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+

(-

ooy b
2020 2021/ 2021°

2/37



R S S
1.2 2-3 20202021
> [J. Bernoulli 1682]: Use Kk +1 % 7(% to create a telescoping sum
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> [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.
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L+L+...+—1 —?
1.2 2.3 20202021

> [J. Bernoulli 1682]: Use m = % - k% to create a telescoping sum
1_1 + 1_1 + 4 L_L —1_L
1 2 2 3 2020 2021/ 2021°

> [Knuth 1969] Ex. 1.2.6.63:

[50] Develop computer programs for simplifying sums that involve
binomial coefficients.

> Today: how computer algebra uses Bernoulli’s 1682 idea —systematically
and algorithmically—, to solve Knuth’s 1969 exercise, and more
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DIAGONALS
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If F is a multivariate power series

— . Y L xin
F= E Ai,.cin®y " Xy
i1 0ryin >0

its diagonal is the univariate power series

Diag(F) défzﬂi,...,iti-
7
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If F is a multivariate power series

— . ] L xin
It = E Aiy,.in®q 7 Xy
i1 ryin >0

its diagonal is the univariate power series

Diag F) E“t, ,,-

Example: if n = 1, then (trivially)
Diag (F) = F(t).
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Diagonals of mu

Definition
If F is a multivariate power series
_ Y R
F= Y oi.,% % A
il/"-rinZO

its diagonal is the univariate power series

Diag(F ) Z“z, it I

1
Example:if n =2and F = —— = (
l-x—-y i,jzzlo

+7J
i

> x'yl, then

Diag(F) = Y (") " =142t + 62 +208 £ 70 +
n>0 \ "
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Diagonals of multiva

Definition
If F is a multivariate power series
_ Y R
F= Y oi.,% % A
Z'1/---rinZO

its diagonal is the univariate power series

Diag F) Za,, bt i

1
Example:if n =2and F = —— = (
l—-x—y i,;‘go

H._]> xiyf, then

1

Diag(F) = Y (") " =142t + 62 +208 + 70 +
n>0 \ "

> Diag (F) is not a rational function, even though F is rational.
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If F is a multivariate power series

— . . il DY i
F= E all/---/ln xl x,;l,
i1,.0,in >0

its diagonal is the univariate power series

Diag(F) défzﬂi,...,iti-
5

Diagonals of bivariate rational functions
are algebraic.
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Pélya’s theorem

Alp]
Definition
If F is a multivariate power series
F= ) i.iX - xi,
i1,000,in >0
17 > !
its diagonal is the univariate power series 4
Th Poélya, 1922
S P) 2‘11, ,I_ eorem (Pdlya, 1922)
Diagonals of bivariate rational functions

are algebraic.

Proof: Since F (x, £> = Z'Zj:a,',jxifjﬂ‘ we have that Diag (F) = [x°]F <x, ;)
Therefore, by Cauchy’s integral theorem,

. 1,1 t 1 t\ dx
Diag (F) = [+ '] F (’“}) = 2 m—f(’“'x) 3

By the Residue Theorem: last integral is a sum of residues, all algebraic. [J



BampleDyckwalle

Let B, be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in Z?
starting at (0,0) and ending on the horizontal axis.

Equivalently, B, = number of {N, E}-walks in Z? from (0,0) to (1,n)

=

Then: B(t)

B(t) = ) But" = Diag (ﬁ)

1

T2 fiyeex — 22—t 1-2x

x= 1=/ V14t
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BampleDyckwalks

Let By, be the number of Dyck bridges, i.e. {NE, SE}-walks of length n in 72
starting at (0,0) and ending on the horizontal axis.

—  B(t)= Y But" = Diag (#)

n>0

1 dx 1 2n
Then: B(t) = — = - t
() anﬁl‘gﬂ:ex—xz—t V1 —4t nzo(")

' AinBostan Diagonals and Creative Telescoping




Rothstein-Trag

Let A, B € K[x] be such that deg(A) < deg(B), with B squarefree.
In particular, the rational function F = A/ B has simple poles only.

A(pi)
B'(pi)

)
Alx
, th . — (F. —r = =
P enr; = (F-(x Pz))|x_p, Hj;éi(x —p;

Lemma. The residue r; of F at the pole p; equals r; =

i

Proof. If F =)
i

Theorem. The residues r; of F are roots of the resultant

R(t) = Res (B(x), A(x) —t- B/(x)).

Proof. By Poisson’s formula: R(t) = ]___[ (A(pi) —t- B'(pi)). O

1

> Introduced by [Rothstein-Trager 1976] for the (indefinite) integration of
rational functions.
> Generalized by [Bronstein 1992] to multiple poles.
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Example: diag

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N x N chessboard?
Assume that the Rook moves only right or up at each step.

—e

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
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Example: diagonal R

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
is
1
1- & - &

Diag(F) = [x°] F(x,t/x) = % ygF(x,t/x) dYx, where F = ———
1-x 1-y

Residue theorem: Diag(F) is a sum of roots y of the Rothstein-Trager resultant

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal (1/x*subs(y=t/x,F)):
> factor(resultant (denom(G) ,numer (G)-y*diff (denom(G),x),x));

£2(1—-t)(2y —1)(36ty> —4y> +1 —t)

1 1t
Answer: Generating series of diagonal Rook paths is 5 <1 + 1—9t> .
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If F is a formal power series

— . . il . in
F= 2 Ay, in X1 Xn's
1,eesin >0

its diagonal is

. def i
Diag(F) = Z“i,---,itl' Diagonals of bivariate rational functions
! are algebraic.”

“The converse is also true [Furstenberg, 1967]
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Poélya’s theorem

Definition
If F is a formal power series A
F= Y oy 5% -,
i1,000,in >0
its diagonal is > i
Diag 1:) Z a; it Theorem (Pélya, 1922)
Diagonals of bivariate rational functions

are algebraic.

> This is false for more than 2 variables. E.g.

. 1 B GBn)! , 32
piag (11— ) = L o =

n>0

27t> is transcendental

10/37
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Poélya’s theorem

Definition
If F is a formal power series A
F= Y oy 5% -,
i1,000sin >0
its diagonal is > i
Diag F) Z a; . 1_ Theorem (Pélya, 1922)
Diagonals of bivariate rational functions

are algebraic and thus D-finite.

> Algebraic equation has exponential size [B., Dumont, Salvy, 2015]
> Differential equation has polynomial size [B., Chen, Chyzak, Li, 2010]

10/37
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If F is a formal power series

—_— . . il DY in‘
F= E ull/---/ln xl X' s
i1,.0,in >0

its diagonal is

Diag F) Ea,l bt

Diagonals of multivariate rational
functions are D-finite.
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_ Fxample: Digoral Rook paths n a 3D chessboard

Question [Erickson 2010]
How many ways can a Rook move from (0,0,0) to (N, N, N), where each
step is a positive integer multiple of (1,0,0), (0,1,0), or (0,0,1)?

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . ..

Answer [B., Chyzak, van Hoeij, Pech, 2011]: GF of 3D diagonal Rook paths is

top (1/3 2/3 27xg2—3x))
25 2 (1—4x)3

(1— 4x)(1 — 64x)

G(H)=1+6-

I v ;onsts o Crontive Tlescoping



Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (-0 -y)(-2)
1-2(x4y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1
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Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (=501 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form

L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )

that annihilates G = % -F (x,%,é) , then P(t,9;) annihilates Diag(F).
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Proof of Lips

Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(l_zxn_zyn_zzn>‘1= (=51 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form
L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )
that annihilates G = % -F (x,%é) , then P(t,9;) annihilates Diag(F).

Proof:

; — 10,0 y i
@ Diag(F) = [x"y’|F (x’x'y>
@ 0=L(G) = P(G) + 9x(-) + 9y(-)

@ 0=[x"'y "JL(G) =[x 'y 'IP(G) = P([x"'y~]G) = P(Diag(F))
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Problem: Show that Diag(F) is D-finite, where F(x,y,z) is

(1_an_zyn_zzn>‘1= (=501 -y)0-2)
1-2(x+y+z)+3(xy+yz+zx) —4xyz

n>1 n>1 n>1

Idea: If one is able to find a nonzero differential operator of the form

L(t,04,0x,9y) = P(t,9¢) + ( higher-order terms in 9y and 9y, )

that annihilates G = % -F (x,%é) , then P(t,9;) annihilates Diag(F).

> Remaining task: Show that such an L does exist.
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Counting argument: By Leibniz’s rule, the (NZ"L) rational functions

Ho]0%a(G), 0<i+j+k+l(<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixfyk
G)NH' 0<i<2N+1,0<j<3N+2 0<k<3N+2

denom(
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Counting argument: By Leibniz’s rule, the (NZ‘L) rational functions

Ho]okal(G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

e, 0<i<2N+1,0<j<3N+2 0<k<3N+2
denom(G)

> If N is such that # unknowns = (N;*) > 18(N +1)% = # equations, then
there exists L(t,d;,0x,0dy) of total degree at most N, such that LG = 0.
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Counting argument: By Leibniz’s rule, the (NZ"L) rational functions

Hj0500(G), 0<i+j+k+L<N
are contained in the Q-vector space of dimension < 18(N + 1) spanned by

tixl yk

Y, 0<i<2N+1,0<j<3N+2,0<k<3N+2.
denom(G)

> If N is such that # unknowns = (¥ 4 > 18(N +1)° = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.
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Proof of Lips

Counting argument: By Leibniz’s rule, the (NZ‘L) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1) spanned by

tixl yk

Y, 0<i<2N+1,0<j<3N+2,0<k<3N+2.
denom(G)

> If N is such that # unknowns = (¥ 4 > 18(N +1)° = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (NI‘L) > 18(N+1)3 ()
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Proof of Lipshitz’s theor

Counting argument: By Leibniz’s rule, the (Nfl) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

—— N 0<i<2N+1,0<j<3N+2 0<k<3N+2.
denom(G)

> If N is such that # unknowns = (NV*) > 18(N +1)3 = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (V;*) > 18(N + 1) (1)

> Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)
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Proof of Lipshitz’s theore

Counting argument: By Leibniz’s rule, the (Nfl) rational functions

080, (G), 0<i+j+k+l<N
are contained in the Q-vector space of dimension < 18(N + 1)3 spanned by

tixl yk

—— N 0<i<2N+1,0<j<3N+2 0<k<3N+2.
denom(G)

> If N is such that # unknowns = (NV*) > 18(N +1)3 = # equations, then
there exists P(t,d;) of total degree at most N, such that P(Diag(F)) = 0.

> N = 425 is the smallest integer satisfying (V;*) > 18(N + 1) (1)

> Finding the operator P by Lipshitz’ argument would require solving a
linear system with 1,391,641,251 unknowns and 1,391,557,968 equations (!)

> A better solution is provided by creative telescoping.
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CREATIVE TELESCOPING

15 /37



Creative Telescoping

General framework in computer algebra —initiated by Zeilberger in the "90s—
for proving identities on multiple integrals and sums with parameters.

Alin Bostan Diagonals and Creative Telescoping



Exa

ok f(atb\ (b+c\c+a) _ (at+b+c)! .
‘k;z( 2 (a+k) (b+k> (c+k) T alle! [Dixon 1908]

n 2 2
® A, = E (Z) (n : k) satisfies the recurrence [Apéry 1978]:
k=0

(n+1)3A,41 = (34n® +51n% +27n 4+ 5) Ay — 1> A, _1.

(Neither Cohen nor I had been able to prove this in the intervening two months
[Van der Poorten 1979])

CEECEY-EOCTEQ s
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Exa

_kfatb\ b4\ fc+a) _ (a+b+o)! .
© kgi( 1 <a+k) (b+k> (c+k> = apier | [Pixon1903]

oy 2 n4+k 2 o )

® A= E X X satisfies the recurrence [Apéry 1978]:
k=0

(n+1)3A,11 = (3413 +51n% +27n + 5) A, — n3A, 1.

(The specific problem was mentioned to Don Zagier, who solved it with
irritating speed [Van der Poorten 1979])

CECE QLR s
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1 cos(zu) T sin(zu) T
© du = du = =
/0 2 VuZ—1 ! 2]0(2)
(1+2xy +4y%) exp
% (” ) _ (zx)| [Doetsch 1930]
7Ti yn (1 +4]/2)2 [n/2]!
Foo In(1 — a*) ,
® / xJ1(ax)I; (ax)Yo(x)Ko(x) dx = T [Glasser-Montaldi’94]
0
1
© Dia, =) Apt" [Straub 2014].
SA—x—y)d—z—u)—xyzu n; "
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Principle: IF one knows Pascal’s triangle:
n+1 n n n n n
()= () 68) =20+ (2 ()
then summing over k telescopes and yields

L1 = 2I,.

The initial condition Iy = 1 concludes the proof.
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Fo=Y uy=?
k
IF one knows P(n, S;) (telescoper) and R(n,k, Sy, Si) (certificate) such that
(P(n, Sn) + AkR(l’l, k, Sy, Sk)) Upf = 0

(where Ay is the difference operator, Ay - v,k = 0y k11 — Uy ),
then the sum “telescopes”, leading to

P(n,Sy)-F, =0.
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Input: a hypergeometric term u,,, i.e., % and % are in Q(n, k)
Output: ' '
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

21/ 37



Zeilberger’

Input: a hypergeometric term u,,, i.e., "L"ln;lk" and % are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

21 /37
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Zeilberger’s

Input: a hypergeometric term u,,, i.e., "L"ln;lk" and % are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y u, &
© a certificate (Q), for checking the result: P(n,S;) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

> This is a proof that I, := Y} (}) satisfies I, ;1 =2 I.

21 /37
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Zeilberger’s Algorithm [1990]

. . Uy, 1y, .
Input: a hypergeometric term u,,, i.e., ﬁ and ﬁ are in Q(n, k)
Output:
© a linear recurrence, called telescoper, (P) satisfied by F, = Y j u, &
© a certificate (Q), for checking the result: P(1n,S,) -, = AQ - 1y, .

> T := binomial(n,k);
> Zpair:=SumTools [Hypergeometric] [Zeilberger] (T,n,k,Sn):
> tel:=Zpair[1];

Sp—2

> This is a proof that I, := Y} (}) satisfies I, ;1 =2 I.
> Can check using the certificate:

> cert:=Zpair[2];
> iszero:=(subs(n=n+1,T) - 2+T) - (subs(k=k+1,cert) - cert);
> simplify(convert (%,GAMMA)) ;

0



Example: from the SIAM challeng

The SIAM 100-Digit

CHALLENGE

Uy (2 (2 (20 -2k (1, 1N
k= o)\ )\ n—k J\a7¢) \a™¢) grax
n

pn =Y U, = probability of return to (0,0)at step 2n.
k=0

> p:=SumTools [Hypergeometric] [Zeilberger] (U,n,k,Sn);

[(472 + 167 +16) Sn? + (—4n + 32202 + 96 ¢n — 121 + 722 — 9) Sn
+128c*n + 64 ctn® + 48 ¢*, ..(BIG certificate)...]



I(t) = yﬁ H(t,x)dx =?
v
IF one knows P(t,d;) (telescoper) and Q(t, x, 0y, 9y ) (certificate) such that
(P(t,at) +8xQ(t,x,8t,ax)) . H(t, x) =0,
then the integral “telescopes”, leading to

P(t,3;) - I(t) = 0.
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o on
Input: a hyperexponential function H(t,x), i.e., # and 4 are in Q(t, x)
Output:

© a linear differential operator P(t,0;) satisfied by I(f) = 55,7 H(t,x)dx
© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) ~H(t,x)).
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The Almkvist-Ze

Input: a hyperexponential function H(t, x), i.e., “IT and 3 4 are in Q(t, x)
Output:
© alinear differential operator P(t,0;) satisfied by I(t) = §, H(t, x) dx

© aG(t,x) € Q(t x) such that P(t,3;) - H(t,x) = & (G(t,x) -H(t,x)).

Algorithm: Write L = Q(t). Forr =0,1,2,... do
okH

) o H
@ compute a(x) := 7"’7; € LL(x) and by(x) := 9 € L(x) fork=0,...,r
@ decide whether the inhomogeneous parametrized LDE

aG
a -G = Z [ bk

admits a rational solution G € IL(x), for some ¢y, ..., ¢, € L not all zero
@ if so, then return P := erc:O cka’; and G; else increase r by 1 and repeat
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Example: Diag

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves only right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...
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Example: Diagona

Question: A chess Rook can move any number of squares horizontally or
vertically in one step. How many paths can a Rook take from the lower-left
corner square to the upper-right corner square of an N X N chessboard?
Assume that the Rook moves only right or up at each step.

-

(ra)n>0: 1, 2, 14, 106, 838, 6802, 56190, 470010, ...

2 1—-9t
I v gonsts o Crontive Tlescoping

Answer: ry = Nth coefficient in the Taylor expansion of L (1 + 1=t ) .



Diagonal Rook paths

Generating function of the sequence

1, 2, 14, 106, 838, 6802, 56190, 470010, ...
is
1
1- & - &

Diag(F) = [x°] F(x,t/x) = ﬁ ygF(x,t/x) d7x, where F = ———
1-x 1-y

Creative telescoping computes a differential equation satisfied by Diag(F):

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal (1/x*subs(y=t/x,F)):
> Zeilberger(G, t, x, Dt)[1];

(982 — 10t +1)2? + (18t — 14)0;

Conclusion: Generating series of diagonal Rook paths is % <1 +4/ 11_—91;) .
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Creative Telescopi

Problem:

X = X1,...,X;, — integration variables
t — parameter yé H(t,x)dx
H(t,x) — rational function U

v — n-cycle in C"

Principle of creative telescoping

certificate telescoper
—_———
g kH L 0A; r .
,;)Ck(t)aT = l;a_xl’ = (kgfk(t)at> .éde:O

telescopic relation

Task:
@ find the ¢, () which satisfy a telescopic relation,
@ ideally, without computing the certificate (A4;).
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1
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Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

e @
1-u2 1—c2u?
1-u (1- Zzl)lv2 * p

Principle: Find algorithmically %

28 /37



Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

4 1 - ezu2 dudo .
du = P
o \M

Principle: Find algorithmically "

((e— e3)a% + (1—¢%)o, +E) ‘ (ﬁ) -

(1-u?)v?
3 _e(—l—u+u2+u3)vz(—3+2u+v2+u2(—2+3e2—vz))
" (140?412 (2—0?) )2

—14ou2(e2—o2))’

T 11
> Conclusion: p(e) = 5 -2P1< % 2

2\ _op T2 _3Ta_
e)—27'r 26 32e
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 Bample Perimeterof anellipse

Example [Euler, 1733]: Perimeter of an ellipse of eccentricity e, semi-major axis 1

1- ezu2 _4 dudo .
1— u2 - 4 1-eu? e
o w

A
B

Principle: Find algorithmically e

((e—e3)a£+(1—e2)ae+e)~ (1_+) =

(1-u?)v?
5 _8(717u+u2+u3)vz(73+2u+02+u2(72+3227vz))
" (—1+02+u2(e2—02))?

‘o, (( e(—1+¢)u(1+u )vj)

1402 4-u?(e2—0?)

> Drawback: Size(certificate) > Size(telescoper).
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Task: Given G = xly (1= X" = L1 (/%) — anl(t/y)”)fl
construct a linear differential operator P(t,d;), and two rational functions R
and S in Q(¢, x,y) such that

oR 9dS
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Example: 3D r

Task: Given G = xly (1= X" = L1 (/%) — E,,Zl(t/y)”)*l
construct a linear differential operator P(t,9;), and two rational functions R
and S in Q(¢, x,y) such that

oR 9dS

Solution: Creative telescoping!

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-2))) /y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff, [x::diff,y::diff]))):
> P

H

29 /37
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Example: 3D rook p

Task: Given G = xly (1= X" = L1 (/%) — Z},,Zl(t/y)”)f1
construct a linear differential operator P(t,9;), and two rational functions R
and S in Q(¢, x,y) such that

oR 9§

Solution: Creative telescoping!

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-2))) /y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff, [x::diff,y::diff]))):
> P

H

P= t(t—1)(64t —1)(3t — 2) (6t +1)0}
+(4608t* — 63723 + 813t> + 514t — 4)97
+4(576t% — 801> — 108t + 74)0;
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Example: 3D rook paths [B.,

. -1
Task: Given G = xiy (1= X" = L1 (/%) = L1 (H/y)")
construct a linear differential operator P(t,d;), and two rational functions R
and S in Q(¢, x, y) such that

R3S

PG) =5 + 5y

Solution: Creative telescoping!

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-2))) /y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff, [x::diff,y::diff]))):
> P

H

P= t(t—1)(64t —1)(3t —2)(6t +1)37
+(4608t* — 63723 + 813t> + 514t — 4)97
+4(576t% — 801> — 108t + 74)0;

> The whole computation takes < 10 seconds on a personal laptop.
> Proves a recurrence conjectured by [Erickson 2010]



Several generations of Creati

© 1G, brutal elimination: [Fasenmyer, 1947], [Lipshitz, 1988], [Zeilberger,
1990], [Takayama, 1990], [Wilf, Zeilberger, 1990], [Chyzak, Salvy, 2000]

© 2G, linear diff/rec rational solving: [Zeilberger, 1990], [Zeilberger, 1991],
[Almkvist, Zeilberger, 1990], [Chyzak, 2000], [Koutschan, 2010]

© 3G, combines 1G + 2G + linear algebra: [Apagodu, Zeilberger, 2005],
[Koutschan 2010], [Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

> Advantages:
© 1G-3G: very general algorithms;
© 2G/3G algorithms are able to solve non-trivial problems.

> Drawbacks:
@ 1G: slow;
© 2G: bad or unknown complexity;
© 1G and 3G: non-minimality of telescopers;
© 1G-3G: all compute (big) certificates.



Several generations of Creati

4G: roots in [Ostrogradsky, 1845], [Hermite, 1872] and [Picard, 1902].

©® univariate:

© rational [: [B., Chen, Chyzak, Li, 2010];

© hyperexponential f : [B., Chen, Chyzak, Li, Xin, 2013]

© hypergeometric } : [Chen, Huang, Kauers, Li, 2015], [Huang, 2016]
© mixed [+ Y [B., Dumont, Salvy, 2016]
©
©

algebraic f : [Chen, Kauers, Koutschan, 2016]
D-finite Fuchsian [: [Chen, van Hoeij, Kauers, Koutschan, 2018]
© D-finite f : [B., Chyzak, Lairez, Salvy, 2018], [van der Hoeven, 2018]

© multiple:
© rational bivariate ¢p: [Chen, Kauers, Singer, 2012]

© rational: [B., Lairez, Salvy, 2013], [Lairez 2016]
© binomial sums: [B., Lairez, Salvy, 2017]
> Advantages:
© complexity;
© minimality of telescopers;
© does not need to compute certificates;
© fast in practice.

> Drawback: not (yet) as general as 1G-3G algorithms.



Pb. Given coprime f, g € K[x], “compute” / g in the following sense:

write g =0y (2) + % with a,b,¢,d € K[x], dega < degb and b squarefree.
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Pb. Given coprime f, g € K[x], “compute” / g in the following sense:

write jgr =0y (g) + % with a,b,¢,d € K[x], dega < degb and b squarefree.

Def. ¢/d is the rational part and [ a/b is the logarithmic part of [ f/g.

32/37



Hermite’s m

Pb. Given coprime f, g € K[x], “compute” / %; in the following sense:

write jgr =0y (2) + % with a,b,¢,d € K[x], dega < degb and b squarefree.

Def. ¢/d is the rational part and [ a/b is the logarithmic part of [ f/g.

Idea [Ostrogradsky 1833-1845, Hermite 1872]
1. Compute the (rational) partial fraction decomposition of f/g, that is

Lopefiyly

where P, f; ;, gi € K[x] with deg f; ; < degg; and ¢ = 8145 ---gm a
squarefree factorization: g;’s are squarefree and mutually coprime, g, # 1.

32/37
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Hermite’s method for i

Pb. Given coprime f, g € K[x], “compute” / g in the following sense:

writeizax ¢ +Ewitha,b,c,d€]l<x,de a < degb and b squarefree.
q d b g g q

Def. ¢/d is the rational part and [ a/b is the logarithmic part of [ f/g.

Idea [Ostrogradsky 1833-1845, Hermite 1872]
1. Compute the (rational) partial fraction decomposition of f/g, that is

Lopefiyt

where P, f;, ¢; € K[x] with deg f;; < degg; and g = g1 g gha
squarefree factorization: g;’s are squarefree and mutually coprime, g, # 1.

2. Then put into c¢/d all that comes from P and j > 1, and into a/b all that
comes from j = 1. To do this, use integration by parts and extended gcds.

32/37
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Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

fog (841
dega < degb and b squarefree, such that . Ox ( d) + b
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Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

f_ €y, 4
dega < degb and b squarefree, such that g % (d) Ty

Algorithm:

@ Compute the partial fraction decomposmon ~ =P+ Z Z fl’]

11]137
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Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

foy(ey. a2
dega < degb and b squarefree, such that g =0y ( d) + b

Algorithm:
@ Compute the partial fraction decomposmon ~ =P+ Z Z fl’]

i=1j=1 g]
@ Perform Hermite reduction:
Leti € {1,2,...,m}. As gcd(gi,g;) =1, there exist u,v € K[x] such that

ugi+0g; = fij
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Hermite’

Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

fa (8) 418
dega < degb and b squarefree, such that ¢ Ox ( d) + b

Algorithm:
@ Compute the partial fraction decomposmon ~ =P+ E Z fl’]

i=1j=1 gl
@ Perform Hermite reduction:
Leti € {1,2,...,m}. As gcd(gi,gg) =1, there exist u,v € K[x] such that

ugi+0g; = fij

Exercise: Show that one can assume degu < degg; and degv < degg;.

33 /37
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Hermite’s met

Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

fa (8) 418
dega < degb and b squarefree, such that ¢ Ox ( d) + b

Algorithm:
@ Compute the partial fraction decomposmon ~ =P+ Z Z fl’]

i=1j=1 gl
@ Perform Hermite reduction:
Leti € {1,2,...,m}. As gcd(gi,gg) =1, there exist u,v € K[x] such that

ugi+0g; = fij

Exercise: Show that one can assume degu < degg; and degv < deg g;.
Then, if j > 1, integration by parts gives

ij g ”+—
[T s 5= m [

33 /37
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Hermite’s method for i

Task: Given coprime f, ¢ € K[x], compute 4,b,c,d € K[x], with

dega < degb and b squarefree, such that g = Jy (7) + %.
Algorithm:

. . o f mo L fi

@ Compute the partial fraction decomposition . P+) Y ==

@ Perform Hermite reduction:
Leti € {1,2,...,m}. As gcd(gi,glf) =1, there exist u,v € K[x] such that
ugi +0g; = fij-
Exercise: Show that one can assume degu < degg; and degv < deg g;.
Then, if j > 1, integration by parts gives

J5=] g e e

Repeating the process at most j times results in

fij  kij b ,
= 4 g with degk;; < degg; and deg/(;; < degg;.
i

s g
i i
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Problem:  Given H = P/Q € K(t,x) compute 55 H(t,x)dx
gt

34 /37



Problem:  Given H = P/Q € K(t,x) compute 55 H(t,x)dx
ot

Hermite reduction: H can be written in reduced form
H=0:(g)+ Q =
where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).
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46 Creatve Telescoping: niaristecase

Problem:  Given H = P/Q € K(t, x) compute 56 H(t, x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of a;‘ (H):

i(H) = 9x(g:) + é deg, (a;) < d*

34 /37
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46 Creatve Telecoping: univaristecsse

Problem:  Given H = P/Q € K(t, x) compute %H(t,x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of a;‘ (H):

i(H) = 9x(g:) + é deg, (a;) < d*

(2) Find the first linear relation over K(f) of the form Y3 _ cxar = 0.

34 /37
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Problem:  Given H = P/Q € K(t, x) compute ?gH(t,x)dx
Y

Hermite reduction: H can be written in reduced form

H=0:(g)+ Q*'

where Q* is the squarefree part of Q and deg,(a) < d* := deg,(Q*).

Algorithm [B., Chen, Chyzak, Li, 2010]
(1) Fori=0,1,...,d* compute Hermite reduction of 8’; (H):
) a:
0t (H) = 0x(8:) + Q—l* deg, (a;) <d*

(2) Find the first linear relation over K(f) of the form Y3 _ cxar = 0.
>L=Y7, cxdF is a telescoper (and Yr—o Ck8k the corresponding certificate).

34 /37
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4G Creative Telescopin

Algorithm for the integration of rational functions [B., Lairez, Salvy, 2013]

Input: R(e,x) a rational function in e and x = x1, ..., Xy.
Output: A linear ODE T'(e,d.)y = 0 satisfied by y(e) = {f R(e, x)dx.
Complexity: O(D¥+2), where D = deg R.

Output size (tight!): T has order < D" in 9, and degree < D¥? in e

> Avoids the (costly) computation of certificates, of size Q(D"/2),
> Previous algorithms: complexity (at least) doubly exponential in .

> Very efficient in practice.
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Main ingredients of

Griffiths—-Dwork method for the generic case
Linear reduction classical in algebraic geometry;
Generalization of Hermite’s reduction.

Fast linear algebra on polynomial matrices
Macaulay matrices encoding Grobner bases computations;
Sophisticated algorithms due to Villard, Storjohann, Zhou, etc.

Deformation technique for the general case
Input perturbation using a new free variable.

> Highly non-trivial extension by [Lairez, 2016]: tremendously improves the
efficiency of the algorithm in [B., Lairez, Salvy, 2013]

36 /37
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Two exercises for

@ Compute a telescoper for the diagonal of the rational power series

1 _ i+j i
1—x—y_ Z( i )xy

i,j>0

in two different ways:

@ using the 2G (Almkvist-Zeilberger) creative telescoping algorithm;
@ using the 4G (Hermite reduction-based) creative telescoping algorithm.

@ Let f,g € Q[x] be two coprime polynomials. Let i € Q[x] be another
polynomial such that degh < deg f + degg.

@ Show that the equation
sf+tg="h

admits an unique solution (s, ) € Q[x]? s.t. degs < degg, degt < deg f.
@ Design an algorithm for computing the solution (s, t) starting from (f, g, 1)
in quasi-optimal complexity.
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