Fast Evaluation and Interpolation

&
Gcd and Resultant

y 4

: informatiques , mathématiques

Alin Bostan

MPRI C-2-22
October 7, 2021

MPRI, C-2-22
M2 Internship Projects
In relation to C-2-22

o Structured linear algebra for polynomial system solving,
J. Berthomieu (LIP6, Sorbonne U.) + V. Neiger (LIP6, Sorbonne U.)

o | Algorithms for factoring differential equations,
A. Bostan (Inria, U. Paris-Saclay) + T. Rivoal (CNRS, U. Grenoble)

o Automatic proofs of special functions inequalities,
A. Bostan + M. Safey (LIP6, Sorbonne U.) + B. Salvy (Inria, ENS Lyon)

o | Univariate matrices for faster polynomial system solving,
V. Neiger (LIP6, Sorbonne U.) + J. Berthomieu (LIP6, Sorbonne U.)

https://specfun.inria.fr/chyzak/mpri/projects.html
https://specfun.inria.fr/chyzak/mpri/projects.html
https://vincent.neiger.science/wp-content/uploads/quasiHankel.pdf
https://specfun.inria.fr/bostan/mpri/grigoriev.pdf
https://specfun.inria.fr/bostan/mpri/inegalites.pdf
https://vincent.neiger.science/wp-content/uploads/faster-solving.pdf

MPRI, C-2-22
The exercises from last week

(1) Let T(n) be the complexity of multiplication of n x n lower triangular

matrices. Show that one can multiply any two n x n matrices in O(T(n)) ops.

(2) Let K be a field, let P € K|z] be of degree less than n and 8 be a feasible

exponent for matrix multiplication in M., (K).

(a) Find an algorithm for the simultaneous evaluation of P at [y/n | elements

of K using O(n?/?) operations in K.

(b) If @ is another polynomial in K[X] of degree less than n, show how to

0+1

compute the first n coefficients of Po @ := P(Q(z)) in O(n 2) ops. in K.
> Hint: Write P(z) as Y., Pi(x)(xz?), where d is well-chosen and the P;'s have

degrees less than d.

MPRI, C-2-22

Ex. 1

Let T(n) be the complexity of multiplication of n x n lower triangular
matrices. Show that one can multiply any two n x n matrices in O(T(n)) ops.

Solution:

> For any n x n matrices A and B,

(0 0 0 0 0 0
B 0 ol =0 0 0
0 A 0 AB 0 0]

> Let a be a feasible exponent for multiplication of lower triangular matrices.
Then, n’ < T(3n) = O(n®) and thus 6 < a.

MPRI, C-2-22

Ex. 2

Let K be a field, let P € K[z] be of degree less than n and 6 be a feasible

exponent for matrix multiplication in M., (K).

(a) Find an algorithm for the simultaneous evaluation of P at [y/n | elements

of K using O(n?/?) operations in K.

(b) If @ is another polynomial in K[X] of degree less than n, show how to
041

compute the first n coefficients of Po @ := P(Q(z)) in O(n 2) ops. in K.
Solution 2(a):
> Write P(z) as Y. P;(z)(z%)?, where d = [\/n] and the P;'s have degrees < d

> Evaluations of the P;’s at the points x1, ..., x4 read off the matrix product

PO(le) Pg(wd) Po,0 Po,d—1 1 1

_Pd_l(ibl) .. Pd_l(a:d) _pd—l,O “ . pd—l,d—l_ xl .. lel

MPRI, C-2-22

Ex. 2

Solution 2(b): Baby step / giant step strategy

> Write P(z) as Y. P;(z)(z%)", where d = [\/n] and the P;'s have degrees < d

60+4+1

> Compute Q2,...,Q% =: Rand R?,...,R* ! mod 2" O(dM(n)) =0O(n =)

For p; ; := [2?]P; and ¢; ; := [27]Q" (j < n,i < d), compute P;(Q) mod x"

using the (d x d) x (d x n) matrix product (27 P(Q) = >, Pikqr,;
Poo .- Pod-1 qoo --- qo,n—1
X Y
Pd-1,0 .-+ DPd-1,d-1] | dd—1,0 -+ 4dd—1,n—1
> Can be done using [n/d] = O(d) products of d x d matrices O(d’+1)

> Final recombination P(()) mod x" = Zf;ol P;(Q)R* mod z" O(dM(n))

MPRI, C-2-22

Context

> Main concepts: Evaluation-interpolation paradigm and Modular algorithms

> Alternative representations of algebraic objects: e.g., polynomials given
e by list of coefficients: useful for fast division

e by list of values taken on given points: useful for fast multiplication (FFT)

> Modular algorithms based on fast conversions between representations, e.g.
evaluation-interpolation, Chinese Remaindering

> Avoid intermediate expression swell, e.g. det of polynomial matrices

> Important issue: choice of the moduli (evaluation points), e.g. fast factorial

MPRI, C-2-22
Main problems and results

Multipoint evaluation Given P in A[X], of degree < n, compute the values
P(a’O)a s 7P(an—1)'

Interpolation Given vy, ...,v,—1 € A, with a; — a; invertible in A if ¢ # j, find
the polynomial P € A|X]| of degree < n such that

P(CL()) = Vo, - .- ,P(an_l) = Un—1-

Theorem One can solve both problems in:
e O(M(n)logn) ops. in A

e O(M(n)) ops. in A if the a;’s are in geometric progression

> Extension to fast polynomial /integer Chinese remaindering

MPRI, C-2-22
Waring-Lagrange interpolation

THEOREM 1.

Affume an equation @+bx+cx*+dxd.. . .. x"='=y,

in which the co-efficients 4, 4, c, d, ¢, 8c, are invariable;
let a, B, ¥, d) ¢, &c. denote # values of the unknown
quantity ¥, whofe correfpondent values of y let be re-
prefented by s*, s% s7, 8%, 8, &c. Then will the equa-
tion g s bx+cx*+dx*xext . .. "' zH=

FA%x—mxx—ax7—eX &c. A a XA X IX A= X & « <P

e o= X 8%+ S

amﬂ}(a-—-y)(uf-é‘)(ums x &ec. B—aXB—yXB—3dXB~tX &c.

: x—uxx._gxx—SXa'—sx &ec. S7 + X—aXx—BXx¥x—yXx—eX &c-.x S-’
y—aXy—BRy—xy—i1X &c. d—axXd—Bxd—yxd—sx &c,

x—aXx=—BXx—yXx—28 x&c

- x §'+ &c.
Xk B X gy X=X &e.

(Waring, 1779 — “Problems concerning Interpolations”]

MPRI, C-2-22

[Lagrange, 1795 — “Sur |'usage des courbes dans la solution des problemes” |

286 LECONS ELEMENTAIRES.

qu’en faisanl z = p on ait
A=1, B=o0, C=o0, ...;
que de méme, en faisant & = ¢, on ait
A=o, B=1, C=o0, D=0, ...;
qu’en faisant x = r, on ait pareillement

A...—...O, B:O, C:l, D=o, ..., etcg

d'ot il est facile de conclure que les valeurs de A, B, C,... doivent étre’

de cette forme

_(z—gq)(z—r){z—5). .
BTG =n
p— (#=p)(z—r)(x—=5)...
(¢ —pllg—r){g—s)
_(z=p)lr—q)(x—s).
"‘ ===

en prenant autant de facteurs, dans les numérateurs et dans lés dénomi-
nateurs, qu'il y aura de points donnés de la courbe, moins un.

Cette derniére expression de y, quoique sous une forme différente,
revient cependant au méme, comme on peut s’en assurer par le calcul,
en développant les valeurs des quantités Q,, R,, S;,..., et ordonnant
les termes suivant les quantités P, Q, R,...; mais elle est préférable par
la simplicité de I'’Analyse sur laquelle elle est fondée, et par sa forme
méme, qui est beaucoup plus commode pour le calcul.

10

MPRI, C-2-22

Fast polynomial division

11

MPRI, C-2-22 12
Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G € K|z|<y, compute (Q, R) in Euclidean division F = QG + R
Naive algorithm: O(N?)
ldea: look at F' = QG + R from infinity: Q ~y F/G

Let N = deg(F) and n = deg(G). Then deg(Q)) = N — n, deg(R) < n and

F(1/2)zN = G(1/z)z™ Q(1/x)x™N ™" + R(1/z)zdcs(®) .pN—des(R)

rev(F') rev(QG) re;(rQ) re;(rR)
Algorithm:
e Compute rev(Q) = rev(F)/rev(G) mod z™¥ "1 O(M(N))
e Recover () O(1)

e Deduce R=F — QG O(M(N))

MPRI, C-2-22

Evaluation-interpolation, general case

13

MPRI, C-2-22
Subproduct tree
[Horowitz, 1972]

Problem: Given ag,...,a,-1 € K, compute A = Hﬁz_ol(x —a;)
{A 17 (z — as)}

N

/3133 a] { H_1/2(33 a;)

By =T}
/ \ / \

MPRI, C-2-22
Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given ag,...,a,—1 € Kand P € K|z|-,,, compute P(ag),...,P(a,_1)
Naive algorithm: Compute P(a;) independently O(n?)
Basic idea: Use recursively Bézout’s identity P(a) = P(x) mod (x — a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division

e FPy:=P mod (z—ag) (T —ay2_1)

\ 4
-~

Bo

e P =P mod (z —aps) - (xr—apn—1)

\ . 7
-~

B,

P(ao) :Po(ao), couy P(an/g_l) :Po(an/g_l)
P(an/g) :Pl(an/g), ceey P(an_l) :Pl(an_l)

15

MPRI, C-2-22 16
Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given ag,...,a,—1 € Kand P € K|z|-,,, compute P(ag),...,P(a,_1)

P
mod(-, Bo) mod(-, B1)
{P mod BU] {P mod Bl}
IHOV \imd moV \?Od
{Pmod(a:—a,o)(x —aq) [Pmod (x — ap—2)(x — apn— 1)}

mod / \Erlod mod / \mod

[P mod (z — (10)} [P mod (x — al)} E {P mod (x — Gn_g)] lP mod (x — a,n_l)}

DAC Theorem: E(n) =2-E(n/2)+ O(M(n)) = E(n)=0(M(n) logn)

MPRI, C-2-22
Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given ag,...,a,_1 € K mutually distinct, and v, ...
compute P € K|x|.,, such that P(ag) = vg,..., P(an_1) = Un_1

Naive algorithm: Linear algebra, Vandermonde system

]7éz aj)
975%)

Lagrange's algorithm: Use P(x Z V; m

Fast algorithm: Based on the “modified Lagrange formula”

n—1

P(z) = A(z) Z vi/A(a;)

T — a;
i=0 ¢

e Compute ¢; = v;/A'(a;) by fast multipoint evaluation

- by divide and conquer

y Un—1 S Ka

O(M(n)logn)

O(M(n)logn)

17

MPRI, C-2-22
Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given ag,...,a,_1 € K mutually distinct, and vg,...,v,—1 € K,

compute P € K[x|.,, such that P(ag) = vg,..., P(an_1) = vn_1

-1, 4
[P—Zg:—o Ciz—a,

DAC Theorem: I(n) =

18

MPRI, C-2-22

Evaluation-interpolation, geometric case

19

MPRI, C-2-22 20
Subproduct tree, geometric case

[B.-Schost, 2005]

Problem: Given q € K, compute A = H?’:_()l (z —¢")

n—1 n/2—1
ldea: Compute By = H (x — ¢*) from By = H (x — ¢*), by a homothety
i=n/2 =0
o= 5 (2)
qn/2

Decrease and conquer:
e Compute By(x) by a recursive call
e Deduce Bi(x) from By(z) O(n)
e Return A(z) = By(x)B1(x) M(n/2)

Master Theorem: G(n) = G(n/2) + O(M(n)) — G(n) = O(M(n))

MPRI, C-2-22

Fast multipoint evaluation, geometric case

[Bluestein, 1970]

Problem: Given ¢ € K and P € K[z]|,, compute P(1), P(q),...,P(q" 1)

n—1
The needed values are: P(q¢') = Z c;iqv, 0<i<n
j=0

(i+35)° =i = j*

.. .2
5 e qZ] — q(z+.7) /2 - q

Bluestein's trick: 17 =

n—1
— P(q') = q 123 ciq7" 12 gt/
7=0

\ 7
~~

convolution:

—i%/2 |

q

—3%/2

n—1 2n—2
[xn—1+z'] (Z qukQ/ank1> (Z q£2/2xe>

k=0

Conclusion: Fast evaluation on a geometric sequence in O(M(n))

¢=0

21

MPRI, C-2-22 22

Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given ¢ € K, and vy, ...,v,_1 € K, compute P € K|z].,, such that
P(1)=wvg,...,P(g") =v,_1

Fast algorithm: Modified Lagrange formula

n—1 ;
U; A (¢ i
P=Az)) a{_(;), A=]]@-4q)
i=0 i
n—1
e Compute A= H(x —¢") by decrease and conquer O(M(n))
i=0
e Compute ¢; =v;/A’(q") by Bluestein’s algorithm O(M(n))

e Compute Z G by decrease and conquer O(M(n))
0

MPRI, C-2-22

Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given ¢ € K, and vy, ...,v,_1 € K, compute P € K|z].,, such that
P(1)=wq,...,P(¢" 1) = v,_1

n—1

Subproblem: Given cg,...,c,_1 € K, compute R(z) = Z

1=0

Cj
x — ¢

|dea: change of representation — enough to compute B mod x"

Second idea: R mod z™ = multipoint evaluation at {1,¢*,...,¢q~ (>~ D} :

n—1 n—1

1 n—1
DERCVIVI o) § SFPR I R
i=0 7=0

x_
q i=0 \ j=0

Conclusion: Algorithm for interpolation at a geometric sequence in O(M(n))

(generalization of the FFT algorithm computing the IDFT)

23

MPRI, C-2-22 24
Product of polynomial matrices
[B.-Schost, 2005]

Problem: Given A, B € M,,(K[z]~4), compute C = AB

ldea: change of representation — evaluation-interpolation at a geometric

sequence G = {1, g, Q... aQQd_Q}

e Evaluate A and B at G O(n* M(d))
e Multiply values C(v) = A(v)B(v) for v € G O(dMM(n))
e Interpolate C from values O(n* M(d))

Total complexity O(n* M(d) + dMM(n))

MPRI, C-2-22
First exercise for next Thursday

Let f and g be two polynomials in K|z, y] of degrees at most d, in and at

most d, 1n y.
(a) Show that it is possible to compute the product h = fg using
O(M(dxdy))

arithmetic operations in K.
Hint: Use the substitution x < y?%*! to reduce the problem to the
product of univariate polynomials.

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in
O(d, M(d,) + d, M(d,))

arithmetic operations in K.

25

MPRI, C-2-22
1. Space-saving versions

Time Space Reference
multipoint evaluation 3/2M(n)log(n) nlog(n) [2]
size-n polynomial on n points 7/2M(n)log(n) n [71,
(4+ 24,/ log(553))M(n)log(n) 0(1) Theorem 3.4
interpolation 5/2M(n)log(n) nlog(n) [2]
size-n polynomial on n points 5M(n)log(n) 2n [6, 7],
~ 105M(n)log(n) 0(1) Theorem

[Giorgi, Grenet & Roche, ISSAC, 2020]

[2] A. Bostan, G. Lecerf, and E. Schost. 2003. Tellegen's Principle into Practice. In ISSAC'03, 37-44.

[6] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Comput.
Complex. 2, 3 (1992), 187-224.

[7] P. Giorgi, B. Grenet, and D. S. Roche. 2019. Generic reductions for in-place polynomial multiplication. In
ISSAC'19, 187-194.

MPRI, C-2-22 27
2. More general evaluation and interpolation

SIAM J. CompuT.
Vol. 5, No. 4, December 1976

A GENERALIZED ASYMPTOTIC UPPER BOUND ON
FAST POLYNOMIAL EVALUATION AND INTERPOLATION*

FRANCIS Y. CHINt

Abstract. It is shown in this paper that the evaluation and interpolation problems corresponding
to a set of points, {x;}]=g, with (¢; — 1) higher derivatives at each x; such that)~} ¢, = N, can be
solved in O([N log N][(log n) + 1)) steps.! This upper bound matches perfectly with the known upper
bounds of the two extreme cases, which are O(N log? N) and O(N log N) steps whenn = Nand n = 1,

respectively.

Key words. polynomial evaluation, polynomial interpolation, asymptotic upper -bounds

Evaluation Interpolation

(a) N points O(N log? N)[6], [5] O(N log? N) [6].[5]

(b) n points, {x;}?-; and their| O([N log N][(log n) + 1)) O([N log N1[(log n) + 1])
corresponding (c; — 1) (Theorem 1) (Theorem 2)
derivatives such that
Tizic=N

(c) Single point and all its O(N log N) [2], [9] O(N log N) [2], [9]
derivatives

[Chin, SIAM J. Comput., 1976]

MPRI, C-2-22
3. Multivariate sparse interpolation

Q.-L. Huang, X.-S. Gao / Journal of Symbolic Computation 101 (2020) 367-386

Table 1

A “soft-Oh” comparison for SLP polynomials over an arbitrary ring R.
Algorithms Total Cost Type
Dense LD" Deterministic
Garg and Schost (2009) Ln?T*log? D Deterministic
Randomized (Giesbrecht and Roche, 2011) Ln?T31og? D Las Vegas
Arnold et al. (2013) Ln3T log3 D Monte Carlo
This paper (Theorem 5.8) In2T2log? D + LnT log> D Deterministic
This paper (Theorem 6.8) LnT log> D Monte Carlo

Table 2

A “soft-Oh” comparison for SLP polynomials over finite field IF,.
Algorithms Bit Algorithm

Complexity type
Garg and Schost (2009) Ln2T*1og® D loggq Deterministic
Randomized Garg-Schost (Giesbrecht and Roche, 2011) Ln2T3 log? D logq Las Vegas
Giesbrecht and Roche (2011) Ln?T?log? D(nlog D + logq) Las Vegas
Arnold et al. (2013) Ln3T log3 Dlogq Monte Carlo
Arnold et al. (2014) ILnT log2 D(logD +logq) +n®T Monte Carlo
Arnold et al. (2016) Lnlog D(T log D +n)(log D + logq) Monte Carlo
+n?~1Tlog D +n®log D

This paper (Theorem 5.8) Ln?T2 log2 Dlogq+ LnT log3 Dlogq Deterministic
This paper (Theorem 6.8) LnT log® Dlogg Monte Carlo
This paper (Theorem 6.11) LnT log? D(logq + log D) Monte Carlo

[Huang & Gao, JSC, 2020]

MPRI, C-2-22

GCD and Extended GCD

29

MPRI, C-2-22

GCD

If A, B € K|z], then G € K[z] is a gcd of A and B if
e (5 divides both A and B,

e any common divisor of A and B divides G.

> It is a generator of the ideal of K[x| generated by A and B, i.e.,

{U-A+V-B U,VEK[:E]} — {W.G)WeK[x]}

> It is unique up to a constant: the gcd, after normalization (G monic)

> It is usetul for:
e normalization (simplification) of rational functions

e squarefree factorization of univariate polynomials

> Computation: Euclidean algorithm

30

MPRI, C-2-22
Euclidean algorithm

Euclid(A, B)

Input A and B in K[z].
Output A gcd G of A and B.
1. Ry .= A; Ry :=B;1:=1.

2. While R; is non-zero, do:
R;+q := R;—1 mod R;
1 =1+ 1.

3. Return R;_;.

> Correctness: ged(F,G) = ged(G, F mod G)
> Termination: deg(B) > deg(R2) > deg(Ry) > - --
> Quadratic complexity: O(deg(A) deg(B)) operations in K

31

MPRI, C-2-22

Extended GCD

If A, B € K[z|, then G = gcd(A, B) satisfies (Bézout relation)

G=U-A+V B, withU,V € K[|

> The co-factors U and V are unique if one further asks

deg(U) < deg(B) — deg(G) and deg(V) < deg(A) — deg(G)

Then one calls (G,U, V) the extended gcd of A and B.

> Example: for A = a + bx with a # 0 and B = 1 + 22,

a — bx b?

2rpe T aye P

G =1 and

32

MPRI, C-2-22

Extended GCD

Usefulness of Bézout coefficients:

e modular inversion and division in a quotient ring Q = K[x|/(B):
A is invertible in @ if and only if gecd(A, B) = 1. In this case:
the inverse of A in (Q is equal to U, where U - A+ V - B = 1.

e Next lecture (14/10): proof of “Any algebraic function is D-finite"

> Example: For A = a + bz, B =1+ z2, the inverse of A mod B is

a — bx

U=——p

> Computation: Extended Euclidean algorithm

33

MPRI, C-2-22

Extended Euclidean algorithm

ExtendedEuclid(A, B)

Input A and B in K|z].

Output A gcd G of A and B, and cofactors U and V.
1. Rp =A;Uy:=1; V=0, Ry =B;U; :=0; V] :=1;7:=1.
2. While R; is non-zero, do:

(a) (Qi, Rix1) := QuotRem(R;_1, R;) #R;,_1 = QR + Rit1
(b) Uiy1 :=U;—1 — Q;U;; Vig1 == V1 — Q;V;.
(¢) i:=1i4 1.

3. Return (R’i—17 Uq;_l, ‘/z'—l) .

> Correctness: R; = U; A+ V; B (by induction):
Rit1=Ri1 — QiR =U;1A+ V1B - Qi(U;A+V,B) =Ui11 A+ Vi1 B

> Quadratic complexity: O(deg(A) deg(B)) operations in K

34

MPRI, C-2-22

Resultants

35

MPRI, C-2-22

The Sylvester matrix of A = a, 2™ + -+ - + ag € K|z], (@ # 0), and of
B =b,z" 4+ --- 4+ by € K|z], (b, # 0), is the square matrix of size m +n

Syl(A, B) =

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

Definition

Am Am—1
Am

bn bn— 1
b,

ao

aop

> Definition extends to polynomials over any commutative ring R.

MPRI, C-2-22
Key observation

If A=a, 2™ +---+ay and B=b,z2" +---+ by,
Ay Am—1 ag
i am—l—n—l
Ay Am—1 ao
X
bn bn—l bO 8}
1
bn bn—l bO

Corollary: If A(a) = B(a) = 0, then Res (A, B) = 0.

then

a" T A(a)

A(a)
a™ 1 B(a)

37

MPRI, C-2-22
Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A’.

E.g. for A = az? + bz +c,

a b c
Disc(A) = Res (A, A") =det | 2a b = —a(b* — 4ac).
I 2 b |
E.g. for A = az® + bz +c,
i a 0 b c]
a 0 b c
Disc(A) = Res(A,A")=det | 3¢ 0 b = a?(4b° + 27ac?).

Ja 0 b

3a 0 b

> The discriminant vanishes when A and A’ have a common root, that is

when A has a multiple root.

38

MPRI, C-2-22 39

Main properties
e Link with gcd Res(A, B) = 0 if and only if gcd(A, B) is non-constant.

e Elimination property
There exist U,V € K[z] not both zero, with deg(U) < n, deg(V) < m and
such that the following Bézout identity holds in KN (A, B):

Res(A,B) =UA+ VB.

e Poisson formula
fA=alz—ay) - (r—am) and B=blzx— (1) - (x— 0,), then

Res(A,B) = a"b™ | [(es = B;) = o™ || Blaw).

i,j 1<i<m

e Multiplicativity

Res (A-B,(C') = Res(A,C)-Res (B,('), Res(A,B-C)=Res(A, B)-Res(A,C).

MPRI, C-2-22

Proof of Poisson’s formula

> Direct consequence of the key observation:

If A=(rx—a1)---(r—amm)and B=(x— 1) ---(x — B,) then
i 1714—?%—1 5;n—|—n—1 &T+n—1 o a%—i—n—l |
Syl(A, B) x
61 S Bn a1 ce (07
] 1 - 1 1 . 1 |
BTAB) . BTUAB) 0 0
0 0 "' Blay) a™ I B(ayy,)
i 0 ce 0 B(Ozl) B(Oém)

> To conclude, take determinants and use Vandermonde’s formula

MPRI, C-2-22 41
Application: computation with algebraic numbers
Let A=[[;(z — ;) and B =]];(x — B;) be polynomials of K[z]. Then

AP B = H(t — (Ozz‘ + 53)) = Resx(A(.CE),B@ o CC)),

©,J

H(t — (B —) = Res . (A(x), B(t +),

A® B := H — a;3;) = Res ,(A(z), z¢ " B(t/x)),

H(t — B(a;)) = Res ,(A(z),t — B(z)).
In particular, the set Q of algebraic numbers is a field.
Proof: Poisson’s formula. E.g., first one: H B(t —a;) = H(t —a; — 3).

@]

> The same formulas apply mutatis mutandis to algebraic power series.

MPRI, C-2-22 42

A beautiful identity of Ramanujan’s

T 2T s i ST

S111 = S111 ~ S111 7 \/7
. 9 37 - . 92 2T —|_) - — 2 7.
S111 a S111 a S111 -

> If p = 7/7 then sin(kp) = (o — a=%)/(24), where a = P, with o = —1
> Since a € Q, any rational expression in the sin(kp) is in Q(i)(«) thus in Q

> f:=sin(2*p)/sin(3*p) "2-sin(p)/sin(2*p) "2+sin(3*p)/sin(p) "2:
> expand(convert(f, exp)):

> F:=normal (subs(exp(I*p)=alpha, %));

2i (a'® +5a™ +12a'? +a' +20a'? +3a” +23a® +3a” +20a° +a® +12a* +5a% + 1)
a(a?2 —1) (a2 +1)% (a* + a2 +1)?

> In particular our LHS, F(a) = ggg;, is an algebraic number

> Resultant R(t) := Res, (" + 1,t- D(2)—N(z)) annihilates F(«)

> R:=factor(resultant(x~7+1, t*denom(F)-numer(F), x));

—1274 (£ — 28)°

MPRI, C-2-22

Shanks’ 1974 identities

\/11+2\/®+\/16—2@+2\/55—10\5:\/5+\/22+2¢5

¢m+ﬁ+\/m+m_ﬁ+z¢m(m—m

:\/E+\/2¢m7+n+2\/ﬁ

43

MPRI, C-2-22 44
Two more exercises for next Thursday

(1) Let P,Q € K|z] be two polynomials, and let N € N\ {0}.

(a) Show that the unique monic polynomial in K|z] whose roots are the N-th
powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number «, show that one
can determine an annihilating polynomial of ()(«) using a resultant.

(2) The aim of this exercise is to prove algorithmically the following identity:

s/ .1 iﬁ i),/Z
2—1={/=—{/= —. 1
E-1= - i+ 0
Leta:\?’@andbzz\g/g.

(a) Determine P, € Q[x] annihilating ¢ = 1 — a + a?, using a resultant.

(b) Deduce Pg € Q[z] annihilating the RHS of (1)), by another resultant.

(¢) Show that the polynomial computed in (b) also annihilates the LHS of (1).
(d) Conclude.

MPRI, C-2-22
Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q|x] correspond to points on a line.

Roots of polynomials A € Q|z,y| correspond to plane curves A = 0.

Let now A and B be in Q|x,y]. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.

45

MPRI, C-2-22 46
Application: Resultants compute projections

Theorem. Let A =a,,y™ + --- and B = b,y + - -- be polynomials in Q[z][y].
The roots of Res (A, B) € Q[z] are either the abscissas of points in the

intersection A = B = 0, or common roots of a,, and b,,.

=

Proof. Elimination property: Res (A, B) =UA+ VB, for U,V € Q[z,y].
Thus A(a,) = B(a,) =0 implies Res, (A4, B)(a) =0

MPRI, C-2-22
Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

CAt(1 —t?)? - 8t (1 —t?)
T Aty T AT e)p

Res ((1+t%)%z —4t(1—t2)2, (14+¢2)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .

47

MPRI, C-2-22
Computation of the resultant
An Euclidean-type algorithm for the resultant bases on:
o If A=QB+ R, and R # 0, then (by Poisson’s formula)
Res (A, B) = (—1)deeAdee B |c(p)dee A—dee Ras (B R).

o If B is constant, then Res(A, B) = Bdee4,

If (Rog,...,Rn_1,RNn =gcd(A, B),0) is the remainder sequence produced by
the Euclidean algorithm for Ry = A and Ry = B, then

e cither deg Ry is non-constant, and Res (A, B) = 0,

N—-2
e or Res (A,B) _ R](\ifegRN—l H (_1)deg R;deg R; i1 |C(R,,;_|_1)degRi_deg Rita
1=0

> This leads to a O(N?) algorithm for Res (A, B), where deg(A), deg(B) < N.

> A divide-and-conquer O(M(N)log V) algorithm requires extra-work.

48

MPRI, C-2-22

Bonus

49

MPRI, C-2-22

1. Fast Manipulation of Algebraic Numbers

Available online at www.sciencedirect.com

g sclsncs@mnsc-n Journal of
&5 Symbolic
Sl Computation
ELSEVIER

Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/jsc

Fast computation of special resultants

Alin Bostan?*, Philippe Flajolet?®, Bruno Salvy?, Eric Schost®

3 Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
b 11X, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005

Abstract

We propose fast algorithms for computing composed products and composed sums, as well as diamond
products of univariate polynomials. These operations correspond to special multivariate resultants, that we

compute using power sums of roots of polynomials, by means of their generating series.
(© 2005 Elsevier Ltd. All rights reserved.

Keywords: Diamond product; Composed product; Composed sum; Complexity; Tellegen’s principle

> Composed sum A ¢ B and composed product A ® B in O(degA - deg B)

MPRI, C-2-22

2. Computing the Truncated Resultant

A Fast Algorithm for Computing the Truncated Resultant

Guillaume Moroz
Inria Nancy Grand Est

guillaume.moroz@inria.fr

ABSTRACT

Let P and @ be two polynomials in K[z, y] with degree at
most d, where K is a field. Denoting by R € K[z] the resul-
tant of P and) with respect to y, we present an algorithm
to compute R mod z* in O (kd) arithmetic operations in K,
where the O™ notation indicates that we omit polylogarith-
mic factors. This is an improvement over state-of-the-art
algorithms that require to compute R in (’)"(d?’) operations
before computing its first k coefficients.

Eric Schost
University of Waterloo

eschost@uwaterloo.ca

pute R take O"(d®) operations in K, either by means of eval-
uation / interpolation techniques, or in a direct manner [26].

In this paper, we are interested in the computation of
the resultant R of such bivariate polynomials truncated at
order k, that is of R mod z* for some given parameter k.
This kind of question appears for instance in the algorithms
of [17, 23], where we want two terms in the expansion, so
that k = 2. A related example, in a slightly more involved
setting, involves the evaluation of the second derivative of
some subresultants, for input polynomials in K[z, y, 2] [19].

[Moroz & Schost, ISSAC 2016]

> Res, (P(z,y), Q(z,y)) mod z* in O(kd), where d = max(deg P, deg Q)

51

MPRI, C-2-22

3. Resultant of Generic Bivariate Polynomials

ABSTRACT

An algorithm is presented for computing the resultant of two
generic bivariate polynomials over a field K. For such p and ¢
in K[x, y] both of degree d in x and n in y, the algorithm computes
the resultant with respect to y using (n1/?d)1+°(1) arithmetic
operations in K, where two n X n matrices are multiplied using
O(n®) operations. Previous algorithms required time (n2d)1+od),
The resultant is the determinant of the Sylvester matrix S(x)
of p and g, which is an n X n Toeplitz-like polynomial matrix of
degree d. We use a blocking technique and exploit the structure of
S(x) for reducing the determinant computation to the computation
of a matrix fraction description R(x)Q(x)~! of an m X m submatrix
of the inverse S(x)~!, where m < n. We rely on fast algorithms for
handling dense polynomial matrices: the fraction description is ob-
tained from an x-adic expansion via matrix fraction reconstruction,
and the resultant as the determinant of the denominator matrix.
We also describe some extensions of the approach to the compu-
tation of generic Grobner bases and of characteristic polynomials
of generic structured matrices and in univariate quotient algebras.

ACM Reference Format:

Gilles Villard. 2018. On Computing the Resultant of Generic Bivariate Poly-
nomials. In ISSAC’18: 2018 ACM International Symposium on Symbolic and
Algebraic Computation, July 16-19, 2018, New York, NY, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3209020

1 INTRODUCTION

details and references. More precisely, on the one hand, the resul-
tant of two univariate polynomials of degree n (taking d = 0 in
above definition) can be computed in O(M(n) log n) arithmetic oper-
ations in K using the Knuth-Schénhage-Moenck algorithm. We use
M(n) for a multiplication time for univariate polynomials of degree
bounded by n over K (see for instance [16, Chap. 8]). On the other
hand, in our case the resultant has degree at most 2nd, hence an ex-
tra factor nd appears for the evaluation-interpolation cost. In total,
it can be shown that the bivariate resultant can be computed us-
ing O(n M(nd) log(nd)) arithmetic operations [16, Chap. 11], which
is (nzd)“"(l) using M(n) = O(nlognloglogn) with Cantor and
Kaltofen’s polynomial multiplication [9].

Before giving an overview of our approach let us mention some
important results that have been obtained since the initial results
cited above. For comprehensive presentations of the resultant and
subresultant problem, and detailed history and complexity analyses,
the reader may refer to [16, 17, 36]. Especially for avoiding modular
methods over Z, recursive subresultant formulas have been given in
[17, 38, 43] that allow half-ged schemes for computing the resultant
of polynomials in D[y] where D is a domain such that the exact
division can be performed.

The complexity bound (nzd)l"'o(l) has not been improved in the
general case. In some special cases much better complexity bounds
are known [5, Sec. 5]. In particular, for univariate f and g of degree
n in K[y], the composed sum (f @ g)(x) = Resy(f(x — y),g(y)) and
the composed product (f ® g)(x) = Resy(y" f(x/y), g(y)) can be
computed using n2to(1) operations in K [5]. (The restrictions in [5]

Villard, ISSAC 2018]

> Res, (P(x,y),Q(x,y)) of generic P, of degree d in O~(d3_1/°")

52

