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M2 Internship Projects
in relation to C-2-22

• Structured linear algebra for polynomial system solving,

J. Berthomieu (LIP6, Sorbonne U.) + V. Neiger (LIP6, Sorbonne U.)

• Algorithms for factoring differential equations,

A. Bostan (Inria, U. Paris-Saclay) + T. Rivoal (CNRS, U. Grenoble)

• Automatic proofs of special functions inequalities,

A. Bostan + M. Safey (LIP6, Sorbonne U.) + B. Salvy (Inria, ENS Lyon)

• Univariate matrices for faster polynomial system solving,

V. Neiger (LIP6, Sorbonne U.) + J. Berthomieu (LIP6, Sorbonne U.)

https://specfun.inria.fr/chyzak/mpri/projects.html
https://specfun.inria.fr/chyzak/mpri/projects.html
https://vincent.neiger.science/wp-content/uploads/quasiHankel.pdf
https://specfun.inria.fr/bostan/mpri/grigoriev.pdf
https://specfun.inria.fr/bostan/mpri/inegalites.pdf
https://vincent.neiger.science/wp-content/uploads/faster-solving.pdf
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The exercises from last week

(1) Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

(2) Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication in Mn(K).

(a) Find an algorithm for the simultaneous evaluation of P at d
√
n e elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2 ) ops. in K.

. Hint: Write P (x) as
∑
i Pi(x)(xd)i, where d is well-chosen and the Pi’s have

degrees less than d.
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Ex. 1

Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

Solution:

. For any n× n matrices A and B,
0 0 0

B 0 0

0 A 0


2

=


0 0 0

0 0 0

AB 0 0

 .

. Let α be a feasible exponent for multiplication of lower triangular matrices.

Then, nθ ≤ T(3n) = O(nα) and thus θ ≤ α.
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Ex. 2

Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication in Mn(K).

(a) Find an algorithm for the simultaneous evaluation of P at d
√
n e elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2 ) ops. in K.

Solution 2(a):

. Write P (x) as
∑
i Pi(x)(xd)i, where d = d

√
ne and the Pi’s have degrees < d

. Evaluations of the Pi’s at the points x1, . . . , xd read off the matrix product
P0(x1) . . . P0(xd)

...
...

Pd−1(x1) . . . Pd−1(xd)

 =


p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×


1 . . . 1
...

...

xd−11 . . . xd−1d
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Ex. 2

Solution 2(b): Baby step / giant step strategy

. Write P (x) as
∑
i Pi(x)(xd)i, where d = d

√
ne and the Pi’s have degrees < d

. Compute Q2, . . . , Qd =: R and R2, . . . , Rd−1 mod xn O(dM(n)) = O(n
θ+1
2 )

For pi,j := [xj ]Pi and qi,j := [xj ]Qi (j < n, i < d), compute Pi(Q) mod xn

using the (d× d)× (d× n) matrix product [xj ]Pi(Q) =
∑

k pi,kqk,j
p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×

q0,0 . . . q0,n−1

...
...

qd−1,0 . . . qd−1,n−1

 ,

. Can be done using dn/de = O(d) products of d× d matrices O(dθ+1)

. Final recombination P (Q) mod xn =
∑d−1
i=0 Pi(Q)Ri mod xn O(dM(n))
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Context

. Main concepts: Evaluation-interpolation paradigm and Modular algorithms

. Alternative representations of algebraic objects: e.g., polynomials given

• by list of coefficients: useful for fast division

• by list of values taken on given points: useful for fast multiplication (FFT)

. Modular algorithms based on fast conversions between representations, e.g.

evaluation-interpolation, Chinese Remaindering

. Avoid intermediate expression swell, e.g. det of polynomial matrices

. Important issue: choice of the moduli (evaluation points), e.g. fast factorial
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Main problems and results

Multipoint evaluation Given P in A[X], of degree < n, compute the values

P (a0), . . . , P (an−1).

Interpolation Given v0, . . . , vn−1 ∈ A, with ai − aj invertible in A if i 6= j, find

the polynomial P ∈ A[X] of degree < n such that

P (a0) = v0, . . . , P (an−1) = vn−1.

Theorem One can solve both problems in:

• O(M(n) log n) ops. in A

• O(M(n)) ops. in A if the ai’s are in geometric progression

. Extension to fast polynomial/integer Chinese remaindering
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Waring-Lagrange interpolation

[Waring, 1779 – “Problems concerning Interpolations”]
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[Lagrange, 1795 – “Sur l’usage des courbes dans la solution des problèmes”]
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Fast polynomial division
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Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F ) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F )

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F )/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(1)

• Deduce R = F −QG O(M(N))
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Evaluation-interpolation, general case
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Subproduct tree
[Horowitz, 1972]

Problem: Given a0, . . . , an−1 ∈ K, compute A =
∏n−1
i=0 (x− ai)

DAC Theorem: S(n) = 2 · S(n/2) +O(M(n)) =⇒ S(n) = O(M(n) log n)
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Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

Naive algorithm: Compute P (ai) independently O(n2)

Basic idea: Use recursively Bézout’s identity P (a) = P (x) mod (x− a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division

• P0 := P mod (x− a0) · · · (x− an/2−1)︸ ︷︷ ︸
B0

• P1 := P mod (x− an/2) · · · (x− an−1)︸ ︷︷ ︸
B1

=⇒

 P (a0) = P0(a0), . . . , P (an/2−1) = P0(an/2−1)

P (an/2) = P1(an/2), . . . , P (an−1) = P1(an−1)
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Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

DAC Theorem: E(n) = 2 · E(n/2) +O(M(n)) =⇒ E(n) = O(M(n) log n)
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Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

Naive algorithm: Linear algebra, Vandermonde system O(MM(n))

Lagrange’s algorithm: Use P (x) =
n−1∑
i=0

vi

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

O(n2)

Fast algorithm: Based on the “modified Lagrange formula”

P (x) = A(x) ·
n−1∑
i=0

vi/A
′(ai)

x− ai

• Compute ci = vi/A
′(ai) by fast multipoint evaluation O(M(n) log n)

• Compute
n−1∑
i=0

ci
x− ai

by divide and conquer O(M(n) log n)
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Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

DAC Theorem: I(n) = 2 · I(n/2) +O(M(n)) =⇒ I(n) = O(M(n) log n)
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Evaluation-interpolation, geometric case
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Subproduct tree, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, compute A =
∏n−1
i=0 (x− qi)

Idea: Compute B1 =
n−1∏
i=n/2

(x− qi) from B0 =

n/2−1∏
i=0

(x− qi), by a homothety

B1(x) = B0

(
x

qn/2

)
· q(n/2)

2

Decrease and conquer:

• Compute B0(x) by a recursive call

• Deduce B1(x) from B0(x) O(n)

• Return A(x) = B0(x)B1(x) M(n/2)

Master Theorem: G(n) = G(n/2) +O(M(n)) =⇒ G(n) = O(M(n))
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Fast multipoint evaluation, geometric case
[Bluestein, 1970]

Problem: Given q ∈ K and P ∈ K[x]<n, compute P (1), P (q), . . . , P (qn−1)

The needed values are: P (qi) =
n−1∑
j=0

cjq
ij , 0 ≤ i < n

Bluestein’s trick: ij =
(i+ j)2 − i2 − j2

2
=⇒ qij = q(i+j)

2/2 · q−i
2/2 · q−j

2/2

=⇒ P (qi) = q−i
2/2 ·

n−1∑
j=0

cjq
−j2/2 · q(i+j)

2/2

︸ ︷︷ ︸
convolution:

n−1∑
j=0

q(i+j)
2/2 · q−j

2/2 =
[
xn−1+i

](n−1∑
k=0

ckq
−k2/2xn−k−1

)(
2n−2∑
`=0

q`
2/2x`

)

Conclusion: Fast evaluation on a geometric sequence in O(M(n))
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Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Fast algorithm: Modified Lagrange formula

P = A(x) ·
n−1∑
i=0

vi/A
′(qi)

x− qi
, A =

∏
i

(x− qi)

• Compute A =
n−1∏
i=0

(x− qi) by decrease and conquer O(M(n))

• Compute ci = vi/A
′(qi) by Bluestein’s algorithm O(M(n))

• Compute
n−1∑
i=0

ci
x− qi

by decrease and conquer O(M(n))
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Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Subproblem: Given c0, . . . , cn−1 ∈ K, compute R(x) =
n−1∑
i=0

ci
x− qi

Idea: change of representation – enough to compute R mod xn

Second idea: R mod xn = multipoint evaluation at {1, q−1, . . . , q−(n−1)} :

n−1∑
i=0

ci
x− qi

mod xn = −
n−1∑
i=0

n−1∑
j=0

ciq
−i(j+1)xj

 = −
n−1∑
j=0

C(q−j−1)xj

Conclusion: Algorithm for interpolation at a geometric sequence in O(M(n))

(generalization of the FFT algorithm computing the IDFT)
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Product of polynomial matrices
[B.-Schost, 2005]

Problem: Given A,B ∈Mn(K[x]<d), compute C = AB

Idea: change of representation – evaluation-interpolation at a geometric

sequence G = {1, q, q2, . . . , q2d−2}

• Evaluate A and B at G O(n2 M(d))

• Multiply values C(v) = A(v)B(v) for v ∈ G O(dMM(n))

• Interpolate C from values O(n2 M(d))

Total complexity O(n2 M(d) + dMM(n))
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First exercise for next Thursday

Let f and g be two polynomials in K[x, y] of degrees at most dx in x and at

most dy in y.

(a) Show that it is possible to compute the product h = fg using

O(M(dxdy))

arithmetic operations in K.

Hint : Use the substitution x← y2dy+1 to reduce the problem to the

product of univariate polynomials.

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in

O(dx M(dy) + dy M(dx))

arithmetic operations in K.
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1. Space-saving versions

[Giorgi, Grenet & Roche, ISSAC, 2020]

[2] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s Principle into Practice. In ISSAC’03, 37–44.

[6] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Comput.

Complex. 2, 3 (1992), 187–224.

[7] P. Giorgi, B. Grenet, and D. S. Roche. 2019. Generic reductions for in-place polynomial multiplication. In

ISSAC’19, 187–194.
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2. More general evaluation and interpolation

[Chin, SIAM J. Comput., 1976]
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3. Multivariate sparse interpolation

[Huang & Gao, JSC, 2020]
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GCD and Extended GCD
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GCD

If A,B ∈ K[x], then G ∈ K[x] is a gcd of A and B if

• G divides both A and B,

• any common divisor of A and B divides G.

. It is a generator of the ideal of K[x] generated by A and B, i.e.,{
U ·A+ V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W ·G

∣∣∣W ∈ K[x]
}

. It is unique up to a constant: the gcd, after normalization (G monic)

. It is useful for:

• normalization (simplification) of rational functions

• squarefree factorization of univariate polynomials

. Computation: Euclidean algorithm
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Euclidean algorithm

Euclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B.

1. R0 := A; R1 := B; i := 1.

2. While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri

i := i+ 1.

3. Return Ri−1.

. Correctness: gcd(F,G) = gcd(G,F mod G)

. Termination: deg(B) > deg(R2) > deg(R1) > · · ·

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K
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Extended GCD

If A,B ∈ K[x], then G = gcd(A,B) satisfies (Bézout relation)

G = U ·A+ V ·B, with U, V ∈ K[x]

. The co-factors U and V are unique if one further asks

deg(U) < deg(B)− deg(G) and deg(V ) < deg(A)− deg(G)

Then one calls (G,U, V ) the extended gcd of A and B.

. Example: for A = a+ bx with a 6= 0 and B = 1 + x2,

G = 1 and
a− bx
a2 + b2

·A+
b2

a2 + b2
·B = 1
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Extended GCD

Usefulness of Bézout coefficients:

• modular inversion and division in a quotient ring Q = K[x]/(B):

A is invertible in Q if and only if gcd(A,B) = 1. In this case:

the inverse of A in Q is equal to U , where U ·A+ V ·B = 1.

• Next lecture (14/10): proof of “Any algebraic function is D-finite”

. Example: For A = a+ bx,B = 1 + x2, the inverse of A mod B is

U =
a− bx
a2 + b2

.

. Computation: Extended Euclidean algorithm
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Extended Euclidean algorithm

ExtendedEuclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B, and cofactors U and V .

1. R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi; Vi+1 := Vi−1 −QiVi.
(c) i := i+ 1.

3. Return
(
Ri−1, Ui−1, Vi−1

)
.

. Correctness: Ri = UiA+ ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1A+ Vi−1B −Qi(UiA+ ViB) = Ui+1A+ Vi+1B

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K
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Resultants
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Definition

The Sylvester matrix of A = amx
m + · · ·+ a0 ∈ K[x], (am 6= 0), and of

B = bnx
n + · · ·+ b0 ∈ K[x], (bn 6= 0), is the square matrix of size m+ n

Syl(A,B) =



am am−1 . . . a0

am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


The resultant Res(A,B) of A and B is the determinant of Syl(A,B).

. Definition extends to polynomials over any commutative ring R.
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Key observation

If A = amx
m + · · ·+ a0 and B = bnx

n + · · ·+ b0, then



am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


×


αm+n−1

...

α

1

 =



αn−1A(α)
...

A(α)

αm−1B(α)
...

B(α)



Corollary: If A(α) = B(α) = 0, then Res (A,B) = 0.
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Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A′.

E.g. for A = ax2 + bx+ c,

Disc(A) = Res (A,A′) = det


a b c

2a b

2a b

 = −a(b2 − 4ac).

E.g. for A = ax3 + bx+ c,

Disc(A) = Res (A,A′) = det



a 0 b c

a 0 b c

3a 0 b

3a 0 b

3a 0 b


= a2(4b3 + 27ac2).

. The discriminant vanishes when A and A′ have a common root, that is

when A has a multiple root.



MPRI, C-2-22 39

Main properties

• Link with gcd Res (A,B) = 0 if and only if gcd(A,B) is non-constant.

• Elimination property

There exist U, V ∈ K[x] not both zero, with deg(U) < n, deg(V ) < m and

such that the following Bézout identity holds in K ∩ (A,B):

Res (A,B) = UA+ V B.

• Poisson formula

If A = a(x− α1) · · · (x− αm) and B = b(x− β1) · · · (x− βn), then

Res (A,B) = anbm
∏
i,j

(αi − βj) = an
∏

1≤i≤m

B(αi).

• Multiplicativity

Res (A·B,C) = Res (A,C)·Res (B,C), Res (A,B·C) = Res (A,B)·Res (A,C).
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Proof of Poisson’s formula

. Direct consequence of the key observation:

If A = (x− α1) · · · (x− αm) and B = (x− β1) · · · (x− βn) then

Syl(A,B)×


βm+n−1
1 . . . βm+n−1

n αm+n−1
1 . . . αm+n−1

m

...
...

...
...

β1 . . . βn α1 . . . αm

1 . . . 1 1 . . . 1

 =

=



βn−11 A(β1) . . . βn−1n A(βn) 0 . . . 0
...

...
...

...

A(β1) . . . A(βn) 0 . . . 0

0 . . . 0 αm−11 B(α1) . . . αm−1m B(αm)
...

...
...

...

0 . . . 0 B(α1) . . . B(αm)


. To conclude, take determinants and use Vandermonde’s formula
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Application: computation with algebraic numbers

Let A =
∏
i(x− αi) and B =

∏
j(x− βj) be polynomials of K[x]. Then

A⊕B :=
∏
i,j

(t− (αi + βj)) = Res x(A(x), B(t− x)),

∏
i,j

(t− (βj − αi)) = Res x(A(x), B(t+ x)),

A⊗B :=
∏
i,j

(t− αiβj) = Res x(A(x), xdegBB(t/x)),

∏
i

(t−B(αi)) = Res x(A(x), t−B(x)).

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one:
∏
i

B(t− αi) =
∏
i,j

(t− αi − βj).

. The same formulas apply mutatis mutandis to algebraic power series.
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A beautiful identity of Ramanujan’s
sin 2π

7

sin2 3π
7

−
sin π

7

sin2 2π
7

+
sin 3π

7

sin2 π
7

= 2
√

7.

. If p = π/7 then sin(kp) = (αk − α−k)/(2 i), where α = eip, with α7 = −1

. Since α ∈ Q, any rational expression in the sin(kp) is in Q(i)(α) thus in Q

> f:=sin(2*p)/sin(3*p)^2-sin(p)/sin(2*p)^2+sin(3*p)/sin(p)^2:

> expand(convert(f, exp)):

> F:=normal(subs(exp(I*p)=alpha, %));

2 i
(
α16 + 5α14 + 12α12 + α11 + 20α10 + 3α9 + 23α8 + 3α7 + 20α6 + α5 + 12α4 + 5α2 + 1

)
α (α2 − 1) (α2 + 1)2 (α4 + α2 + 1)2

. In particular our LHS, F (α) = N(α)
D(α) , is an algebraic number

. Resultant R(t) := Resx(x7 + 1, t ·D(x)−N(x)) annihilates F (α)

> R:=factor(resultant(x^7+1, t*denom(F)-numer(F), x));

−1274 i
(
t2 − 28

)3
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Shanks’ 1974 identities

√
11 + 2

√
29 +

√
16− 2

√
29 + 2

√
55− 10

√
29 =

√
5 +

√
22 + 2

√
5

√√
m+ n+

√
n+

√
√
m+ n+m−

√
n+ 2

√
m
(√
m+ n−

√
n
)

=
√
m+

√
2
√
m+ n+ 2

√
m
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Two more exercises for next Thursday

(1) Let P,Q ∈ K[x] be two polynomials, and let N ∈ N \ {0}.

(a) Show that the unique monic polynomial in K[x] whose roots are the N -th

powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number α, show that one

can determine an annihilating polynomial of Q(α) using a resultant.

(2) The aim of this exercise is to prove algorithmically the following identity:

3

√
3
√

2− 1 =
3

√
1

9
− 3

√
2

9
+

3

√
4

9
. (1)

Let a = 3
√

2 and b = 3

√
1
9 .

(a) Determine Pc ∈ Q[x] annihilating c = 1− a+ a2, using a resultant.

(b) Deduce PR ∈ Q[x] annihilating the RHS of (1), by another resultant.

(c) Show that the polynomial computed in (b) also annihilates the LHS of (1).

(d) Conclude.
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Systems of two equations and two unknowns

Geometrically, roots of a polynomial f ∈ Q[x] correspond to points on a line.

Roots of polynomials A ∈ Q[x, y] correspond to plane curves A = 0.

Let now A and B be in Q[x, y]. Then:

• either the curves A = 0 and B = 0 have a common component,

• or they intersect in a finite number of points.



MPRI, C-2-22 46

Application: Resultants compute projections

Theorem. Let A = amy
m + · · · and B = bny

n + · · · be polynomials in Q[x][y].

The roots of Res y(A,B) ∈ Q[x] are either the abscissas of points in the

intersection A = B = 0, or common roots of am and bn.

Proof. Elimination property: Res (A,B) = UA+ V B, for U, V ∈ Q[x, y].

Thus A(α, β) = B(α, β) = 0 implies Res y(A,B)(α) = 0
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Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

x = A(t), y = B(t), A,B ∈ K(t),

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x−A(t) and y −B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

x =
4t(1− t2)2

(1 + t2)3
, y =

8t2(1− t2)

(1 + t2)3
,

Res t((1+t2)3x−4t(1−t2)2, (1+t2)3y−8t2(1−t2)) = 224
(
(x2 + y2)3 − 4x2y2

)
.
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Computation of the resultant

An Euclidean-type algorithm for the resultant bases on:

• If A = QB +R, and R 6= 0, then (by Poisson’s formula)

Res (A,B) = (−1)degA degB lc(B)degA−degR Res (B,R).

• If B is constant, then Res (A,B) = B degA.

If (R0, . . . , RN−1, RN = gcd(A,B), 0) is the remainder sequence produced by

the Euclidean algorithm for R0 = A and R1 = B, then

• either degRN is non-constant, and Res (A,B) = 0,

• or Res (A,B) = R
degRN−1

N

N−2∏
i=0

(−1)degRi degRi+1 lc(Ri+1)degRi−degRi+2 .

. This leads to a O(N2) algorithm for Res (A,B), where deg(A),deg(B) ≤ N .

. A divide-and-conquer O(M(N) logN) algorithm requires extra-work.
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Bonus
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1. Fast Manipulation of Algebraic Numbers

. Composed sum A⊕B and composed product A⊗B in Õ(degA · degB)
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2. Computing the Truncated Resultant

[Moroz & Schost, ISSAC 2016]

. Resy(P (x, y), Q(x, y)) mod xk in Õ(kd), where d = max(degP,degQ)
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3. Resultant of Generic Bivariate Polynomials

[Villard, ISSAC 2018]

. Resy(P (x, y), Q(x, y)) of generic P,Q of degree d in Õ(d3−1/ω)


