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Context

> Customary philosophy in mathematics:

‘a problem is trivialized when it is reduced to a linear algebra question”

> From a computational viewpoint, it is important to address efficiency issues

of the various linear algebra operations

> The most fundamental problems in linear algebra:

linear system solving Ax = b,

computation of the inverse A~! of a matrix A,

computation of determinant, rank,

computation of minimal polynomial, characteristic polynomial,

computation of canonical forms (LU / LDU / LUP decompositions,

echelon forms, Frobenius forms = block companion, ... ),

computation of row/column reduced forms.
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Warnings

> Natural mathematical ideas may lead to highly inefficient algorithms!
E.g., the definition of det(A), with exponential complexity in the size of A.

Also, Cramer’s formulas for system solving are not very useful in practice.

> In all what follows, we will work with a (commutative) effective field K, and

with the (non-commutative) algebra M,,(K) of square matrices over K.

> NB: most results extend to the case where K is replaced by a commutative

effective ring A, and to rectangular (instead of square) matrices.
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Gaussian elimination

Theorem 0

For any matrix A € M,,(K), one can compute in O(n”) operations in K:

1. the rank rk(A)
2. the determinant det(A)

the inverse A~!, if A is invertible

=

a (vector/affine) solutions basis of Ax = b, for any b in K"

5. an LUP decomposition (L = unit lower triangular, U = upper triangular,

P = permutation matrix)
6. an LDU decomposition (L/U = unit lower/upper triangular, D = diag)

7. a reduced row echelon form (Gauss-Jordan) of A.

> based on elementary row operations: (1) swapping rows; (2) multiplying

rows by scalars; (3) adding a multiple of one row to another row.
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Main messages

> One can do better than Gaussian elimination!

> There exists 2 < w < 3, the so-called “matrix multiplication exponent”,

which controls the complexity of all linear algebra operations.

> One can classify linear algebra algorithms in three categories:

e dense, without any structure (today) — their manipulation boils down
essentially to matriz multiplication: O(n°) — O(n*), where w < 2.38

e sparse (lect. 10, 13/12) — algos based on linear recurrences: O(n®)— O(n?)

e structured (Vandermonde, Sylvester, Toeplitz, Hankel,. .., lect. 10, 13/12)
— algorithms based on the theory of the displacement rank: O(n*) — O(n)
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Applications

Linear algebra is ubiquitous:

computations with dense power series (lecture 4, 11/10)
computations with D-finite power series (lecture 5, 18/10)
computation of terms of a recurrent sequence (lecture 6, 25/10)
Hermite-Padé approximants (lecture 9, 06/12)

polynomial factorization over finite fields (lect. 11, 03/01)

symbolic integration & summation (lect. 13, 24/01)

integer factorization relies on (sparse) linear algebra over s
PageRank webpage ranking system relies on (sparse) linear algebra

crypto-analysis: discrete logs (sparse)
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Matrix multiplication
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Matrix multiplication

Together with integer and polynomial multiplication, matrix multiplication is

one of the most basic and most important operations in computer algebra.

10
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Matrix-vector product

Theorem [Winograd’67]

The naive algorithm for multiplying a m X n generic matrix by a n x 1 vector

(using mn multiplications and m(n — 1) additions) is optimal.

> Natural question: is the naive matrix product in size n (using n® ® and

n3 —n? @) also optimal?

12
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Complexity of matrix product: main results

Theorem 1 [“naive multiplication is not optimal”|

One can multiply two matrices A, B € M,,(K) using:

1.
2.

3
4.

N

n?[2] +2n|2 ] ~ in® 4+ n? multiplications in K [Pan’66-Winograd’68]

S

2274 (2n — 1) 2] ~ in® + n? — 2 multiplications in K [Waksman’69)


https://www.sciencedirect.com/science/article/pii/S0747717108800132
http://www.issac-symposium.org/2014/
https://www.siam.org/conferences/cm/conference/soda21
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A Refined Laser Method and Faster Matrix Multiplication

Josh Alman*

Abstract

The complexity of matrix multiplication is measured
in terms of w, the smallest real number such that two
n X n matrices can be multiplied using O(n**€) field
operations for all € > 0; the best bound until now is
w < 2.37287 [Le Gall’l4]. All bounds on w since 1986
have been obtained using the so-called laser method, a
way to lower-bound the ‘value’ of a tensor in designing
matrix multiplication algorithms. The main result of
this paper is a refinement of the laser method that
improves the resulting value bound for most sufficiently
large tensors. Thus, even before computing any specific
values, it is clear that we achieve an improved bound on
w, and we indeed obtain the best bound on w to date:

w < 2.37286.

The improvement is of the same magnitude as the im-
provement that [Le Gall’14] obtained over the previous
bound [Vassilevska W.’12]. Our improvement to the
laser method is quite general, and we believe it will have
further applications in arithmetic complexity.

Virginia Vassilevska Williams'

has developed a powerful toolbox of techniques, culmi-
nating in the best bound to date of w < 2.37287.

In this paper, we add one more tool to the toolbox
and lower the best bound on the matrix multiplication
exponent to

w < 2.37286.

The main contribution of this paper is a new refined
version of the laser method which we then use to ob-
tain the new bound on w. The laser method (as coined
by Strassen [Str86]) is a powerful mathematical tech-
nique for analyzing tensors. In our context, it is used
to lower bound the “value” of a tensor in designing ma-
trix multiplication algorithms. The laser method also
has applications beyond bounding w itself, including to
other problems in arithmetic complexity like comput-
ing the “asymptotic subrank” of tensors [Alm19|, and
to problems in extremal combinatorics like construct-
ing tri-colored sum-free sets [KSS18]. We believe our
improved laser method may have other diverse applica-
tions.

We will see that our new method achieves better

11 1 1 1 11 1 . 1 1 1- 1
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Exponent of matrix multiplication

Def. 6 € [2,3] is a feasible exponent for matrix multiplication over K if one can
multiply any A and B in M,,(K) using O(n’) ops. in K.

Def. Exponent of matrix multiplication w = inf{f | 0 is a feasible exponent}.

Def. MM : N — N is a matrix multiplication function (for a field K) if:
e one can multiply any A, B in M,,(K) using at most MM(n) ops. in K
e MM satisfies MM(n) < MM(2n)/4 for all n € N

e n+— MM(n)/n? is increasing

> w € [2,2.38]
> if K C L then wg = wy, [Schonhage’72], so wg only depends on char(K)
> Conjectured: w does not depend on K

> Big open problem: Is w = 27

15
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Winograd's algorithm
Naive algorithm for n = 2

b
R " _ axr + 0z

cx + dz

requires 8 ® and 4 &

ay + bt

cy + dt

> Naive algorithm for arbitrary n requires n° ©@ and (n® — n?) @

Winograd’s idea (1967): Karatsuba-like scheme

R —

> Drawbacks: uses commutativity (e.g., zb = bz); not yet profitable for n = 2

(a+2)b+x)—ab—zx (a+1t)(b+y)—ab—ty
(c+2)d+x)—cd—zx (c+t)(d+y)—cd—ty |

18
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Winograd's algorithm

Same idea for n = 2k: for £ := (a1, - ,a,) and ¢ := (v1, -+ ,2,)%

(llc) = (a1 + z2)(az + 1) + - + (a2k—1 + war ) (a2k + T2x—1) — 0 () — o(c),
where o(f) := ajas + - -+ + asip_10a2; and o(c) := r1x9 + - -+ + Top_1Tok
The element r; ; of R = AX is the scalar product (¢;|c;), where ¢1,...,¢, are
the rows of A and c¢q,...,c, are the columns of X
Winograd's algorithm:

e precompute o(¥;) for 1 <i<n — nk=" ® and n(k — 1) %Q—n@

e precompute o(c;) for 1 <j3<n — nk="% ® and n(k —1) ”72—71@

e compute all r; ; := (;|c;) —> n?k = ”73 ® and n*(n+k+1) = % +n? @

> Total: %nB +n? ® and %n?’ + 22 —2n P
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Waksman's algorithm

Idea for n = 2: write

B a b x Yy ar + bz ay + bt
= X =
c d z 1 cr+dz cy+dt
as
R—l (a+z)b+z)—(a—2)b—2) (a+t)(b+y)—(a—1t)(b—y)

2 (c+2)d+z)—(c—2)d—2) (c+t)d+y)—(c—1t)(d—1y)

and observe that the sum of the 4 products in red is equal to the sum of the 4
products in blue (and equal to ab+ zzx + cd + ty)

> 2 X 2 matrix product in 7 commutative ®, when char(K) # 2

> Idea generalizes to n X n matrices — %n?’ +n? — 5 & for even n
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Winograd /Waksman: summary

> They have cubic complexity, but are nevertheless useful in several contexts,
e.g. products of small matrices containing large integers

> They already show that naive multiplication is not optimal

> Their weakness is the use of commutativity of the base ring, which does not

allow a recursive use on blocks

> Natural question: can we do 7 non-commutative ®7

21
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Matrix multiplication

Strassen’s algorithm

22
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Matrix multiplication

Strassen’s algorithm

Strassen was attempting to prove, by process of elimination, that such an
algorithm did not exist when he arrived at it.

“First I had realized that an estimate tensor rank < 8 for two by two
matrix multiplication would give an asymptotically faster algorithm.
Then I worked over Z/27Z (as far as I remember) to simplify matters.”

23
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Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional difficulty: Formulas should be non-commutative

Crucial remark: If € € {0,1} and « € K, then 1 multiplication suffices for F - v,

S|

o O O

b
d
0
0

0
0
a

C

0
0
b
d

X
Z

Y
t

where v is a vector, and F is a matrix of one of the following types:

EQ

EQ

EQ

—E&X

EX

—EX

24
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Strassen’s matrix multiplication algorithm

Problem: Write

a b 0 O
c d 0 0
M =
0 0 a b
0 0 ¢ d
as a sum of less than 8 elementary matrices.
4 a ] i ] i b—a
a a c—a d—a
M — _ —
d d a—d b—d
d d c—d

25
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Strassen’s matrix multiplication algorithm

Problem: Write

S QL

0
0
a

C

as a sum of less than 8 elementary matrices.

d—a a—d
d—a a—d

M—E — By =

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

M—F, —Ey— E3 =

S Qo

0
0
a

C

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

M—E,—Eo—F5 =

S QL

0
0
a

C

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

o b 0 0|

c d 0 O
M =

O 0 a b

_OO cd_

as a sum of less than 8 elementary matrices.

Conclusion
M =FE) +Ey+ E3+ By + Bs + Eg + Er

—> one can multiply 2 X 2 matrices using 7 non-comm products instead of 8

DAC Theorem:
MM(r) = 7-MM(r/2) + O(r?2) = MM(r) = O(r'°e:(7) = O(r2-81)
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a a x a(x + z)
a a z | | alz+2)
Y
- - —t— b -
E;l - - _
d—a a—d
X
d—a a—d
T
Z _
b—d - b—d Y (b—d)(z+1)
- = —t—
E,

y zZ
d Y
d| |t
_ | d=a)(z~v)
(d—a)(z —y)
- -
X

—(b—a)

30
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x T
c—a c—a NN (c—a)(xz+y) —c—d) . —(c—d)y
Y - | Y -
I 1 Lt] | 1 1 c—d | | t]| | (e=d)y |
N ~ _ N ~ _

> In summary, 7 ® (non-comm.) and 18 ®:

a b 0 0 x a(x+2)+(b—a)z

c d 0 O . a(x+2)+(d—a)(z—y)+ (c—a)(x+y)— (c — d)y

0 0 a b Y dy+t)+(d—a)(z—y)+ b—-d)(z+t)— (b—a)z
| 0 0 ¢ d| |[t]| [ dly+t)+ (c—d)y ]

> —n(n —1)/2 non-comm. ® for n x n [Fiduccia’72]

> BExtension: n
> 7 non-comm. ® and 15 & [Winograd’71] (instead of 18 & for [Strassen’69])

> Optimality: [Winograd’71], [Hopcroft & Kerr’71] (7 ®); [Probert’73] (15 @)
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Input Two matrices A, X € M, (K), with n = 2~.
Output The product AX.

1. If n =1, return AX.

3. Compute recursively the products

@1 = a(z + 2), q2 = d(y +1),
gs = (d —a)(z — y), ga = (b—d)(z+1t)
g5 = (b—a)z, g = (c—a)(zr+y), qr=(c—dy

4. Compute the sums

r1,1 = q1 + g5, r1,2 = q2 + g3 + q4 — g5,
re1 = q1 + g3 + qs — qr, re2 = q2 + qr.
r1,1 T1,2

5. Return
r2,1 12,2

_ a b x Yy _
2. Write A = , X = , with a,b,¢c,d, z,y, 2,t € M,,/2(K).

32
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In practice

> in a good implementation, Winograd & Waksman algorithms are interesting

for small sizes
> Strassen’s algorithm then becomes the best for n ~ 64
> Kaporin’s algorithm becomes the best for n ~ 500

> best practical algorithm is [Kaporin’04]: it uses n°/3 + 4n° + 8n non-comm.
® in size n. Choosing n = 48 leads to O(n!°81s(16464)) — O(p2776)

> the vast majority of the other algorithms rely on techniques that are two
complex, and that implies very big constants in the O(-) — interesting for

sizes over millions or billions

> magma is one of the few CAS that uses fast matrix multiplication

33
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Other linear algebra problems
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Complexity of linear algebra: main results

Theorem 2 [“Gaussian elimination is not optimal”|

Let 6 be a feasible exponent for matrix multiplication in M,,(K). Then, one

can compute:
1. the inverse A~ and the determinant det(A) of A € GL,,(K) [Strassen’69]
2. the solution of Az = b for any A € GL,(K) and b € K™ [Strassen’69]
3. the LUP and LDU decompositions of A [Bunch & Hopcroft’74]
4. the rank rk(A) and an echelon form [Schonhage’72| of any A € M, (K)

5. the characteristic polynomial x4 (x) and the minimal polynomial g4 (x) of
any A € M,,(K) [Keller-Gehrig’85]

using O(n’) operations in K.
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Complexity of linear algebra: main results

Theorem 3 [“equivalence of linear algebra problems”|

The following problems on matrices in M, (K)
e multiplication
e inversion
e determinant
e characteristic polynomial
e LUP decomposition for matrices of full rank

all have the same asymptotic complexity, up to logarithmic factors.

In other words, the exponent w controls the complexity of all these problems:

W = Winy — Wdet — Wcharpoly — WLUP

> Open: are wsove and Wrank and Wisinvertible also equal to w?

36
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Inversion I1s not harder than multiplication

> [Strassen’69] showed how to reduce matrix inversion (and also linear system

solving) to matrix multiplication
> His result is: one can invert a (generic) n x n matrix in O(n’) ops.

— “(Gauss elimination is not optimal”

> [Klyuyev & Kokovkin-Shcherbak’65] had previously proven that Gaussian

elimination is optimal if one restricts to row and column operations.

> Strassen’s method is a Gaussian elimination by blocks, applied recursively

> His algo requires 2 inversions, 6 multiplications and 2 additions, in size 3:

(n) < 21(n/2) + 6MM(n/2) + n*/2 < 3> "2 - MM(n/2°) + O(n*) = O(MM(n))
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Inversion of dense matrices

> Starting point is the (non commutative!) identity (a, b, c,d € K*)

M —

a

C

d

1

—1

ca

0
1

where z = d — ca'b is the Schur complement of a in M.
> It is a consequence of Gauss pivoting on M (LDU decomposition)

> The U DL matrix factorization of the inverse of M follows:

-1 - - - - - -

a 1 —a1b a1 0 1 0
c d 0 1 0 21 —ca~ 1 1
al+atbz7tea™ ! a 1bz~1

—z tea™d 71

> This identity being non-commutative, it also holds for matrices a, b, c,d



MPRI, C-2-22 39
Inversion of dense matrices
[Strassen, 1969]
. . A B .
To invert a dense matrix M = € M, (K), with A, B,C, D € M= (K)
C D

0. If n = 1, then return M 1!,
1. Invert A (recursively): E := A1,
2. Compute the Schur complement: 7 := D — CEB.

3. Invert Z (recursively): T := Z~1.

4. Recover the inverse of M as

E+EBTCE —-EBT
—TCE T

M=

DAC Theorem: I(n) =2-1(%2) + O(MM(n)) = I(n) = O(MM(n))

Corollary: inversion M ~! and system solving x = M ~1b in time O(MM(n))
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Determinant of dense matrices
[Strassen, 1969]
A B .
To compute det(M) for M = € M, (K), with A, B,C, D € M= (K)
C D

0. If n =1, then return M.

1. Compute E := A~ and (recursively) d4 := det(A).
2. Compute the Schur complement: Z := D — CEB.

3. Compute T := Z~! and (recursively) dz := det(Z).
4. Recover the determinant det(M) as da - dz.

DAC Theorem:
D(n)=2-D(2)+2-1(2)+0O(MM(n)) = D(n)=0(MM(n))

Corollary: Determinant det(M) in time O(MM(n))



MPRI, C-2-22 41
Multiplication is not harder than inversion
[Munro, 1973]

Let A and B two n x n matrices. To compute C' = AB, set

I, A O
D=0 I, B
0 0 I,
Then the following identity holds:
I, —A AB |
D*'=|0 1, -B
0 0 I, |

Thus n x n multiplication reduces to inversion in size 3n X 3n: Wpu < Winy-

Exercise. Let T(n) be the complexity of multiplication of n x n lower triangular

matrices. Show that one can multiply n x n matrices in O(T(n)) ops.
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Computation of characteristic polynomial
[Keller-Gehrig, 1985]

> Assume A € M,,(K) generic, in particular y 4 := det(xl,, — A) irred. in K|z]
> This implies xa(z) = pa(z) and B := {v, Av, ..., A" v} is a K-basis of K"

Lemma. If v € K™ \ {0}, then P := [v|Av]|---|A""!v] is invertible and
C := P~1AP is in companion form

1

Proof. If xa(z) = 2™ — pp_12" " — -+ — p1x — po, then the matrix C of

f:w— Aw w.r.t. Bis companion, with last column [pg,...,pn_1]".
Algorithm.
e Compute the matrix P := [v|Av]|---|A" 1] O(n")
e Compute the inverse M := P~1 O(n?)

e Return the last column of M AP O(n?)
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Computation of characteristic polynomial
[Keller-Gehrig, 1985]

> Remaining task: fast computation of the Krylov sequence

{v, Av, ..., A" 1}

> Naive algorithm: v A A A A2y A A gny O(n?)

> Keller-Gehrig algorithm: Compute
1. Ag:= A and Ay := A2_, for k=1,2,... (binary powering) O(n’log(n))

2. [A2k11| - |A2k+1_1v} = Ap X {v| - |A2k_1v} for k=1,2,... O(n?log(n))

> Conclusion: Krylov sequence, and thus x4 (), in O(n?log(n))

43
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The Keller-Gehrig algorithm

Input A matrix A € M, (K), with n = 2~
Output Its characteristic polynomial x4 (x) = det(xI,, — A).

1. Choose v in K™\ {0}.
2. Set M := A and P :=v.

3. For ¢ from 1 to k, replace P by the horizontal concatenation of P and
MP, then M by M?.

4. Compute C := P71AP and let [py,...,pn_1]* be its last column.

n—1 _ .

5. Return 2" — p,,_1x - — Po.

44
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complexity, up to constant factors, as the multiplication of two
square matrices. Previously, this was only achieved by resorting
to genericity assumptions or randomization techniques, while

Keywords: the best known complexity bound with a general deterministic
Characteristic polynomial algorithm was obtained by Keller-Gehrig in 1985 and involves
Polynomial matrices logarithmic factors. Our algorithm computes more generally the
Determinant determinant of a univariate polynomial matrix in reduced form,
Fast linear algebra and relies on new subroutines for transforming shifted reduced

matrices into shifted weak Popov matrices, and shifted weak Popov
matrices into shifted Popov matrices.
© 2021 Elsevier Inc. All rights reserved.
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Two exercises for next Tuesday

(1) Let T(n) be the complexity of multiplication of n x n lower triangular

matrices. Show that one can multiply any two n x n matrices in O(T(n)) ops.

(2) Let K be a field, let P € K|z] be of degree less than n and 8 be a feasible

exponent for matrix multiplication in M., (K).

(a) Find an algorithm for the simultaneous evaluation of P at [y/n | elements

of K using O(n?/?) operations in K.

(b) If @ is another polynomial in K[X] of degree less than n, show how to

0+1

compute the first n coefficients of Po @ := P(Q(z)) in O(n 2 ) ops. in K.

> Hint: Write P(z) as Y., Pi(x)(xz?), where d is well-chosen and the P;'s have

degrees less than d.
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Bonus
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1. Better constant for Strassen-Winograd

Matrix Multiplication, a Little Faster

ELAYE KARSTADT and ODED SCHWARTZ, The Hebrew University of Jerusalem

Strassen’s algorithm (1969) was the first sub-cubic matrix multiplication algorithm. Winograd (1971) im-
proved the leading coefficient of its complexity from 6 to 7. There have been many subsequent asymptotic
improvements. Unfortunately, most of these have the disadvantage of very large, often gigantic, hidden con-
stants. Consequently, Strassen-Winograd’s O(nl°827) algorithm often outperforms other fast matrix multipli-
cation algorithms for all feasible matrix dimensions. The leading coefficient of Strassen-Winograd’s algorithm
has been generally believed to be optimal for matrix multiplication algorithms with a 2 X 2 base case, due to
the lower bounds by Probert (1976) and Bshouty (1995).

Surprisingly, we obtain a faster matrix multiplication algorithm, with the same base case size and asymp-
totic complexity as Strassen-Winograd’s algorithm, but with the leading coefficient reduced from 6 to 5. To
this end, we extend Bodrato’s (2010) method for matrix squaring, and transform matrices to an alternative
basis. We also prove a generalization of Probert’s and Bshouty’s lower bounds that holds under change of
basis, showing that for matrix multiplication algorithms with a 2 X 2 base case, the leading coefficient of
our algorithm cannot be further reduced, and is therefore optimal. We apply our method to other fast ma-
trix multiplication algorithms, improving their arithmetic and communication costs by significant constant
factors.

CCS Concepts: » Mathematics of computing — Computations on matrices; - Computing methodolo-
gies — Linear algebra algorithms;

Additional Key Words and Phrases: Fast matrix multiplication, bilinear algorithms

ACM Reference format:

Elaye Karstadt and Oded Schwartz. 2020. Matrix Multiplication, a Little Faster. . ACM 67, 1, Article 1 (January
2020), 31 pages.

https://doi.org/10.1145/3364504
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1. Better constant for Strassen-Winograd

Table 1. 2 X 2 Fast Matrix Multiplication Algorithms?

_ . Arithmetic .
Algorithm Additions Complexity I0-Complexity
log, 7
Strassen [58] 18 7n°%7 —6n? | 12. M (\/3. \/Lﬂ) 12 — 18n?
0g, 7
Strassen-Winograd [61] 15 6n°&7 —5n2 | 10.5.-M (\/5 \/LH) ©_15p2
\/_ log, 7
log,7 _ 4,2 9M( 3'i)
Ours 12 in3 ;1 an VM

> This seems to contradict Probert’s optimality result of the constant 15

> Can you see what happens here?
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2. Multiplication in small sizes

Contributed Paper

ISSAC ’21, July 18-23, 2021, Virtual Event, Russian Federation

The Tensor Rank of 5 X 5 Matrices Multiplication is Bounded
by 98 and Its Border Rank by 89

Alexandre Sedoglavic
UMR CNRS 9189 CRISTAL
Université de Lille
F-59000 Lille, France

ABSTRACT

We present a non-commutative algorithm for the product of 3 X 5
by 5 X 5 matrices using 58 multiplications. This algorithm allows
to construct a non-commutative algorithm for multiplying 5 X 5
(resp. 10 X 10,15 X 15) matrices using 98 (resp. 686, 2088) multipli-
cations. Furthermore, we describe an approximate algorithm that
requires 89 multiplications and computes this product with an arbi-
trary small error.

CCS CONCEPTS

« Computing methodologies — Exact arithmetic algorithms;
Linear algebra algorithms.

Alexey V. Smirnov
Russian Federal Center of Forensic Science
Department of Justice
Moscow, Russia

This non-commutative scheme is classically interpreted as a tensor
(see precise encoding in Section 2) and we recall that the number r
of its summands is the rank of that tensor. In this work, the no-
tations {(m X n X p : r) stands for a tensor of rank r encoding the
product Mm, n,p. We denote by (m X n X p) the whole family of such
schemes independently of their rank. The tensor rank R{(m X n X p) of
the considered matrix product is the smallest integer r such that there
isatensor(mXnXp:ryin{mXnXp). Similarly,  mxXnxp:r}
denotes a computational scheme of rank r involving a parameter €
whose limit computes the matrix product M, n p exactly as € tends
to zero. The border rank of M, n,p is the smallest integer r such that
there exists an approximate scheme {m X nXp : r}.
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2. Multiplication in small sizes

51

Algorithm tensor tll:i]s‘:)i construction ratio complexity stabilizer
rank rank
(2x2x2:7) 7|8 Strassen 1969 [DOI] 8750000000 | 2.807354922 | (S3)%S;
(3x3x3:23) 2327 |Laderman 1976 [DOI] 8518518518 | 2.854049830 | (CoxCp) XS5
(Axdx4:49) 49(64 | (2x2x2:7) ® (2x2x2:7) 7656250000 | 2.807354922 | S3xS;
(5x5x5:98) 98125 | (5x5x2:40) + (5x5x3:58) 7840000000 | 2.848800468 | C;
(6x6x6:160) 160(216 | (3x3x6:40) ® (2x2x1:4) 7407407407 | 2.832508438 | (CoxCp) XS 4xCyxCo
(IxTx7:250) 250343 | (4xdx4:49) + 3 (3x3x4:29) + 3 (3x4x4:38) | 7288629738 2.837469613 | C;
(8x8x8:343) 343[512 | (2x2x2:7) ® (Axdx4:49) 6699218750 | 2.807354922 | S3xS3xS;
(9x9x9:511) 511[729 | (9x9x1:81) + (9x9x8:430) 7009602195 | 2.838294116 | C;
(10x10x10:686) | 686 |1000 |(2x2x2:7) ® (5x5x5:98) 6860000000 | 2.836324116 | S
(Lx11x11:919) | 9191331 igig:gjggiw_<5x5x6:116>_+3 6904583020 | 2.845531329 | C;
(12x12x12:1040) | 1040|1728 | (2x4x4:26) ® (6x3x3:40) 6018518518 | 2.795668800 | Cox(CoxCy)XS,
(13x13x13:1443) | 1443|2197 ;}i‘&;lfg;::’7i§i’;f)"7:185>-+ 6568047337 | 2.836110404 | C;
(14x14x14:1720) | 1720|2744 | (IxTx7:250) + 3 TA(TXTXT, CTXTXTY) 6268221574 | 2.823007854 | C;
(15x15x15:2088) | 2088(3375 |(3x3x5:36) ® (5x5x3:58) 6186666667 | 2.822681037 | C;
(16x16x16:2401) | 2401(4096 | (2x2x2:7) ® (8x8x8:343) 5861816406 | 2.807354922 | S3xS3xS3%S3

> Sedoglavic:

online catalogue of 5426 fast matrix multiplication algorithms
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3. Boolean matrix multiplication

Computer Science > Data Structures and Algorithms

[Submitted on 27 Sep 2021]

Improved algorithms for Boolean matrix multiplication via opportunistic matrix
multiplication

David G. Harris

Karppa & Kaski (2019) proposed a novel type of "broken" or "opportunistic" multiplication algorithm, based on a variant of Strassen's
alkgorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. For instance, their algorithm
can compute Boolean matrix multiplication in Q(n'°%©+6/7) logn) = O(n*778) time. While faster matrix multiplication algorithms exist
asymptotically, in practice most such algorithms are infeasible for practical problems. Their opportunistic algorithm is a slight variant of
Strassen's algorithm, so hopefully it should yield practical as well as asymptotic improvements to it.

In this note, we describe a more efficient way to use the broken matrix multiplication algorithm to solve Boolean matrix multiplication. In

brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling
31og 6 log 6

and run a single iteration of the broken algorithm on it. The resulting algorithm has runtime O(n s7 (logn)ie7) < On*7%%). we also
describe an extension to witnhessing Boolean matrix multiplication, as well as extensions to non-square matrices.
The new algorithm is simple and has reasonable constants. We hope it may lead to improved practical algorithms

Subjects: Data Structures and Algorithms (cs.DS)
Cite as: arXiv:2109.13335 [cs.DS]
(or arXiv:2109.13335v1 [cs.DS] for this version)

Submission history

From: David Harris [view email]
[vl] Mon, 27 Sep 2021 20:26:20 UTC (17 KB)
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4. Multiplying pairs of 2 X 2 matrices

Mathematics > Algebraic Geometry

[Submitted on 22 Sep 2022]

Tensor rank of the direct sum of two copies of 2 X 2 matrix multiplication
tensor is 14

Filip Rupniewski

The article is concerned with the problem of the additivity of the tensor rank. That is for two independent tensors we
study when the rank of their direct sum is equal to the sum of their individual ranks. The statement saying that additivity
always holds was previously known as Strassen's conjecture (1969) until Shitov proposed counterexamples (2019). They
are not explicit and only known to exist asymptotically for very large tensor spaces. In this article, we show that for some
small three-way tensors the additivity holds. For instance, we give a proof that another conjecture stated by Strassen
(1969) is true. It is the particular case of the general Strassen's additivity conjecture where tensors are a pair of 2 X 2
matrix multiplication tensors. In addition, we show that the Alexeev-Forbes-Tsimerman substitution method preserves
the structure of a direct sum of tensors.

Comments: 24 pages, 4 figures. arXiv admin note: text overlap with arXiv:1902.06582
Subjects: Algebraic Geometry (math.AG)
MSC classes: 15269 (Primary), 14N07, 15A03 (Secondary)
Cite as: arXiv:2209.11040 [math.AG]
(or arXiv:2209.11040v1 [math.AG] for this version)
https://doi.org/10.48550/arXiv.2209.11040 @

Submission history

From: Filip Rupniewski [view email]
[v1l] Thu, 22 Sep 2022 14:35:19 UTC (2,099 KB)
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