum of the 4

products in blue (and equal to ab+ zx+ cd+ ty)

. 2× 2 matrix product in 7 commutative ⊗, when char(K) 6= 2

. Idea generalizes to n× n matrices −→ 1
2n

3 + n2 − n
2 ⊗ for even n

Winograd/Waksman: summary

. They have cubic complexity, but are nevertheless useful in several contexts,

e.g. products of small matrices containing large integers

. They already show that naive multiplication is not optimal

. Their weakness is the use of commutativity of the base ring, which does not

allow a recursive use on blocks

. Natural question: can we do 7 non-commutative ⊗?

Matrix multiplication
Strassen’s algorithm

Matrix multiplication
Strassen’s algorithm

Strassen was attempting to prove, by process of elimination, that such an

algorithm did not exist when he arrived at it.

“First I had realized that an estimate tensor rank < 8 for two by two matrix

multiplication would give an asymptotically faster algorithm. Then I worked

over Z/2Z (as far as I remember) to simplify matters.”

Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional difficulty: Formulas should be non-commutative

 a b

c d

×
 x y

z t

 ⇐⇒


a b 0 0

c d 0 0

0 0 a b

0 0 c d

×

x

z

y

t


Crucial remark: If ε ∈ {0, 1} and α ∈ K, then 1 multiplication suffices for E · v,

where v is a vector, and E is a matrix of one of the following types:
α α

εα εα


,


α −α

εα −εα


,


α εα

−α −εα



Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M −


a a

a a


︸ ︷︷ ︸

E1

−

 d d

d d


︸ ︷︷ ︸

E2

=


b− a

c− a d− a
a− d b− d
c− d



Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M − E1 − E2 =


d− a a− d
d− a a− d


︸ ︷︷ ︸

E3

+


b− a

c− a d− a
a− d b− d

c− d



Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M − E1 − E2 − E3 =


b− a

a− d b− d

+


c− a d− a

c− d



Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M−E1−E2−E3 =


b− a

(b−d)−(b−a) b− d


︸ ︷︷ ︸

E5 + E4

+


c− a (c−a)−(c−d)

c− d


︸ ︷︷ ︸

E6 + E7

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

Conclusion

M = E1 + E2 + E3 + E4 + E5 + E6 + E7

=⇒ one can multiply 2× 2 matrices using 7 non-comm products instead of 8

DAC Theorem:

MM(r) = 7 ·MM(r/2) +O(r2) =⇒ MM(r) = O(rlog2(7)) = O(r2.81)


a a · ·

a a · ·

· · · ·

· · · ·


︸ ︷︷ ︸

E1

×


x

z

y

t

 =


a(x+ z)

a(x+ z)

·

·

 ,


· · · ·

· · · ·

· · d d

· · d d


︸ ︷︷ ︸

E2

×


x

z

y

t

 =


·

·

d(y + t)

d(y + t)



· · · ·

· d− a a− d ·

· d− a a− d ·

· · · ·


︸ ︷︷ ︸

E3

×


x

z

y

t

 =


·

(d− a)(z − y)

(d− a)(z − y)

·



· · · ·

· · · ·

· b−d · b−d

· · · ·


︸ ︷︷ ︸

E4

×


x

z

y

t

 =


·

·

(b− d)(z + t)

·

 ,


· b− a · ·

· · · ·

· −(b−a) · ·

· · · ·


︸ ︷︷ ︸

E5

×


x

z

y

t

 =


(b− a)z

·

−(b− a)z

·




· · · ·

c−a · c−a ·

· · · ·

· · · ·


︸ ︷︷ ︸

E6

×


x

z

y

t

=


·

(c−a)(x+y)

·

·

 ,


· · · ·

· · −(c−d) ·

· · · ·

· · c−d ·


︸ ︷︷ ︸

E7

×


x

z

y

t

=


·

−(c− d)y

·

(c− d)y



. In summary, 7 ⊗ (non-comm.) and 18 ⊕:
a b 0 0

c d 0 0

0 0 a b

0 0 c d

×


x

z

y

t

=


a(x+ z) + (b− a)z

a(x+ z) + (d− a)(z − y) + (c−a)(x+y)− (c− d)y

d(y + t) + (d− a)(z − y)+ (b− d)(z + t)− (b− a)z

d(y + t) + (c− d)y



. Extension: n3 − n(n− 1)/2 non-comm. ⊗ for n× n [Fiduccia’72]

. 7 non-comm. ⊗ and 15 ⊕ [Winograd’71] (instead of 18 ⊕ for [Strassen’69])

. Optimality: [Winograd’71], [Hopcroft & Kerr’71] (7 ⊗); [Probert’73] (15 ⊕)

Input Two matrices A,X ∈Mn(K), with n = 2k.

Output The product AX.

1. If n = 1, return AX.

2. Write A =

 a b

c d

, X =

 x y

z t

, with a, b, c, d, x, y, z, t ∈Mn/2(K).

3. Compute recursively the products

q1 = a(x+ z), q2 = d(y + t),

q3 = (d− a)(z − y), q4 = (b− d)(z + t)

q5 = (b− a)z, q6 = (c− a)(x+ y), q7 = (c− d)y.

4. Compute the sums

r1,1 = q1 + q5, r1,2 = q2 + q3 + q4 − q5,

r2,1 = q1 + q3 + q6 − q7, r2,2 = q2 + q7.

5. Return

 r1,1 r1,2

r2,1 r2,2

 .

In practice

. in a good implementation, Winograd & Waksman algorithms are interesting

for small sizes

. Strassen’s algorithm then becomes the best for n ≈ 64

. Kaporin’s algorithm becomes the best for n ≈ 500

. best practical algorithm is [Kaporin’04]: it uses n3/3 + 4n2 + 8n non-comm.

⊗ in size n. Choosing n = 48 leads to O(nlog48(46464)) = O(n2.776)

. the vast majority of the other algorithms rely on techniques that are two

complex, and that implies very big constants in the O(·) −→ interesting for

sizes over millions or billions

. magma is one of the few CAS that uses fast matrix multiplication

Other linear algebra problems

Complexity of linear algebra: main results

Theorem 2 [“Gaussian elimination is not optimal”]

Let θ be a feasible exponent for matrix multiplication in Mn(K). Then, one

can compute:

1. the inverse A−1 and the determinant det(A) of A ∈ GLn(K) [Strassen’69]

2. the solution of Ax = b for any A ∈ GLn(K) and x ∈ Kn [Strassen’69]

3. the LUP and LDU decompositions of A [Bunch & Hopcroft’74]

4. the rank rk(A) and an echelon form [Schönhage’72]

5. the characteristic polynomial χA(x) and the minimal polynomial µA(x)

[Keller-Gehrig’85]

using Õ(nθ) operations in K.

Complexity of linear algebra: main results

Theorem 3 [“equivalence of linear algebra problems”]

The following problems on matrices in Mn(K)

• multiplication

• inversion

• determinant

• characteristic polynomial

• LUP decomposition for matrices of full rank

all have the same asymptotic complexity, up to logarithmic factors.

In other words, the exponent ω controls the complexity of all these problems:

ω = ωinv = ωdet = ωcharpoly = ωLUP

. Open: are ωsolve and ωrank and ωisinvertible also equal to ω?

Inversion is not harder than multiplication

. [Strassen’69] showed how to reduce matrix inversion (and also linear system

solving) to matrix multiplication

. His result is: one can invert a (generic) n× n matrix in O(nθ) ops.

−→ “Gauss elimination is not optimal”

. [Klyuyev & Kokovkin-Shcherbak’65] had previously proven that Gaussian

elimination is optimal if one restricts to row and column operations.

. Strassen’s method is a Gaussian elimination by blocks, applied recursively

. His algo requires 2 inversions,6 multiplications and 2 additions, in size n
2 :

I(n) ≤ 2I(n/2) + 6MM(n/2) +n2/2 ≤ 3
∑
i

2i ·MM(n/2i) +O(n2) = O(MM(n))

Inversion of dense matrices

. Starting point is the (non commutative!) identity (a, b, c, d ∈ K?)

M =

 a b

c d

 =

 1 0

ca−1 1

×
 a 0

0 z

×
 1 a−1b

0 1

 ,
where z = d− ca−1b is the Schur complement of a in M .

. This identity (LDU decomposition) is a consequence of Gauss pivoting on M

. It follows the matrix factorization of the inverse of M : a b

c d

−1

=

 1 −a−1b

0 1

×
 a−1 0

0 z−1

×
 1 0

−ca−1 1


=

 a−1 + a−1bz−1ca−1 −a−1bz−1

−z−1ca−1 z−1

 .
. This identity being non-commutative, it holds for matrices a, b, c, d

Inversion of dense matrices
[Strassen, 1969]

To invert a dense matrix M =

A B

C D

 ∈Mn(K), with A,B,C,D ∈Mn
2

(K)

0. If n = 1, then return M−1.

1. Invert A (recursively): E := A−1.

2. Compute the Schur complement: Z := D − CEB.

3. Invert Z (recursively): T := Z−1.

4. Recover the inverse of M as

M−1 :=

 E + EBTCE −EBT

−TCE T

 .

DAC Theorem: I(n) = 2 · I
(
n
2

)
+O(MM(n)) =⇒ I(n) = O(MM(n))

Corollary: inversion M−1 and system solving M−1b in time O(MM(n))

Determinant of dense matrices
[Strassen, 1969]

To compute det(M) for M =

A B

C D

 ∈Mn(K), with A,B,C,D ∈Mn
2

(K)

0. If n = 1, then return M .

1. Compute E := A−1 and (recursively) dA := det(A).

2. Compute the Schur complement: Z := D − CEB.

3. Compute T := Z−1 and (recursively) dZ := det(Z).

4. Recover the determinant det(M) as dA · dZ .

DAC Theorem:

D(n) = 2 · D
(
n
2

)
+ 2 · I

(
n
2

)
+O(MM(n)) =⇒ C(n) = O(MM(n))

Corollary: Determinant det(M) in time O(MM(n))

Multiplication is not harder than inversion
[Munro, 1973]

Let A and B two n× n matrices. To compute C = AB, set

D =


In A 0

0 In B

0 0 In

 .
Then the following identity holds:

D−1 =


In −A AB

0 In −B
0 0 In


Thus n× n multiplication reduces to inversion in size 3n× 3n: ωmul ≤ ωinv.

Exercise. Let T(n) be the complexity of multiplication of n×n lower triangular

matrices. Show that one can multiply n× n matrices in O(T(n)) ops.

Computation of characteristic polynomial
[Keller-Gehrig, 1985]

. Assume A ∈Mn(K) generic, in particular χA := det(xIn −A) irred. in K[x]

. This implies χA(x) = µA(x) and B := {A,Av, . . . , An−1v} basis of Kn

Lemma. If v ∈ Kn \ {0}, then P :=
[
v|Av| · · · |An−1v

]
is invertible and

C := P−1AP is in companion form

Proof. If χA(x) = xn − pn−1x
n−1 − · · · − p1x− p0, then the matrix C of

f : w 7→ Aw w.r.t. B is companion, with last column [p0, . . . , pn−1]T .

Algorithm.

• Compute the matrix P := [A|Av| · · · |An−1v] O(n?)

• Compute the inverse M := P−1 O(nθ)

• Return the last column of MAP O(nθ)

Computation of characteristic polynomial
[Keller-Gehrig, 1985]

. Remaining task: fast computation of the Krylov sequence

{v,Av, . . . , An−1v}

. Naive algorithm: v
A·−→ Av

A·−→ A2v
A·−→ · · · A·−→ An−1v O(n3)

. Keller-Gehrig algorithm:

1. Compute A0 := A, Ak := A2
k−1 for k ≥ 1 by binary powering O(nθ log(n))

2. Compute [A2kv| · · · |A2k+1−1v] := Ak × [A2kv| · · · |A2k−1v] O(nθ log(n))

. Conclusion: Krylov sequence and thus χA(x) in O(nθ log(n))

The Keller-Gehrig algorithm

Input A matrix A ∈Mn(K), with n = 2k.

Output Its characteristic polynomial χA(x) = det(xIn −A).

1. Choose v in Kn \ {0}.
2. Set M := A and P := v.

3. For i from 1 to k, replace P by the horizontal concatenation of P and

MP , then M by M2.

4. Compute C := P−1AP and let [p0, . . . , pn−1]T be its last column.

5. Return xn − pn−1x
n−1 − · · · − p0.

Two exercises for next time

(1) Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply n× n matrices in O(T(n)) ops.

(2) Let P ∈ K[x] be of degree at most n and θ > 2 be a feasible exponent for

matrix multiplication in Mn(K).

(a) Find an algorithm for the simultaneous evaluation of P in d
√
n e elements

of K using O(nθ/2) in K.

(b) If A ∈Mn(K), show that one can compute P (A) in O(nθ+1/2) ops. in K.

(c) If Q ∈ K[X] is another polynomial of degree at most n, show that one can

compute the first n coefficients of P (Q(x)) using O(n
θ+1
2) ops. in K.

. Hint: Write P (x) as P0(x) + P1(x)xd + P2(x)(xd)2 + · · · , where d is

well-chosen and the Pi(x)’s have degrees less than d.

