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Creative Telescoping

1
1 · 2 +

1
2 · 3 + · · ·+ 1

2020 · 2021
= ?

. [J. Bernoulli 1682]: Use 1
k(k+1) =

1
k −

1
k+1 to create a telescoping sum(

1
1
− 1

2

)
+

(
1
2
− 1

3

)
+ · · ·+

(
1

2020
− 1

2021

)
= 1− 1

2021
.

. [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.

. Today: how computer algebra uses Bernoulli’s 1682 idea –systematically
and algorithmically–, to solve Knuth’s 1969 exercise, and more
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DIAGONALS
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

This is false for more than 2 variables. E.g.

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

is transcendental
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 1, then (trivially)

Diag (F) = F(t).
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 2 and F =
1

1− x− y
= ∑

i,j≥0

(
i + j

i

)
xiyj, then

Diag (F) = ∑
n≥0

(
2n
n

)
tn = 1 + 2 t + 6 t2 + 20 t3 + 70 t4 + · · · .
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Diagonals of multivariate power series

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Example: if n = 2 and F =
1

1− x− y
= ∑

i,j≥0

(
i + j

i

)
xiyj, then

Diag (F) = ∑
n≥0

(
2n
n

)
tn = 1 + 2 t + 6 t2 + 20 t3 + 70 t4 + · · · .

. Diag (F) is not a rational function, even though F is rational.
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Pólya’s theorem

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.

This is false for more than 2 variables. E.g.
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Pólya’s theorem

Definition

If F is a multivariate power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is the univariate power series

Diag(F)
def
= ∑

i
ai,...,iti.

Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.

Proof: Since F
(

x,
t
x

)
= ∑

i,j
ai,jxi−jtj we have that Diag (F) = [x0]F

(
x,

t
x

)
.

Therefore, by Cauchy’s integral theorem,

Diag (F) = [x−1]
1
x

F
(

x,
t
x

)
=

1
2πi

˛
|x|=ε

F
(

x,
t
x

)
dx
x

.

By the Residue Theorem: last integral is a sum of residues, all algebraic. �
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Example: Dyck walks

Let Bn be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in Z2

starting at (0, 0) and ending on the horizontal axis.

Rotat
in

g a Dyc
k brid

ge

co
unter

clo
ck

wise
by

π
/4

Equivalently, Bn = number of {N, E}-walks in Z2 from (0, 0) to (n, n)

=⇒ B(t) = ∑
n≥0

Bntn = Diag
(

1
1− x− y

)

Then: B(t) =
1

2πi

˛
|x|=ε

dx
x− x2 − t

=
1

1− 2x

∣∣∣∣
x= 1−

√
1−4t

2

=
1√

1− 4t
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Bntn = Diag
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1
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Rothstein-Trager resultant

Let A, B ∈ K[x] be such that deg(A) < deg(B), with B squarefree.
In particular, the rational function F = A/B has simple poles only.

Lemma. The residue ri of F at the pole pi equals ri =
A(pi)

B′(pi)
.

Proof. If F = ∑
i

ri
x− pi

, then ri = (F · (x− pi))|x=pi
=

A(x)
∏j 6=i(x− pj)

(pi)

Theorem. The residues ri of F are roots of the resultant

R(t) = Res x
(

B(x), A(x)− t · B′(x)
)
.

Proof. By Poisson’s formula: R(t) = ∏
i

(
A(pi)− t · B′(pi)

)
. �

. Introduced by [Rothstein-Trager 1976] for the (indefinite) integration of
rational functions.
. Generalized by [Bronstein 1992] to multiple poles.
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Example: diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N × N chessboard?
Assume that the Rook moves only right or up at each step.

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .
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Example: diagonal Rook paths

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

is

Diag(F) = [x0] F(x, t/x) =
1

2πi

˛
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

Residue theorem: Diag(F) is a sum of roots y of the Rothstein-Trager resultant

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> factor(resultant(denom(G),numer(G)-y*diff(denom(G),x),x));

t2(1− t)(2y− 1)(36ty2 − 4y2 + 1− t)

Answer: Generating series of diagonal Rook paths is
1
2

(
1 +

√
1− t
1− 9t

)
.
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Pólya’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti.

Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic.a

aThe converse is also true [Furstenberg, 1967]
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Pólya’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Pólya, 1922)

Diagonals of bivariate rational functions
are algebraic and thus D-finite.

. Algebraic equation has exponential size [B., Dumont, Salvy, 2015]

. Differential equation has polynomial size [B., Chen, Chyzak, Li, 2010]
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Lipshitz’s theorem

Definition

If F is a formal power series

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n ,

its diagonal is

Diag(F)
def
= ∑

i
ai,...,iti. Theorem (Lipshitz, 1988)

Diagonals of multivariate rational
functions are D-finite.

This is false for more than 2 variables. E.g.

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

is transcendental
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Example: Diagonal Rook paths on a 3D chessboard

Question [Erickson 2010]
How many ways can a Rook move from (0, 0, 0) to (N, N, N), where each
step is a positive integer multiple of (1, 0, 0), (0, 1, 0), or (0, 0, 1)?

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . . .

Answer [B., Chyzak, van Hoeij, Pech, 2011]: GF of 3D diagonal Rook paths is

G(t) = 1 + 6 ·

ˆ
t

0

2F1

(
1/3 2/3

2

∣∣∣∣ 27x(2−3x)
(1−4x)3

)
(1− 4x)(1− 64x)

dx
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Proof of Lipshitz’s theorem on the 3D Rooks example

Problem: Show that Diag(F) is D-finite, where F(x, y, z) is(
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz

Idea: If one is able to find a nonzero differential operator of the form

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G=
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F).

Proof:

Remaining task: Show that such an L does exist.

Alin Bostan Diagonals and Creative Telescoping



13 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Problem: Show that Diag(F) is D-finite, where F(x, y, z) is(
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz

Idea: If one is able to find a nonzero differential operator of the form

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G=
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F).

Proof:

Remaining task: Show that such an L does exist.

Alin Bostan Diagonals and Creative Telescoping



13 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Problem: Show that Diag(F) is D-finite, where F(x, y, z) is(
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz

Idea: If one is able to find a nonzero differential operator of the form

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G=
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F).

Proof:
1 Diag(F) = [x0y0] F

(
x,

y
x

,
t
y

)
2 0 = L(G) = P(G) + ∂x(·) + ∂y(·)

3 0 = [x−1y−1]L(G) = [x−1y−1]P(G) = P([x−1y−1]G) = P(Diag(F))

Remaining task: Show that such an L does exist.
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Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists of total degree at most N, such that

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



14 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists L(t, ∂t, ∂x, ∂y) of total degree at most N, such that LG = 0.

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



14 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists P(t, ∂t) of total degree at most N, such that P(Diag(F)) = 0.

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



14 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists P(t, ∂t) of total degree at most N, such that P(Diag(F)) = 0.

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



14 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists P(t, ∂t) of total degree at most N, such that P(Diag(F)) = 0.

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



14 / 37

Proof of Lipshitz’s theorem on the 3D Rooks example

Counting argument: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 ≤ i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 ≤ i ≤ 2N + 1, 0 ≤ j ≤ 3N + 2, 0 ≤ k ≤ 3N + 2.

. If N is such that # unknowns = (N+4
4 ) > 18(N + 1)3 = # equations, then

there exists P(t, ∂t) of total degree at most N, such that P(Diag(F)) = 0.

. N = 425 is the smallest integer satisfying (N+4
4 ) > 18(N + 1)3 (!)

. Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

. A better solution is provided by creative telescoping.

Alin Bostan Diagonals and Creative Telescoping



15 / 37

CREATIVE TELESCOPING
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Creative Telescoping

General framework in computer algebra –initiated by Zeilberger in the ’90s–
for proving identities on multiple integrals and sums with parameters.

Alin Bostan Diagonals and Creative Telescoping



17 / 37

Examples I: hypergeometric summation

∑
k∈Z

(−1)k
(

a + b
a + k

)(
b + c
b + k

)(
c + a
c + k

)
=

(a + b + c)!
a!b!c!

[Dixon 1903]

An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence [Apéry 1978]:

(n + 1)3 An+1 = (34n3 + 51n2 + 27n + 5)An − n3 An−1.

(Neither Cohen nor I had been able to prove this in the intervening two months
[Van der Poorten 1979])

n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
[Strehl 1992]
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a + k

)(
b + c
b + k

)(
c + a
c + k

)
=

(a + b + c)!
a!b!c!

[Dixon 1903]

An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence [Apéry 1978]:

(n + 1)3 An+1 = (34n3 + 51n2 + 27n + 5)An − n3 An−1.

(The specific problem was mentioned to Don Zagier, who solved it with
irritating speed [Van der Poorten 1979])

n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
[Strehl 1992]
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Examples II: Integrals and Diagonals

ˆ 1

0

cos(zu)√
1− u2

du =

ˆ +∞

1

sin(zu)√
u2 − 1

du =
π

2
J0(z)

1
2πi

˛ (1 + 2xy + 4y2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y2)

3
2

dy =
Hn(x)
bn/2c! [Doetsch 1930]

ˆ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2 [Glasser-Montaldi’94]

Diag
1

(1− x− y)(1− z− u)− xyzu
= ∑

n≥0
Antn [Straub 2014].
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Summation by Creative Telescoping

In :=
n

∑
k=0

(
n
k

)
= 2n.

Principle: IF one knows Pascal’s triangle:(
n + 1

k

)
=

(
n
k

)
+

(
n

k− 1

)
= 2

(
n
k

)
+

(
n

k− 1

)
−
(

n
k

)
,

then summing over k telescopes and yields

In+1 = 2In.

The initial condition I0 = 1 concludes the proof.
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Creative Telescoping for Sums

Fn = ∑
k

un,k =?

IF one knows P(n, Sn) (telescoper) and R(n, k, Sn, Sk) (certificate) such that

(P(n, Sn) + ∆kR(n, k, Sn, Sk)) · un,k = 0

(where ∆k is the difference operator, ∆k · vn,k = vn,k+1 − vn,k),
then the sum “telescopes”, leading to

P(n, Sn) · Fn = 0.
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Zeilberger’s Algorithm [1990]

Input: a hypergeometric term un,k, i.e., un+1,k
un,k

and un,k+1
un,k

are in Q(n, k)
Output:

a linear recurrence, called telescoper, (P) satisfied by Fn = ∑k un,k
a certificate (Q), for checking the result: P(n, Sn) · un,k = ∆kQ · un,k.

> T := binomial(n,k);
> Zpair:=SumTools[Hypergeometric][Zeilberger](T,n,k,Sn):
> tel:=Zpair[1];

Sn − 2

. This is a proof that In := ∑n
k=0 (

n
k) satisfies In+1 = 2 · In.

. Can check using the certificate:

> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2*T) - (subs(k=k+1,cert) - cert);
> simplify(convert(%,GAMMA));

0
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Example: from the SIAM challenges

1/4

1/4

1/4-ε 1/4+ε

Un,k :=
(

2n
2k

)(
2k
k

)(
2n− 2k

n− k

)(
1
4
+ c
)k (1

4
− c
)k 1

42n−2k ,

pn =
n

∑
k=0

Un,k = probability of return to (0, 0) at step 2n.

> p:=SumTools[Hypergeometric][Zeilberger](U,n,k,Sn);

[
(

4 n2 + 16 n + 16
)

Sn2 +
(
−4 n2 + 32 c2n2 + 96 c2n− 12 n + 72 c2 − 9

)
Sn

+ 128 c4n + 64 c4n2 + 48 c4, ...(BIG certificate)...]
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Creative Telescoping for Integrals

I(t) =
˛

γ
H(t, x) dx =?

IF one knows P(t, ∂t) (telescoper) and Q(t, x, ∂t, ∂x) (certificate) such that

(P(t, ∂t) + ∂xQ(t, x, ∂t, ∂x)) · H(t, x) = 0,

then the integral “telescopes”, leading to

P(t, ∂t) · I(t) = 0.
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The Almkvist-Zeilberger Algorithm [1990]

Input: a hyperexponential function H(t, x), i.e.,
∂H
∂t
H and

∂H
∂x
H are in Q(t, x)

Output:

a linear differential operator P(t, ∂t) satisfied by I(t) =
¸

γ H(t, x) dx

a G(t, x) ∈ Q(t, x) such that P(t, ∂t) · H(t, x) = ∂
∂x

(
G(t, x) · H(t, x)

)
.

Algorithm: Write L = Q(t). For r = 0, 1, 2, . . . do

1 compute a(x) :=
∂H
∂x
H ∈ L(x) and bk(x) :=

∂k H
∂tk
H ∈ L(x) for k = 0, . . . , r

2 decide whether the inhomogeneous parametrized LDE

∂G
∂x

+ a(x) · G =
r

∑
k=0

ck · bk(x)

admits a rational solution G ∈ L(x), for some c0, . . . , cr ∈ L not all zero
3 if so, then return P := ∑r

k=0 ck∂k
t and G; else increase r by 1 and repeat
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Example: Diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N × N chessboard?
Assume that the Rook moves only right or up at each step.

(rn)n≥0 : 1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Answer: rN = Nth coefficient in the Taylor expansion of
1
2

(
1 +

√
1− t

1− 9t

)
.

Alin Bostan Diagonals and Creative Telescoping



25 / 37

Example: Diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N × N chessboard?
Assume that the Rook moves only right or up at each step.

(rn)n≥0 : 1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Answer: rN = Nth coefficient in the Taylor expansion of
1
2

(
1 +

√
1− t

1− 9t

)
.

Alin Bostan Diagonals and Creative Telescoping



26 / 37

Diagonal Rook paths via Creative Telescoping

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

is

Diag(F) = [x0] F(x, t/x) =
1

2πi

˛
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

Creative telescoping computes a differential equation satisfied by Diag(F):

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> Zeilberger(G, t, x, Dt)[1];

(9t2 − 10t + 1)∂2
t + (18t− 14)∂t

Conclusion: Generating series of diagonal Rook paths is
1
2

(
1 +

√
1− t
1− 9t

)
.
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Creative Telescoping for multiple rational integrals

Problem:
x = x1, . . . , xn — integration variables

t — parameter

H(t, x) — rational function

γ — n-cycle in Cn
} ˛

γ
H(t, x)dx

Principle of creative telescoping

r

∑
k=0

ck(t)
∂k H
∂tk =

certificate︷ ︸︸ ︷
n

∑
i=1

∂Ai
∂xi︸ ︷︷ ︸

telescopic relation

=⇒

telescoper︷ ︸︸ ︷(
r

∑
k=0

ck(t)∂
k
t

)
·
˛

γ
Hdx = 0

Task:
1 find the ck(t) which satisfy a telescopic relation,
2 ideally, without computing the certificate (Ai).
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Example: Perimeter of an ellipse

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

p(e) = 4
ˆ 1

0

√
1− e2u2

1− u2 du = 4
"

dudv

1− 1−e2u2

(1−u2)v2

− 5
128

e6 − 175
8192

e8 − 441
32768

e10

Principle: Find algorithmically

(
(e− e3)∂2

e + (1− e2)∂e + e
)
·

 1

1− 1−e2u2

(1−u2)v2

 =

∂u

(
− e(−1−u+u2+u3)v2(−3+2u+v2+u2(−2+3e2−v2))

(−1+v2+u2(e2−v2))2

)
+ ∂v

(
2e(−1+e2)u(1+u3)v3

(−1+v2+u2(e2−v2))2

)
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(
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. Conclusion: p(e) =
π

2
· 2F1

(
− 1

2
1
2

1

∣∣∣∣ e2
)
= 2π − π

2
e2 − 3π

32
e4 − · · · .
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Example: 3D rook paths [B., Chyzak, van Hoeij, Pech, 2011]

Task: Given G = 1
xy ·

(
1−∑n≥1 xn −∑n≥1(y/x)n −∑n≥1(t/y)n)−1

construct a linear differential operator P(t, ∂t), and two rational functions R
and S in Q(t, x, y) such that

P(G) =
∂R
∂x

+
∂S
∂y

.

Solution: Creative telescoping!

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-z)))/y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff,[x::diff,y::diff]))):
> P;

P = t(t− 1)(64t− 1)(3t− 2)(6t + 1)∂3
t

+(4608t4 − 6372t3 + 813t2 + 514t− 4)∂2
t

+4(576t3 − 801t2 − 108t + 74)∂t

. The whole computation takes < 10 seconds on a personal laptop.

. Proves a recurrence conjectured by [Erickson 2010]
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Several generations of Creative Telescoping algorithms

1G, brutal elimination: [Fasenmyer, 1947], [Lipshitz, 1988], [Zeilberger,
1990], [Takayama, 1990], [Wilf, Zeilberger, 1990], [Chyzak, Salvy, 2000]

2G, linear diff/rec rational solving: [Zeilberger, 1990], [Zeilberger, 1991],
[Almkvist, Zeilberger, 1990], [Chyzak, 2000], [Koutschan, 2010]

3G, combines 1G + 2G + linear algebra: [Apagodu, Zeilberger, 2005],
[Koutschan 2010], [Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

. Advantages:

1G–3G: very general algorithms;

2G/3G algorithms are able to solve non-trivial problems.

. Drawbacks:

1G: slow;

2G: bad or unknown complexity;

1G and 3G: non-minimality of telescopers;

1G–3G: all compute (big) certificates.
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Several generations of Creative Telescoping algorithms

4G: roots in [Ostrogradsky, 1845], [Hermite, 1872] and [Picard, 1902].

univariate:
rational

´
: [B., Chen, Chyzak, Li, 2010];

hyperexponential
´

: [B., Chen, Chyzak, Li, Xin, 2013]
hypergeometric ∑: [Chen, Huang, Kauers, Li, 2015], [Huang, 2016]
mixed

´
+∑: [B., Dumont, Salvy, 2016]

algebraic
´

: [Chen, Kauers, Koutschan, 2016]
D-finite Fuchsian

´
: [Chen, van Hoeij, Kauers, Koutschan, 2018]

D-finite
´

: [B., Chyzak, Lairez, Salvy, 2018], [van der Hoeven, 2018]
multiple:

rational bivariate
‚

: [Chen, Kauers, Singer, 2012]
rational: [B., Lairez, Salvy, 2013], [Lairez 2016]
binomial sums: [B., Lairez, Salvy, 2017]

. Advantages:

complexity;

minimality of telescopers;

does not need to compute certificates;

fast in practice.

. Drawback: not (yet) as general as 1G–3G algorithms.
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Hermite’s method for indefinite integration

Pb. Given coprime f , g ∈ K[x], “compute”
ˆ

f
g

in the following sense:

write
f
g
= ∂x

( c
d

)
+

a
b

with a, b, c, d ∈ K[x], deg a < deg b and b squarefree.

Def. c/d is the rational part and
´

a/b is the logarithmic part of
´

f /g.

Idea [Ostrogradsky 1833–1845, Hermite 1872]
1. Compute the (rational) partial fraction decomposition of f /g, that is

f
g
= P +

m

∑
i=1

i

∑
j=1

fi,j

gj
i

where P, fi,j, gi ∈ K[x] with deg fi,j < deg gi and g = g1g2
2 · · · gm

m a
squarefree factorization: gi’s are squarefree and mutually coprime, gm 6= 1.

2. Then put into c/d all that comes from P and j > 1, and into a/b all that
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Hermite’s method for indefinite integration

Task: Given coprime f , g ∈ K[x], compute a, b, c, d ∈ K[x], with

deg a < deg b and b squarefree, such that
f
g
= ∂x

( c
d

)
+

a
b

.

Algorithm:

1 Compute the partial fraction decomposition
f
g
= P +

m

∑
i=1

i

∑
j=1

fi,j

gj
i

2 Perform Hermite reduction:
Let i ∈ {1, 2, . . . , m}. As gcd(gi, g′i) = 1, there exist u, v ∈ K[x] such that

ugi + vg′i = fi,j.

Exercise: Show that one can assume deg u < deg gi and deg v < deg gi.
Then, if j > 1, integration by parts gives

ˆ fi,j

gj
i

=

ˆ
u

gj−1
i

+

ˆ vg′i
gj

i

=
−v

(j− 1)gj−1
i

+

ˆ u + v′
j−1

gj−1
i

.

Repeating the process at most j times results inˆ fi,j

gj
i

=
ki,j

gj−1
i

+

ˆ
`i,j

gi
, with deg ki,j < deg gi and deg `i,j < deg gi.
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4G Creative Telescoping: univariate case

Problem: Given H = P/Q ∈ K(t, x) compute
˛

γ
H(t, x)dx

Hermite reduction: H can be written in reduced form

H = ∂x(g) +
a

Q? ,

where Q? is the squarefree part of Q and degx(a) < d? := degx(Q
?).

Algorithm [B., Chen, Chyzak, Li, 2010]

(1) For i = 0, 1, . . . , d? compute Hermite reduction of ∂i
t(H):

∂i
t(H) = ∂x(gi) +

ai
Q? , degx(ai) < d?

(2) Find the first linear relation over K(t) of the form ∑r
k=0 ckak = 0.

. L = ∑r
k=0 ck∂k

t is a telescoper (and ∑r
k=0 ckgk the corresponding certificate).
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4G Creative Telescoping: multiple case

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e, x) a rational function in e and x = x1, . . . , xn.

Output: A linear ODE T(e, ∂e)y = 0 satisfied by y(e) =
!

R(e, x)dx.

Complexity: O(D8n+2), where D = deg R.

Output size (tight!): T has order ≤ Dn in ∂e and degree ≤ D3n+2 in e

. Avoids the (costly) computation of certificates, of size Ω(Dn2/2).

. Previous algorithms: complexity (at least) doubly exponential in n.

. Very efficient in practice.
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Main ingredients of the integration algorithm

Griffiths–Dwork method for the generic case
Linear reduction classical in algebraic geometry;
Generalization of Hermite’s reduction.

Fast linear algebra on polynomial matrices
Macaulay matrices encoding Gröbner bases computations;
Sophisticated algorithms due to Villard, Storjohann, Zhou, etc.

Deformation technique for the general case
Input perturbation using a new free variable.

. Highly non-trivial extension by [Lairez, 2016]: tremendously improves the
efficiency of the algorithm in [B., Lairez, Salvy, 2013]
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Two exercises for next time (8/2/2021)

1 Compute a telescoper for the diagonal of the rational power series

1
1− x− y

= ∑
i,j≥0

(
i + j

i

)
xiyj

in two different ways:
1 using the 2G (Almkvist-Zeilberger) creative telescoping algorithm;
2 using the 4G (Hermite reduction-based) creative telescoping algorithm.

2 Let f , g ∈ Q[x] be two coprime polynomials. Let h ∈ Q[x] be another
polynomial such that deg h < deg f + deg g.

1 Show that the equation
s f + tg = h

admits an unique solution (s, t) ∈ Q[x]2 s.t. deg s < deg g, deg t < deg f .
2 Design an algorithm for computing the solution (s, t) starting from ( f , g, h)

in quasi-optimal complexity.
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