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GCD and Extended GCD



GCD

If A, B € K|z], then G € K[z] is a gcd of A and B if
e (5 divides both A and B,

e any common divisor of A and B divides G.

> It is a generator of the ideal of K|x] generated by A and B, i.e.,

{U-A+V-B U,VEK[:U]} - {W-G)WeK[x]}

> It is unique up to a constant: the gcd, after normalization (G monic)

> It is usetul for:
e normalization (simplification) of rational functions

e squarefree factorization of univariate polynomials

> Computation: Euclidean algorithm



Euclidean algorithm

Euclid(A, B)

Input A and B in K|z].
Output A gcd G of A and B.
1. Ry .= A; Ry :=B;1:=1.

2. While R; is non-zero, do:
R;+q1 := R;—1 mod R;
1:=1+ 1.

3. Return R;_;.

> Correctness: ged(F,G) = ged(G, F mod G)
> Termination: deg(B) > deg(R2) > deg(Ry) > - --
> Quadratic complexity: O( deg(A) deg(B)) operations in K



Extended GCD

If A, B € K[z|, then G = gcd(A, B) satisfies (Bézout relation)

G=U-A+V B, withU,V € K[|

> The co-factors U and V are unique if one further asks

deg(U) < deg(B) — deg(G) and deg(V) < deg(A) — deg(G)

Then one calls (G,U, V) is the extended gcd of A and B.

> Example: for A = a + bx with a # 0 and B = 1 + 22,

a — bx b2

G =1 and aj2—|—b?. +a2—|—b2

-B=1




Extended GCD

Usefulness of Bézout coefficients:
e Recall the proof of “Any algebraic function is D-finite”

e modular inversion and division in a quotient ring Q = K|z]/(B(x)):
A is invertible in @ if and only if gcd(A, B) = 1. In this case:
the inverse of A in () is equal to U, where U - A+ V - B = 1.

> Example: For A = a + bz, B = 1 + 22, the inverse of A mod B is

a — bx

U=——p

> Computation: Extended Euclidean algorithm



Extended Euclidean algorithm

ExtendedEuclid(A, B)

Input A and B in K|z].

Output A gcd G of A and B, and cofactors U and V.
1. Ry =A;Uy:=1;Vy:=0; Ry =B; Uy =0, V], :=1;1:=1.
2. While R; is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(R;_1, R;) #R,_1 = Q:Ri + R
(b) Uiy1 :=U;—1 — QiU;; Vg1 :=Vi1 — Q; V..
(¢) i:=1i4 1.

3. Return (Ri—la Uq;_l, ‘/z'—l) .

> Correctness: R; = U; A+ V;B (by induction):
Rii1=Ri1—-QR, =U_1A+V,_1B-Q;(UA+V,B)=U; 1A+ V,;1B

> Quadratic complexity: O(deg(A) deg(B)) operations in K



Resultants



Definition

The Sylvester matrix of A = a, 2™ + -+ - + ag € K[z], (@, # 0), and of
B =bp,x™ + -+ by € Klz], (b, # 0), is the square matrix of size m + n

Ay Qm—1 “. ago
Am, Am—1 ao
Ay Ay — . a
Syl(A, B) = ' ’
bn bn—l bO
bn bn—l bO
- bn bn—l b() 1

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

> Definition extends to polynomials over any commutative ring R.



Key observation

If A=a, 2™ +---+ay and B=b,z2" +---+ by, then

i Gry Gyl - ao ] i a" 1t A(a)
amtn-l
Ay 1 ... Qg A(a)
b, b,_q bo : o B a™ ' B(a)
1
I b bn_1 bo | _ - i B(a)

Corollary: If A(a) = B(a) = 0, then Res (A, B) = 0.




Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A’.

E.g. for A = az® + bz +c,

a b c
Disc(A) = Res (A, A") =det | 24 b = —a(b® — 4ac).
I 2 b |
E.g. for A =az® + bz +c,
i a 0 b c ]
a 0 b c
Disc(A) = Res(A,A")=det | 3¢ 0 b = a?(4b° + 2Tac?).

Ja 0 b

3a 0 b

> The discriminant vanishes when A and A’ have a common root, that is

when A has a multiple root.



Main properties
e Link with gcd Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

e Elimination property
There exist U,V € K[z] not both zero, with deg(U) < n, deg(V) < m and
such that the following Bézout identity holds in KN (A, B):

Res(A,B) =UA+ VB.

e Poisson formula
fA=alz—ay) - (r—am) and B=blzx— (1) - (x— 0,), then

Res(A4,B) = a™b™ H(ai—ﬁj) =a" ][] Blw).

e Multiplicativity

Res (A-B,C) = Res(A,(C)-Res (B,C), Res(A,B-C)=Res(A,B)-Res(A,C).



Proof of Poisson’s formula

> Direct consequence of the key observation:
If A=(rx—a1)---(r—am)and B=(zx— (1) ---(x — B,) then

T‘Ln_l .. BZ“L”_l o/{”Jrn_l . oz%JF”_l
Syl(A, B) %
51 ce Bn 1 “e (87
1 e 1 1 e 1
BrTA(BY) ... BrTA(Bn) 0 0
_ A(B1) . A(Bn) 0 e 0
0 0 " 'Blay) ... o™ 'Blay)
0 0 B(ay) B(aym,)

> To conclude, take determinants and use Vandermonde’s formula




Application: computation with algebraic numbers

Let A=[[;(z — ;) and B =]];(x — B;) be polynomials of K[z]. Then

H_(t — (@i + B;)) = Res . (A(x), B(t — x)),
H(t — (8j — i) = Res . (A(x), B(t + x)),
H(t — a;3;) = Res . (A(x), 298 BB(t/x)),

][t — B(:)) = Res . (A(x).t — B(x)).

)

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: H B(t —ay;) = H(t —a; — ).

@]

> The same formulas apply mutatis mutandis to algebraic power series.



A beautiful identity of Ramanujan’s

i 2T n T i ST

S111 = S111 ~ S111 7 \/7
. 9 37 _ . 92 2T —|_ . 92 . — 2 7.
S111 a S111 a S111 -

>If a =7/7 and = €®, then 27 = —1 and sin(ka) = (2" — 27%)/(21)

> Since x € Q, any rational expression in the sin(ka) is in Q(x), thus in Q

_ N(z)

> In particular our LHS, F(x) = D(z) 18 an algebraic number

> f:=sin(2%*a)/sin(3*a) "2-sin(a)/sin(2*a) "2+sin(3*a)/sin(a) "2:
> expand(convert (f,exp)):
> F:=normal (subs (exp(I*a)=x,%)):

29 (2" + 52" + 122" + 2™ +202'° +32” +232° + 327 +202° +2° + 122* + 527 + 1)

x(x2 —1) (2 +1)2 (4 + 22 4+ 1)2

> Get R in Q[t] with root F(x), via resultant Res,(z” + 1,¢- D(x)—N(x))

> R:=factor(resultant (x~7+1,t*denom(F)-numer(F) ,x));

—1274i (> — 28)°



Shanks' 1974 identities

\/11+2@+\/16—2@+2\/55—10\5:\/5+\/22+2¢5

\/m+m+\/¢m+m_ﬁ+z\/m(m_m

=M+\/Q¢W+2m



Two exercises for next time

(1) Let P,Q € K|z] be two polynomials, and let N € N\ {0}.

(a) Show that the unique monic polynomial in K|z] whose roots are the N-th
powers of the roots of P can be obtained by a resultant computation.

(b) If P is the minimal polynomial of an algebraic number «, show that one
can determine an annihilating polynomial of ()(«) using a resultant.

(2) The aim of this exercise is to prove algorithmically the following identity:

{’/%——zf/g—i/gﬂ”/g (1)

Let a = ¢/2 and b= {/3.



Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q|x] correspond to points on a line.

Roots of polynomials A € Q[z, y] correspond to plane curves A = 0.

Let now A and B be in Q|x,y]. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.



Application: Resultants compute projections

Theorem. Let A = a,,y™ + --- and B = b,y"™ 4 - -- be polynomials in Q|x]|y].
The roots of Res ,(A, B) € Q[z] are either the abscissas of points in the

intersection A = B = 0, or common roots of a,, and b,,.

Proof. Elimination property: Res (A, B) =UA+ VB, for U,V € Q[z,y].
Thus A(a, ) = B(a, ) =0 implies Res, (A4, B)(a) =0



Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(?).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

A1 —t?)? 8t (1 —t?)
T At T AT e)p

Res ((1+t%)%z —4t(1—2)2, (14+¢)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .



Computation of the resultant

An Euclidean-type algorithm for the resultant bases on:
o If A=QB + R, and R # 0, then (by Poisson’s formula)
Res (A, B) = (—1)deeAdee B |c(B)dee A—dee  Ras (B R).

o If B is constant, then Res(A, B) = Bdee4,

If (Ro,...,Rn_1,RNn =gcd(A, B),0) is the remainder sequence produced by
the Euclidean algorithm for Ry = A and Ry = B, then

e cither deg Ry is non-constant, and Res (A, B) = 0,

N—-2
e or Res (A,B) _ R](\i.[egRN—l H (_1)degRi deg Rit1 IC(RH_l)degRi—degRiJrQ.
1=0

> This leads to a O(N?) algorithm for Res (A4, B), where deg(A), deg(B) < N.

> A divide-and-conquer O(M(N)log V) algorithm requires extra-work.



