Gcd and Resultant

Alin Bostan

Specfun, Inria

MPRI C-2-22 October 12, 2020

GCD and Extended GCD

GCD

If $A, B \in \mathbb{K}[x]$, then $G \in \mathbb{K}[x]$ is a gcd of A and B if

- G divides both A and B,
- any common divisor of A and B divides G.

▷ It is a generator of the ideal of K[x] generated by A and B, i.e.,

$$\left\{ U \cdot A + V \cdot B \mid U, V \in \mathbb{K}[x] \right\} = \left\{ W \cdot G \mid W \in \mathbb{K}[x] \right\}$$

 \triangleright It is unique up to a constant: the gcd, after normalization (G monic)

 \triangleright It is useful for:

- normalization (simplification) of rational functions
- squarefree factorization of univariate polynomials
- ▶ **Computation**: Euclidean algorithm

Euclidean algorithm

 $\mathsf{Euclid}(A, B)$

Input A and B in $\mathbb{K}[x]$.

Output A gcd G of A and B.

- 1. $R_0 := A; R_1 := B; i := 1.$
- 2. While R_i is non-zero, do:

 $R_{i+1} := R_{i-1} \bmod R_i$

i := i + 1.

- 3. Return R_{i-1} .
- $\triangleright \text{ Correctness: } gcd(F,G) = gcd(G,F \bmod G)$
- \triangleright Termination: $\deg(B) > \deg(R_2) > \deg(R_1) > \cdots$
- ▷ Quadratic complexity: $O(\deg(A) \deg(B))$ operations in K

Extended GCD

If $A, B \in \mathbb{K}[x]$, then $G = \gcd(A, B)$ satisfies (Bézout relation) $G = U \cdot A + V \cdot B, \quad \text{with } U, V \in \mathbb{K}[x]$

 \triangleright The co-factors U and V are unique if one further asks

$$\deg(U) < \deg(B) - \deg(G)$$
 and $\deg(V) < \deg(A) - \deg(G)$

Then one calls (G, U, V) is the extended gcd of A and B.

 \triangleright Example: for A = a + bx with $a \neq 0$ and $B = 1 + x^2$,

$$G = 1$$
 and $\frac{a - bx}{a^2 + b^2} \cdot A + \frac{b^2}{a^2 + b^2} \cdot B = 1$

Extended GCD

Usefulness of Bézout coefficients:

- Recall the proof of "Any algebraic function is D-finite"
- modular inversion and division in a quotient ring Q = K[x]/(B(x)):
 A is invertible in Q if and only if gcd(A, B) = 1. In this case:
 the inverse of A in Q is equal to U, where U · A + V · B = 1.

▷ Example: For A = a + bx, $B = 1 + x^2$, the inverse of A mod B is

$$U = \frac{a - bx}{a^2 + b^2}.$$

▷ Computation: Extended Euclidean algorithm

Extended Euclidean algorithm

 $\mathsf{ExtendedEuclid}(A, B)$

Input A and B in $\mathbb{K}[x]$. Output A gcd G of A and B, and cofactors U and V. 1. $R_0 := A; U_0 := 1; V_0 := 0; R_1 := B; U_1 := 0; V_1 := 1; i := 1.$ 2. While R_i is non-zero, do: (a) $(Q_i, R_{i+1}) := \text{QuotRem}(R_{i-1}, R_i) \#R_{i-1} = Q_i R_i + R_{i+1}$ (b) $U_{i+1} := U_{i-1} - Q_i U_i; V_{i+1} := V_{i-1} - Q_i V_i.$ (c) i := i + 1.3. Return $(R_{i-1}, U_{i-1}, V_{i-1}).$

 \triangleright Correctness: $R_i = U_i A + V_i B$ (by induction):

 $R_{i+1} = R_{i-1} - Q_i R_i = U_{i-1}A + V_{i-1}B - Q_i (U_iA + V_iB) = U_{i+1}A + V_{i+1}B$

▷ Quadratic complexity: $O(\deg(A)\deg(B))$ operations in K

Resultants

Definition

The Sylvester matrix of $A = a_m x^m + \cdots + a_0 \in \mathbb{K}[x]$, $(a_m \neq 0)$, and of $B = b_n x^n + \cdots + b_0 \in \mathbb{K}[x]$, $(b_n \neq 0)$, is the square matrix of size m + n

$$\mathsf{Syl}(A,B) = \begin{bmatrix} a_m & a_{m-1} & \dots & a_0 & & & \\ & a_m & a_{m-1} & \dots & a_0 & & & \\ & & \ddots & \ddots & & \ddots & & \\ & & & a_m & a_{m-1} & \dots & a_0 \\ & & & b_n & b_{n-1} & \dots & b_0 & & \\ & & & \ddots & \ddots & & \ddots & \\ & & & & & b_n & b_{n-1} & \dots & b_0 \end{bmatrix}$$

The resultant $\operatorname{Res}(A, B)$ of A and B is the determinant of Syl(A, B).

▷ Definition extends to polynomials over any commutative ring R.

Key observation

If
$$A = a_m x^m + \dots + a_0$$
 and $B = b_n x^n + \dots + b_0$, then

$$\begin{bmatrix} a_{m} & a_{m-1} & \dots & a_{0} & & \\ & \ddots & \ddots & & \ddots & \\ & & a_{m} & a_{m-1} & \dots & a_{0} \\ & & & b_{n-1} & \dots & b_{0} & & \\ & & & \ddots & & \ddots & \\ & & & & b_{n} & b_{n-1} & \dots & b_{0} \end{bmatrix} \times \begin{bmatrix} \alpha^{m+n-1} \\ \vdots \\ \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^{n-1}A(\alpha) \\ \vdots \\ A(\alpha) \\ \alpha^{m-1}B(\alpha) \\ \vdots \\ B(\alpha) \end{bmatrix}$$

Corollary: If $A(\alpha) = B(\alpha) = 0$, then Res(A, B) = 0.

Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A'. E.g. for $A = ax^2 + bx + c$,

$$\mathsf{Disc}(A) = \mathsf{Res}(A, A') = \det \begin{bmatrix} a & b & c \\ 2a & b \\ 2a & b \end{bmatrix} = -a(b^2 - 4ac).$$

E.g. for
$$A = ax^3 + bx + c$$
,

$$\mathsf{Disc}(A) = \mathsf{Res}(A, A') = \det \begin{bmatrix} a & 0 & b & c \\ a & 0 & b & c \\ 3a & 0 & b \\ & 3a & 0 & b \\ & & 3a & 0 & b \end{bmatrix} = a^2(4b^3 + 27ac^2).$$

▷ The discriminant vanishes when A and A' have a common root, that is when A has a multiple root.

Main properties

- Link with gcd $\operatorname{Res}(A, B) = 0$ if and only if $\operatorname{gcd}(A, B)$ is non-constant.
- Elimination property

There exist $U, V \in \mathbb{K}[x]$ not both zero, with $\deg(U) < n$, $\deg(V) < m$ and such that the following Bézout identity holds in $\mathbb{K} \cap (A, B)$:

 $\mathsf{Res}\,(A,B) = UA + VB.$

- Poisson formula If $A = a(x - \alpha_1) \cdots (x - \alpha_m)$ and $B = b(x - \beta_1) \cdots (x - \beta_n)$, then $\operatorname{Res}(A, B) = a^n b^m \prod_{i,j} (\alpha_i - \beta_j) = a^n \prod_{1 \le i \le m} B(\alpha_i).$
- Multiplicativity

 $\mathsf{Res}\,(A \cdot B, C) = \mathsf{Res}\,(A, C) \cdot \mathsf{Res}\,(B, C), \quad \mathsf{Res}\,(A, B \cdot C) = \mathsf{Res}\,(A, B) \cdot \mathsf{Res}\,(A, C).$

Proof of Poisson's formula

▷ Direct consequence of the key observation: $A = (x - \alpha_1) \cdots (x - \alpha_m)$ and $B = (x - \beta_1) \cdots (x - \beta_n)$ then If $\mathsf{Syl}(A,B) \times \left[\begin{array}{ccccccc} \beta_1^{m+n-1} & \dots & \beta_n^{m+n-1} & \alpha_1^{m+n-1} & \dots & \alpha_m^{m+n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_1 & \dots & \beta_n & \alpha_1 & \dots & \alpha_m \\ 1 & \dots & 1 & 1 & \dots & 1 \end{array} \right] =$ $= \begin{bmatrix} \beta_1^{n-1}A(\beta_1) & \dots & \beta_n^{n-1}A(\beta_n) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ A(\beta_1) & \dots & A(\beta_n) & 0 & \dots & 0 \\ 0 & \dots & 0 & \alpha_1^{m-1}B(\alpha_1) & \dots & \alpha_m^{m-1}B(\alpha_m) \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & B(\alpha_1) & \dots & B(\alpha_m) \end{bmatrix}$

▷ To conclude, take determinants and use Vandermonde's formula

Application: computation with algebraic numbers

Let $A = \prod_{i} (x - \alpha_{i})$ and $B = \prod_{j} (x - \beta_{j})$ be polynomials of $\mathbb{K}[x]$. Then $\prod_{i,j} (t - (\alpha_{i} + \beta_{j})) = \operatorname{Res}_{x}(A(x), B(t - x)),$ $\prod_{i,j} (t - (\beta_{j} - \alpha_{i})) = \operatorname{Res}_{x}(A(x), B(t + x)),$ $\prod_{i,j} (t - \alpha_{i}\beta_{j}) = \operatorname{Res}_{x}(A(x), x^{\deg B}B(t/x)),$ $\prod_{i,j} (t - B(\alpha_{i})) = \operatorname{Res}_{x}(A(x), t - B(x)).$

In particular, the set $\overline{\mathbb{Q}}$ of algebraic numbers is a field.

Proof: Poisson's formula. E.g., first one:
$$\prod_{i} B(t - \alpha_i) = \prod_{i,j} (t - \alpha_i - \beta_j).$$

▷ The same formulas apply mutatis mutandis to algebraic power series.

A beautiful identity of Ramanujan's

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

▷ If $a = \pi/7$ and $x = e^{ia}$, then $x^7 = -1$ and $\frac{\sin(ka)}{\sin(ka)} = \frac{x^k - x^{-k}}{2i}$ ▷ Since $x \in \overline{\mathbb{Q}}$, any rational expression in the $\frac{\sin(ka)}{\sin(ka)}$ is in $\mathbb{Q}(x)$, thus in $\overline{\mathbb{Q}}$ ▷ In particular our LHS, $F(x) = \frac{N(x)}{D(x)}$, is an algebraic number

> f:=sin(2*a)/sin(3*a)^2-sin(a)/sin(2*a)^2+sin(3*a)/sin(a)^2:

> expand(convert(f,exp)):

> F:=normal(subs(exp(I*a)=x,%)):

 $\frac{2\,i\left(x^{16}+5\,x^{14}+12\,x^{12}+x^{11}+20\,x^{10}+3\,x^{9}+23\,x^{8}+3\,x^{7}+20\,x^{6}+x^{5}+12\,x^{4}+5\,x^{2}+1\right)}{x\,(x^{2}-1)\,(x^{2}+1)^{2}\,(x^{4}+x^{2}+1)^{2}}$

 \triangleright Get R in $\mathbb{Q}[t]$ with root F(x), via resultant $\operatorname{Res}_x(x^7 + 1, t \cdot D(x) - N(x))$

> R:=factor(resultant(x^7+1,t*denom(F)-numer(F),x));

 $-1274 i (t^2 - 28)^3$

Shanks' 1974 identities

$$\sqrt{11 + 2\sqrt{29}} + \sqrt{16 - 2\sqrt{29} + 2\sqrt{55 - 10\sqrt{29}}} = \sqrt{5} + \sqrt{22 + 2\sqrt{5}}$$

$$\sqrt{\sqrt{m+n} + \sqrt{n}} + \sqrt{\sqrt{m+n} + m - \sqrt{n} + 2\sqrt{m}\left(\sqrt{m+n} - \sqrt{n}\right)}$$
$$= \sqrt{m} + \sqrt{2\sqrt{m+n} + 2\sqrt{m}}$$

Two exercises for next time

- (1) Let $P, Q \in \mathbb{K}[x]$ be two polynomials, and let $N \in \mathbb{N} \setminus \{0\}$.
- (a) Show that the unique monic polynomial in $\mathbb{K}[x]$ whose roots are the N-th powers of the roots of P can be obtained by a resultant computation.
- (b) If P is the minimal polynomial of an algebraic number α , show that one can determine an annihilating polynomial of $Q(\alpha)$ using a resultant.
- (2) The aim of this exercise is to prove algorithmically the following identity:

$$\sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}.$$
 (1)

Let $a = \sqrt[3]{2}$ and $b = \sqrt[3]{\frac{1}{9}}$.

- (a) Determine $P_c \in \mathbb{Q}[x]$ annihilating $c = 1 a + a^2$, using a resultant.
- (b) Deduce $P_R \in \mathbb{Q}[x]$ annihilating the RHS of (1), by another resultant.
- (c) Show that the polynomial computed in (b) also annihilates the LHS of (1).(d) Conclude.

Systems of two equations and two unknowns

Geometrically, roots of a polynomial $f \in \mathbb{Q}[x]$ correspond to points on a line.

Roots of polynomials $A \in \mathbb{Q}[x, y]$ correspond to plane curves A = 0.

Let now A and B be in $\mathbb{Q}[x, y]$. Then:

- either the curves A = 0 and B = 0 have a common component,
- or they intersect in a finite number of points.

Application: Resultants compute projections

Theorem. Let $A = a_m y^m + \cdots$ and $B = b_n y^n + \cdots$ be polynomials in $\mathbb{Q}[x][y]$. The roots of $\operatorname{Res}_y(A, B) \in \mathbb{Q}[x]$ are either the abscissas of points in the intersection A = B = 0, or common roots of a_m and b_n .

Proof. Elimination property: $\operatorname{Res}(A, B) = UA + VB$, for $U, V \in \mathbb{Q}[x, y]$. Thus $A(\alpha, \beta) = B(\alpha, \beta) = 0$ implies $\operatorname{Res}_y(A, B)(\alpha) = 0$

Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

 $x = A(t), \quad y = B(t), \qquad A, B \in \mathbb{K}(t),$

compute a non-trivial polynomial in x and y vanishing on the curve. Recipe: take the resultant in t of numerators of x - A(t) and y - B(t). Example: for the four-leaved clover (a.k.a. quadrifolium) given by

$$x = \frac{4t(1-t^2)^2}{(1+t^2)^3}, \quad y = \frac{8t^2(1-t^2)}{(1+t^2)^3},$$

 $\operatorname{\mathsf{Res}}_t((1+t^2)^3x - 4t(1-t^2)^2, (1+t^2)^3y - 8t^2(1-t^2)) = 2^{24}\left((x^2+y^2)^3 - 4x^2y^2\right).$

Computation of the resultant

An Euclidean-type algorithm for the resultant bases on:

• If A = QB + R, and $R \neq 0$, then (by Poisson's formula)

$$\operatorname{\mathsf{Res}}\,(A,B)=(-1)^{\deg A \deg B}\operatorname{\mathsf{lc}}(B)^{\deg A - \deg R}\operatorname{\mathsf{Res}}\,(B,R).$$

• If B is constant, then $\operatorname{\mathsf{Res}}(A,B) = B^{\operatorname{deg} A}$.

If $(R_0, \ldots, R_{N-1}, R_N = \text{gcd}(A, B), 0)$ is the remainder sequence produced by the Euclidean algorithm for $R_0 = A$ and $R_1 = B$, then

• either deg R_N is non-constant, and $\operatorname{Res}(A, B) = 0$,

• or
$$\operatorname{\mathsf{Res}}(A,B) = R_N^{\deg R_{N-1}} \prod_{i=0}^{N-2} (-1)^{\deg R_i \deg R_{i+1}} \operatorname{\mathsf{lc}}(R_{i+1})^{\deg R_i - \deg R_{i+2}}$$

▷ This leads to a $O(N^2)$ algorithm for $\operatorname{Res}(A, B)$, where $\deg(A), \deg(B) \leq N$.

▷ A divide-and-conquer $O(M(N) \log N)$ algorithm requires extra-work.