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GCD and Extended GCD



GCD

If A,B ∈ K[x], then G ∈ K[x] is a gcd of A and B if

• G divides both A and B,

• any common divisor of A and B divides G.

. It is a generator of the ideal of K[x] generated by A and B, i.e.,{
U ·A+ V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W ·G

∣∣∣W ∈ K[x]
}

. It is unique up to a constant: the gcd, after normalization (G monic)

. It is useful for:

• normalization (simplification) of rational functions

• squarefree factorization of univariate polynomials

. Computation: Euclidean algorithm



Euclidean algorithm

Euclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B.

1. R0 := A; R1 := B; i := 1.

2. While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri

i := i+ 1.

3. Return Ri−1.

. Correctness: gcd(F,G) = gcd(G,F mod G)

. Termination: deg(B) > deg(R2) > deg(R1) > · · ·

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K



Extended GCD

If A,B ∈ K[x], then G = gcd(A,B) satisfies (Bézout relation)

G = U ·A+ V ·B, with U, V ∈ K[x]

. The co-factors U and V are unique if one further asks

deg(U) < deg(B)− deg(G) and deg(V ) < deg(A)− deg(G)

Then one calls (G,U, V ) is the extended gcd of A and B.

. Example: for A = a+ bx with a 6= 0 and B = 1 + x2,

G = 1 and
a− bx
a2 + b2

·A+
b2

a2 + b2
·B = 1



Extended GCD

Usefulness of Bézout coefficients:

• Recall the proof of “Any algebraic function is D-finite”

• modular inversion and division in a quotient ring Q = K[x]/(B(x)):

A is invertible in Q if and only if gcd(A,B) = 1. In this case:

the inverse of A in Q is equal to U , where U ·A+ V ·B = 1.

. Example: For A = a+ bx,B = 1 + x2, the inverse of A mod B is

U =
a− bx
a2 + b2

.

. Computation: Extended Euclidean algorithm



Extended Euclidean algorithm

ExtendedEuclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B, and cofactors U and V .

1. R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi; Vi+1 := Vi−1 −QiVi.
(c) i := i+ 1.

3. Return
(
Ri−1, Ui−1, Vi−1

)
.

. Correctness: Ri = UiA+ ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1A+ Vi−1B −Qi(UiA+ ViB) = Ui+1A+ Vi+1B

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K



Resultants



Definition

The Sylvester matrix of A = amx
m + · · ·+ a0 ∈ K[x], (am 6= 0), and of

B = bnx
n + · · ·+ b0 ∈ K[x], (bn 6= 0), is the square matrix of size m+ n

Syl(A,B) =



am am−1 . . . a0

am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


The resultant Res(A,B) of A and B is the determinant of Syl(A,B).

. Definition extends to polynomials over any commutative ring R.



Key observation

If A = amx
m + · · ·+ a0 and B = bnx

n + · · ·+ b0, then



am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


×


αm+n−1

...

α

1

 =



αn−1A(α)
...

A(α)

αm−1B(α)
...

B(α)



Corollary: If A(α) = B(α) = 0, then Res (A,B) = 0.



Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A′.

E.g. for A = ax2 + bx+ c,

Disc(A) = Res (A,A′) = det


a b c

2a b

2a b

 = −a(b2 − 4ac).

E.g. for A = ax3 + bx+ c,

Disc(A) = Res (A,A′) = det



a 0 b c

a 0 b c

3a 0 b

3a 0 b

3a 0 b


= a2(4b3 + 27ac2).

. The discriminant vanishes when A and A′ have a common root, that is

when A has a multiple root.



Main properties

• Link with gcd Res (A,B) = 0 if and only if gcd(A,B) is non-constant.

• Elimination property

There exist U, V ∈ K[x] not both zero, with deg(U) < n, deg(V ) < m and

such that the following Bézout identity holds in K ∩ (A,B):

Res (A,B) = UA+ V B.

• Poisson formula

If A = a(x− α1) · · · (x− αm) and B = b(x− β1) · · · (x− βn), then

Res (A,B) = anbm
∏
i,j

(αi − βj) = an
∏

1≤i≤m

B(αi).

• Multiplicativity

Res (A·B,C) = Res (A,C)·Res (B,C), Res (A,B·C) = Res (A,B)·Res (A,C).



Proof of Poisson’s formula

. Direct consequence of the key observation:

If A = (x− α1) · · · (x− αm) and B = (x− β1) · · · (x− βn) then

Syl(A,B)×


βm+n−1
1 . . . βm+n−1

n αm+n−1
1 . . . αm+n−1

m

...
...

...
...

β1 . . . βn α1 . . . αm

1 . . . 1 1 . . . 1

 =

=



βn−11 A(β1) . . . βn−1n A(βn) 0 . . . 0
...

...
...

...

A(β1) . . . A(βn) 0 . . . 0

0 . . . 0 αm−11 B(α1) . . . αm−1m B(αm)
...

...
...

...

0 . . . 0 B(α1) . . . B(αm)


. To conclude, take determinants and use Vandermonde’s formula



Application: computation with algebraic numbers

Let A =
∏
i(x− αi) and B =

∏
j(x− βj) be polynomials of K[x]. Then∏

i,j

(t− (αi + βj)) = Res x(A(x), B(t− x)),

∏
i,j

(t− (βj − αi)) = Res x(A(x), B(t+ x)),

∏
i,j

(t− αiβj) = Res x(A(x), xdegBB(t/x)),

∏
i

(t−B(αi)) = Res x(A(x), t−B(x)).

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one:
∏
i

B(t− αi) =
∏
i,j

(t− αi − βj).

. The same formulas apply mutatis mutandis to algebraic power series.



A beautiful identity of Ramanujan’s
sin 2π

7

sin2 3π
7

−
sin π

7

sin2 2π
7

+
sin 3π

7

sin2 π
7

= 2
√

7.

. If a = π/7 and x = eia, then x7 = −1 and sin(ka) = (xk − x−k)/(2 i)

. Since x ∈ Q, any rational expression in the sin(ka) is in Q(x), thus in Q

. In particular our LHS, F (x) = N(x)
D(x) , is an algebraic number

> f:=sin(2*a)/sin(3*a)^2-sin(a)/sin(2*a)^2+sin(3*a)/sin(a)^2:

> expand(convert(f,exp)):

> F:=normal(subs(exp(I*a)=x,%)):

2 i
(
x16 + 5 x14 + 12 x12 + x11 + 20 x10 + 3 x9 + 23 x8 + 3 x7 + 20 x6 + x5 + 12 x4 + 5 x2 + 1

)
x (x2 − 1) (x2 + 1)2 (x4 + x2 + 1)2

. Get R in Q[t] with root F (x), via resultant Resx(x7 + 1, t ·D(x)−N(x))

> R:=factor(resultant(x^7+1,t*denom(F)-numer(F),x));

−1274 i
(
t2 − 28

)3



Shanks’ 1974 identities

√
11 + 2

√
29 +

√
16− 2

√
29 + 2

√
55− 10

√
29 =

√
5 +

√
22 + 2

√
5

√√
m+ n+

√
n+

√
√
m+ n+m−

√
n+ 2

√
m
(√
m+ n−

√
n
)

=
√
m+

√
2
√
m+ n+ 2

√
m



Two exercises for next time

(1) Let P,Q ∈ K[x] be two polynomials, and let N ∈ N \ {0}.

(a) Show that the unique monic polynomial in K[x] whose roots are the N -th

powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number α, show that one

can determine an annihilating polynomial of Q(α) using a resultant.

(2) The aim of this exercise is to prove algorithmically the following identity:

3

√
3
√

2− 1 =
3

√
1

9
− 3

√
2

9
+

3

√
4

9
. (1)

Let a = 3
√

2 and b = 3

√
1
9 .

(a) Determine Pc ∈ Q[x] annihilating c = 1− a+ a2, using a resultant.

(b) Deduce PR ∈ Q[x] annihilating the RHS of (1), by another resultant.

(c) Show that the polynomial computed in (b) also annihilates the LHS of (1).

(d) Conclude.



Systems of two equations and two unknowns

Geometrically, roots of a polynomial f ∈ Q[x] correspond to points on a line.

Roots of polynomials A ∈ Q[x, y] correspond to plane curves A = 0.

Let now A and B be in Q[x, y]. Then:

• either the curves A = 0 and B = 0 have a common component,

• or they intersect in a finite number of points.



Application: Resultants compute projections

Theorem. Let A = amy
m + · · · and B = bny

n + · · · be polynomials in Q[x][y].

The roots of Res y(A,B) ∈ Q[x] are either the abscissas of points in the

intersection A = B = 0, or common roots of am and bn.

Proof. Elimination property: Res (A,B) = UA+ V B, for U, V ∈ Q[x, y].

Thus A(α, β) = B(α, β) = 0 implies Res y(A,B)(α) = 0



Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

x = A(t), y = B(t), A,B ∈ K(t),

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x−A(t) and y −B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

x =
4t(1− t2)2

(1 + t2)3
, y =

8t2(1− t2)

(1 + t2)3
,

Res t((1+t2)3x−4t(1−t2)2, (1+t2)3y−8t2(1−t2)) = 224
(
(x2 + y2)3 − 4x2y2

)
.



Computation of the resultant

An Euclidean-type algorithm for the resultant bases on:

• If A = QB +R, and R 6= 0, then (by Poisson’s formula)

Res (A,B) = (−1)degA degB lc(B)degA−degR Res (B,R).

• If B is constant, then Res (A,B) = B degA.

If (R0, . . . , RN−1, RN = gcd(A,B), 0) is the remainder sequence produced by

the Euclidean algorithm for R0 = A and R1 = B, then

• either degRN is non-constant, and Res (A,B) = 0,

• or Res (A,B) = R
degRN−1

N

N−2∏
i=0

(−1)degRi degRi+1 lc(Ri+1)degRi−degRi+2 .

. This leads to a O(N2) algorithm for Res (A,B), where deg(A),deg(B) ≤ N .

. A divide-and-conquer O(M(N) logN) algorithm requires extra-work.


