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M2 Internship Projects

• Algorithms for the parametrization of plane curves (Bostan)

• Algorithms for solving q-difference equations (Bostan)

• Multipoint power series expansions (Lairez)

• Univariate matrices for faster polynomial system solving (Neiger)

• Multi-level algebraic structures and faster guessing (Neiger)

⇝ detailed descriptions available on request: contact us asap if interested!
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The exercises from last week

(1) Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

(2) Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication inMn(K).

(a) Find an algorithm for the simultaneous evaluation of P at ⌈
√
n ⌉ elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2 ) ops. in K.

▷ Hint: Write P (x) as
∑

i Pi(x)(x
d)i, where d is well-chosen and the Pi’s have

degrees less than d.
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Ex. 1

Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

Solution:

▷ For any n× n matrices A and B,
0 0 0

B 0 0

0 A 0


2

=


0 0 0

0 0 0

AB 0 0

 .

▷ Let α be a feasible exponent for multiplication of lower triangular matrices.

Then, nθ ≤ T(3n) = O(nα) and thus θ ≤ α.



MPRI, C-2-22 5

Ex. 2

Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication inMn(K).

(a) Find an algorithm for the simultaneous evaluation of P at ⌈
√
n ⌉ elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2 ) ops. in K.

Solution 2(a):

▷ Write P (x) as
∑

i Pi(x)(x
d)i, where d = ⌈

√
n⌉ and the Pi’s have degrees < d

▷ Evaluations of the Pi’s at the points x1, . . . , xd read off the matrix product
P0(x1) . . . P0(xd)

...
...

Pd−1(x1) . . . Pd−1(xd)

 =


p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×


1 . . . 1
...

...

xd−1
1 . . . xd−1

d
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Ex. 2

Solution 2(b): Baby step / giant step strategy

▷ Write P (x) as
∑

i Pi(x)(x
d)i, where d = ⌈

√
n⌉ and the Pi’s have degrees < d

▷ Compute Q2, . . . , Qd =: R and R2, . . . , Rd−1 mod xn O(dM(n)) = O(n
θ+1
2 )

For pi,j := [xj ]Pi and qi,j := [xj ]Qi (j < n, i < d), compute Pi(Q) mod xn

using the (d× d)× (d× n) matrix product [xj ]Pi(Q) =
∑

k pi,kqk,j
p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×


q0,0 . . . q0,n−1

...
...

qd−1,0 . . . qd−1,n−1

 ,

▷ Can be done using ⌈n/d⌉ = O(d) products of d× d matrices O(dθ+1)

▷ Final recombination P (Q) mod xn =
∑d−1

i=0 Pi(Q)Ri mod xn O(dM(n))
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Context

▷ Main concepts: Evaluation-interpolation paradigm and Modular algorithms

▷ Alternative representations of algebraic objects: e.g., polynomials given

• by list of coefficients: useful for fast division

• by list of values taken on given points: useful for fast multiplication (FFT)

▷ Modular algorithms based on fast conversions between representations, e.g.

evaluation-interpolation, Chinese Remaindering

▷ Avoid intermediate expression swell, e.g. det of polynomial matrices

▷ Important issue: choice of the moduli (evaluation points), e.g. fast factorial
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Main problems and results

Multipoint evaluation Given P in A[X], of degree < n, compute the values

P (a0), . . . , P (an−1).

Interpolation Given v0, . . . , vn−1 ∈ A, with ai − aj invertible in A if i ̸= j, find

the polynomial P ∈ A[X] of degree < n such that

P (a0) = v0, . . . , P (an−1) = vn−1.

Theorem One can solve both problems in:

• O(M(n) log n) ops. in A

• O(M(n)) ops. in A if the ai’s are in geometric progression

▷ Extension to fast polynomial/integer Chinese remaindering
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Waring-Lagrange interpolation

[Waring, 1779 – “Problems concerning Interpolations”]
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[Lagrange, 1795 – “Sur l’usage des courbes dans la solution des problèmes”]
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Fast polynomial division
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Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F ) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F )

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F )/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(1)

• Deduce R = F −QG O(M(N))
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Evaluation-interpolation, general case
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Subproduct tree
[Horowitz, 1972]

Problem: Given a0, . . . , an−1 ∈ K, compute A =
∏n−1

i=0 (x− ai)

DAC Theorem: S(n) = 2 · S(n/2) +O(M(n)) =⇒ S(n) = O(M(n) log n)
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Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

Naive algorithm: Compute P (ai) independently O(n2)

Basic idea: Use recursively Bézout’s identity P (a) = P (x) mod (x− a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division

• P0 := P mod (x− a0) · · · (x− an/2−1)︸ ︷︷ ︸
B0

• P1 := P mod (x− an/2) · · · (x− an−1)︸ ︷︷ ︸
B1

=⇒

 P (a0) = P0(a0), . . . , P (an/2−1) = P0(an/2−1)

P (an/2) = P1(an/2), . . . , P (an−1) = P1(an−1)
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Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

DAC Theorem: E(n) = 2 · E(n/2) +O(M(n)) =⇒ E(n) = O(M(n) log n)
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Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

Naive algorithm: Linear algebra, Vandermonde system O(MM(n))

Lagrange’s algorithm: Use P (x) =
n−1∑
i=0

vi

∏
j ̸=i(x− aj)∏
j ̸=i(ai − aj)

O(n2)

Fast algorithm: Based on the “modified Lagrange formula”

P (x) = A(x) ·
n−1∑
i=0

vi/A
′(ai)

x− ai

• Compute ci = vi/A
′(ai) by fast multipoint evaluation O(M(n) log n)

• Compute
n−1∑
i=0

ci
x− ai

by divide and conquer O(M(n) log n)
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Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

DAC Theorem: I(n) = 2 · I(n/2) +O(M(n)) =⇒ I(n) = O(M(n) log n)
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Evaluation-interpolation, geometric case
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Subproduct tree, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, compute A =
∏n−1

i=0 (x− qi)

Idea: Compute B1 =
n−1∏
i=n/2

(x− qi) from B0 =

n/2−1∏
i=0

(x− qi), by a homothety

B1(x) = B0

(
x

qn/2

)
· q(n/2)

2

Decrease and conquer:

• Compute B0(x) by a recursive call

• Deduce B1(x) from B0(x) O(n)

• Return A(x) = B0(x)B1(x) M(n/2)

Master Theorem: G(n) = G(n/2) +O(M(n)) =⇒ G(n) = O(M(n))
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Fast multipoint evaluation, geometric case
[Bluestein, 1970]

Problem: Given q ∈ K and P ∈ K[x]<n, compute P (1), P (q), . . . , P (qn−1)

The needed values are: P (qi) =
n−1∑
j=0

cjq
ij , 0 ≤ i < n

Bluestein’s trick: ij =
(i+ j)2 − i2 − j2

2
=⇒ qij = q(i+j)2/2 · q−i2/2 · q−j2/2

=⇒ P (qi) = q−i2/2 ·
n−1∑
j=0

cjq
−j2/2 · q(i+j)2/2

︸ ︷︷ ︸
convolution:

n−1∑
j=0

q(i+j)2/2 · q−j2/2 =
[
xn−1+i

](n−1∑
k=0

ckq
−k2/2xn−k−1

)(
2n−2∑
ℓ=0

qℓ
2/2xℓ

)

Conclusion: Fast evaluation on a geometric sequence in O(M(n))
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Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Fast algorithm: Modified Lagrange formula

P = A(x) ·
n−1∑
i=0

vi/A
′(qi)

x− qi
, A =

∏
i

(x− qi)

• Compute A =
n−1∏
i=0

(x− qi) by decrease and conquer O(M(n))

• Compute ci = vi/A
′(qi) by Bluestein’s algorithm O(M(n))

• Compute
n−1∑
i=0

ci
x− qi

by decrease and conquer O(M(n))
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Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Subproblem: Given c0, . . . , cn−1 ∈ K, compute R(x) =
n−1∑
i=0

ci
x− qi

Idea: change of representation – enough to compute R mod xn

Second idea: R mod xn = multipoint evaluation at {1, q−1, . . . , q−(n−1)} :

n−1∑
i=0

ci
x− qi

mod xn = −
n−1∑
i=0

n−1∑
j=0

ciq
−i(j+1)xj

 = −
n−1∑
j=0

C(q−j−1)xj

Conclusion: Algorithm for interpolation at a geometric sequence in O(M(n))

(generalization of the FFT algorithm computing the IDFT)
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Product of polynomial matrices
[B.-Schost, 2005]

Problem: Given A,B ∈Mn(K[x]<d), compute C = AB

Idea: change of representation – evaluation-interpolation at a geometric

sequence G = {1, q, q2, . . . , q2d−2}

• Evaluate A and B at G O(n2 M(d))

• Multiply values C(v) = A(v)B(v) for v ∈ G O(dMM(n))

• Interpolate C from values O(n2 M(d))

Total complexity O(n2 M(d) + dMM(n))
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An exercise for next Tuesday

Let f and g be two polynomials in K[x, y] of degrees at most dx in x and at

most dy in y.

(a) Show that it is possible to compute the product h = fg using

O(M(dxdy))

arithmetic operations in K.

Hint : Use the substitution x← y2dy+1 to reduce the problem to the

product of univariate polynomials.

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in

O(dx M(dy) + dy M(dx))

arithmetic operations in K.
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1. Space-saving versions

[Giorgi, Grenet & Roche, ISSAC, 2020]

[2] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s Principle into Practice. In ISSAC’03, 37–44.

[6] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Comput.

Complex. 2, 3 (1992), 187–224.

[7] P. Giorgi, B. Grenet, and D. S. Roche. 2019. Generic reductions for in-place polynomial multiplication. In

ISSAC’19, 187–194.
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2. More general evaluation and interpolation

[Chin, SIAM J. Comput., 1976]
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3. Multivariate sparse interpolation

[Huang & Gao, JSC, 2020]
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GCD and Extended GCD
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GCD

If A,B ∈ K[x], then G ∈ K[x] is a gcd of A and B if

• G divides both A and B,

• any common divisor of A and B divides G.

▷ It is a generator of the ideal of K[x] generated by A and B, i.e.,{
U ·A+ V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W ·G

∣∣∣W ∈ K[x]
}

▷ In terms of roots: Z(gcd(A,B)) = Z(A) ∩ Z(B)

▷ It is unique up to a constant: the gcd, after normalization (G monic)

▷ It is useful for:

• normalization (simplification) of rational functions

• squarefree factorization of univariate polynomials

▷ Computation: Euclidean algorithm
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Euclidean algorithm

Euclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B.

1. R0 := A; R1 := B; i := 1.

2. While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri

i := i+ 1.

3. Return Ri−1.

▷ Correctness: gcd(F,G) = gcd(G,F mod G)

▷ Termination: deg(B) > deg(R2) > deg(R1) > · · ·

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K
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Extended GCD

If A,B ∈ K[x], then G = gcd(A,B) satisfies (Bézout relation)

G = U ·A+ V ·B, with U, V ∈ K[x]

▷ The co-factors U and V are unique if one further asks

deg(U) < deg(B)− deg(G) and deg(V ) < deg(A)− deg(G)

Then one calls (G,U, V ) the extended gcd of A and B.

▷ Example: for A = a+ bx with a ̸= 0 and B = 1 + x2,

G = 1 and
a− bx

a2 + b2
·A+

b2

a2 + b2
·B = 1
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Extended GCD

Usefulness of Bézout coefficients:

• modular inversion and division in a quotient ring Q = K[x]/(B):

A is invertible in Q if and only if gcd(A,B) = 1. In this case:

the inverse of A in Q is equal to U , where U ·A+ V ·B = 1.

• Lecture 5 (18/10): proof of “Any algebraic function is D-finite”

▷ Example: For A = a+ bx,B = 1 + x2, the inverse of A mod B is

U =
a− bx

a2 + b2
.

▷ Computation: Extended Euclidean algorithm
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Extended Euclidean algorithm

ExtendedEuclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B, and cofactors U and V .

1. R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi; Vi+1 := Vi−1 −QiVi.

(c) i := i+ 1.

3. Return
(
Ri−1, Ui−1, Vi−1

)
.

▷ Correctness: Ri = UiA+ ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1A+ Vi−1B −Qi(UiA+ ViB) = Ui+1A+ Vi+1B

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K
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LCM

If A,B ∈ K[x], then L ∈ K[x] is an lcm of A and B if

• both A and B divide L,

• any common multiple of A and B is divisible by L.

▷ It is a generator of the ideal (A) ∩ (B) of K[x], i.e.,{
U ·A = V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W · L

∣∣∣W ∈ K[x]
}

▷ In terms of roots: Z(lcm(A,B)) = Z(A) ∪ Z(B)

▷ It is unique up to a constant: the lcm, after normalization (L monic)

▷ Computation: either using the formula lcm(A,B) = AB/gcd(A,B), or by the

half-extended Euclidean algorithm
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Half-Extended Euclidean algorithm

HalfExtendedEuclid(A,B)

Input: A and B in K[x].

Output: A gcd G and an lcm L of A and B.

1. R0 := A; U0 := 1; R1 := B; U1 := 0; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi.

(c) i := i+ 1.

3. Return
(
Ri−1, UiA

)
.

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K


