
Polynomial Matrices and Structured Matrices

Alin Bostan

Specfun, Inria

MPRI C-2-22
November 2, 2020

Hermite-Padé approximants

Definition of Hermite-Padé approximants

Definition: Given a column vector F = (f1, . . . , fn)T ∈ K[[x]]n and an n-tuple

d = (d1, . . . , dn) ∈ Nn, a Hermite-Padé approximant of type d for F is a row

vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1f1 + · · ·+ Pnfn = O(xσ) with σ =
∑
i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

• [Hermite, 1873]: e is transcendental.

• [Lindemann, 1882]: π is transcendental; so does eα for any α ∈ Q \ {0}.

• [Apéry, 1978; Beukers, 1981]: ζ(3) =
∑
n≥1

1
n3 is irrational.

• [Rivoal, 2000]: there exist infinitely many k ∈ N such that ζ(2k + 1) /∈ Q.

[Padé, 1894]

Worked example

Let us compute a Hermite-Padé approximant of type (1, 1, 1) for (1, C, C2),

where C(x) = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 +O(x6).

This boils down to finding α0, α1, β0, β1, γ0, γ1 (not all zero) such that

α0+α1x+(β0+β1x)(1+x+2x2+5x3+14x4)+(γ0+γ1x)(1+2x+5x2+14x3+42x4)=O(x5)

Identifying coefficients, this is equivalent to a homogeneous linear system:



1 0 1 0 1 0

0 1 1 1 2 1

0 0 2 1 5 2

0 0 5 2 14 5

0 0 14 5 42 14


×



α0

α1

β0

β1

γ0

γ1


= 0⇐⇒



1 0 1 0 1

0 1 1 1 2

0 0 2 1 5

0 0 5 2 14

0 0 14 5 42


×



α0

α1

β0

β1

γ0


= −γ1



0

1

2

5

14


.

By homogeneity, one can choose γ1 = 1. Then, the violet minor shows that

one can take (β0, β1, γ0) = (−1, 0, 0). The other values are α0 = 1, α1 = 0.

Thus the approximant is (1,−1, x), which corresponds to P = 1− y + xy2

such that P (x,C(x)) = 0 mod x5.

Algebraic and differential approximation = guessing

• Hermite-Padé approximants of n = 2 power series are related to Padé

approximants, i.e. to approximation of series by rational functions

• algebraic approximants = Hermite-Padé approximants for f` = A`−1,

where A ∈ K[[x]] seriestoalgeq, listtoalgeq

• differential approximants = Hermite-Padé approximants for f` = A(`−1),

where A ∈ K[[x]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x))[1];

1− y (x) + x (y (x))
2

> listtodiffeq([1,1,2,5,14,42,132,429],y(x))[1][1];

−2 y (x) + (−4x+ 2) d
dxy (x) + x d2

dx2 y (x)

Existence and naive computation

Theorem For any vector F = (f1, . . . , fn)T ∈ K[[x]]n and for any n-tuple

d = (d1, . . . , dn) ∈ Nn, there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of Pi =
∑di
j=0 pi,jx

j satisfy a linear

homogeneous system with σ =
∑
i(di + 1)− 1 eqs and σ + 1 unknowns.

Corollary Computation in O(σθ), for 2 ≤ θ ≤ 3 (linear algebra exponent)

. There are better algorithms (the linear system is structured, Sylvester-like):

• Derksen’s algorithm (Euclidean-like elimination) O(σ2)

• Beckermann-Labahn algorithm (DAC) Õ(σ) = O(σ log2 σ)

• structured linear algebra algorithms for Toeplitz-like matrices Õ(σ)

Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé

approximant of type (d, . . . , d) for F = (f1, . . . , fn) in Õ(nθd) ops. in K.

Ideas:

• Compute a whole matrix of approximants

• Exploit divide-and-conquer

Algorithm:

1. If σ = n(d+ 1)− 1 ≤ threshold, call the naive algorithm

2. Else:

(a) recursively compute P1 ∈ K[x]n×n s.t. P1 · F = O(xσ/2), deg(P1) ≈ d
2

(b) compute “residue” R such that P1 · F = xσ/2 ·
(
R +O(xσ/2)

)
(c) recursively compute P2 ∈ K[x]n×n s.t. P2 ·R = O(xσ/2), deg(P2) ≈ d

2

(d) return P := P2 ·P1

. The precise choices of degrees is a delicate issue

. Corollary: Gcd, extended gcd, Padé approximants in Õ(d) ops. in K.

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.

In other words, A is a root of the polynomial Q =
∑n
i=0Qi(x)yi.

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.

In other words, A is a root of the polynomial Q =
∑n
i=0Qi(x)yi.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P (x,A(x)) = 0, and degx(P) ≤ d, degy(P) ≤ n.

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A ∈ K[[x]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[x, y] of degree at most d in x and at most n in y.

If
n∑
i=0

Qi(x)Ai(x) = O(x2dn+1) and degQi ≤ d, then
n∑
i=0

Qi(x)Ai(x) = 0.

In other words, A is a root of the polynomial Q =
∑n
i=0Qi(x)yi.

Proof: Let P ∈ K[x, y] be an irreducible polynomial such that

P (x,A(x)) = 0, and degx(P) ≤ d, degy(P) ≤ n.

• By definition, R(x) = Res y(P,Q) ∈ K[x] has degree at most 2dn.

• By elimination, R(x) = UP + V Q for U, V ∈ K[x, y] with degy(V) < n.

• Evaluation at y = A(x) yields

R(x) = U(x,A(x))P (x,A(x))︸ ︷︷ ︸
0

+V (x,A(x))Q(x,A(x))︸ ︷︷ ︸
O(x2dn+1)

= O(x2dn+1).

• Thus R = 0, that is gcd(P,Q) 6= 1, and thus P |Q, and A is a root of Q.

Ex. 1

Let (an)n≥0 be a sequence with a0 = a1 = 1 satisfying the recurrence

(n+ 3)an+1 = (2n+ 3)an + 3nan−1.

Show that an is an integer for all n, by following the next steps:

(1) Compute the first 5 terms of the sequence, a0, . . . , a4;

(2) Show that [1, x− 1, x2] is a Hermite-Padé approximant of type (0, 1, 2) for

(1, f, f2), where f =
∑
n anx

n;

(3) Deduce that P (x, y) := 1 + (x−1)y+x2y2 satisfies P (x, f(x)) = 0 mod x5;

(4) Show that the equation P (x, y) = 0 admits a root y = g(x) ∈ Q[[x]] whose

coefficients satisfy the same linear recurrence as (an)n≥0;

(5) Deduce that an+2 = an+1 +
∑n
k=0 ak · an−k for all n, and conclude.

Polynomial Matrices

Context

. Linear algebra questions in Mn(A), where A is a ring in which

multiplication does not have unit cost. Typically: A = K[x] or A = Z.

. Although some algorithms (e.g., naive, or Strassen’s multiplication) remain

well-adapted to this framework, this is not the case for other important tasks:

• matrix inversion by Strassen’s algorithm −→ Ex. 2

• system solving by Gaussian elimination

. Main reason: expression swell during intermediate computations

. . . . sometimes leading even to an exponential blow-up

. Conclusion: Need for new algorithmic ideas!

Ex. 2: Strassen’s inversion for polynomial matrices

Let M(x) ∈Mn(K[x]≤d) be an invertible polynomial matrix.

Assume one computes its inverse using Strassen’s inversion algorithm for

dense (scalar) matrices.

Estimate the complexity of this computation, counting operations in K, in

terms of the two parameters n and d, under the assumption that all matrices

encountered during the inversion algorithm are invertible.

Using the evaluation/interpolation paradigm

. The modular approach allows to recover polynomial-time complexity

. . . . but it usually yields non-optimal algorithms

. Recall (multiplication of polynomial matrices)

If A,B ∈Mn(K[x]<d), then one can compute C = AB by eval/interp in

MM(n, d) = O(n2 M(d) + MM(n)d) = Õ(nθd)

. Recall (determinant of polynomial matrices)

If A ∈Mn(K[x]<d), then one can compute det(A) by eval/interp in

O(n2 M(nd) + ndMM(n)) = Õ(nθ+1d)

Main results

Theorem [complexity results for polynomial matrices]

Let K be a field, n, d ∈ N, and θ a feasible exponent for product in Mn(K).

Let A ∈Mn(K[x]≤d) and b ∈ K[x]n<d. Then one can compute:

(a) A−1 in O(MM(n, nd)) = Õ(nθ+1 d) ops. in K

(b) y ∈Mn(K(x)) s.t. Ay = b in O(MM(n, d) log n) = Õ(nθ d) ops. in K

(c) det(A) in O(MM(n, d) log2 n) = Õ(nθ d) ops. in K

(d) rk(A) and a basis of ker(A) in Õ(nθ d) ops. in K.

This is not real This is not real

Main results

Theorem [complexity results for polynomial matrices]

Let K be a field, n, d ∈ N, and θ a feasible exponent for product in Mn(K).

Let A ∈Mn(K[x]≤d) and b ∈ K[x]n<d. Then one can compute:

(a) A−1 in O(MM(n, nd)) = Õ(nθ+1 d) ops. in K

(b) y ∈Mn(K(x)) s.t. Ay = b in O(MM(n, d) log n) = Õ(nθ d) ops. in K

(c) det(A) in O(MM(n, d) log2 n) = Õ(nθ d) ops. in K

(d) rk(A) and a basis of ker(A) in Õ(nθ d) ops. in K.

. (Generic) output sizes: n3d for (a); n2d for (b) and (d); nd for (c).

. Partic. case of (c): A = xIn −M , for M ∈Mn(K) −→ χM (x) in Õ(nθ)

. Open problem: is it possible to compute χA in Õ(nθ d)?

. Similar results for integer matrices: if A ∈Mn(Z) with |aij | ≤ 2`, then

product/det/system solving in Õ(nθ `) binary ops. [Storjohann, 2005]

. [Zhou, Labahn, Storjohann, 2015] improved (a) to Õ(n3 d).

Main results

Theorem [complexity results for polynomial matrices]

Let K be a field, n, d ∈ N, and θ a feasible exponent for product in Mn(K).

Let A ∈Mn(K[x]≤d) and b ∈ K[x]n<d. Then one can compute:

(a) A−1 in O(MM(n, nd)) = Õ(nθ+1 d) ops. in K

(b) y ∈Mn(K(x)) s.t. Ay = b in O(MM(n, d) log n) = Õ(nθ d) ops. in K

(c) det(A) in O(MM(n, d) log2 n) = Õ(nθ d) ops. in K

(d) rk(A) and a basis of ker(A) in Õ(nθ d) ops. in K.

. Main new algorithmic ideas:

for (a) Newton iteration + Padé approximation (1979)

for (b) and (c) Storjohann’s algorithm (2002)

• high order lifting (sort of binary powering)

• generalized Keller-Gehrig iterations

for (d) Storjohann-Villard algorithm (2005)

Inversion of polynomial matrices
[Moenck-Carter, 1979]

Input: A ∈Mn(K[x]≤d) with A(0) invertible

Output: A−1 ∈Mn(K(x))

(i) Expand A−1 in power series to precision N = 2nd using Newton iteration

Y0 = A−10 , Yκ+1 = Yκ + Yκ(In −AYκ) mod x2
κ+1

(ii) Reconstruct the n2 entries of A−1 in K(x) using Padé approximation

. Correctness:

• entries of A−1 write Q(x)/D(x), with degQ ≤ (n− 1)d and degD ≤ nd

• If such a Q(x)/D(x) is known to prec. x2nd, then a Padé approx. R/V of

type ((n− 1)d, nd) will recover it: Q/D ≡ R/V [x2nd] implies Q/D = R/V

. Complexity:

(i) C(N) = C(N2) +O(MM(n,N)) =⇒ C(N) = O(MM(n,N)) = Õ(nθ+1 d)

(ii) n2 Padé approximants O(n2M(N) logN) = Õ(n3 d) (quasi-optimal)

Linear system solving, first ideas and notation

. If A ∈Mn(K[x]≤d) invertible and b ∈ K[x]n<d, then y = A−1b has size n2d

. Thus, cannot afford to compute the whole inverse A−1 (size n3d)

. Instead, we will use (a variant of) the expansion/reconstruction method

Useful compact notation for what follows:

• P = xd

• N = 2nd

• for a matrix W in K[[x]]p×q, write
{
W
}

for the coefficient of P 1 in W :

if W = W0 +W1 P +W2 P
2 + · · · for Wi ∈ K[x]p×q<d then

{
W
}

:= W1

Linear system solving for polynomial matrices
[Moenck-Carter, 1979]

Lemma Let P = xd, and write A−1 =
∑
i≥0

CiP
i and y = A−1b =

∑
i≥0

ciP
i, for

polynomial matrices Ci ∈Mn (K[x]<d) and polynomial vectors ci ∈ K[x]n<d.

Then C0 = A−1 mod P , c0 = C0b mod P and for all s ≥ 0:

Cs+1 = −C0 ·
{
A · Cs

}
mod P and cs+1 = −C0 ·

{
A · cs

}
mod P

Proof:

• c0 = A−1b mod P = C0b mod P

• Extracting the coefficient of P s+1 in

In = AC0 +AC1P + · · ·+ACsP
s +ACs+1P

s+1 · · ·

yields On =
{
A · Cs

}
+
(
A · Cs+1 mod P

)
, thus

Cs+1 = −A−1
{
A · Cs

}
mod P = −C0

{
A · Cs

}
mod P.

Linear system solving for polynomial matrices
[Moenck-Carter, 1979]

Input: A ∈Mn(K[x]≤d) invertible, with A(0) invertible

Output: y = A−1b ∈ K(x)n

(i) Compute C0 and c0 using Newton iteration

(ii) For s = 0, 1, . . . , Nd = 2n, compute cs+1 = −C0 ·
{
A · cs

}
mod P

(iii) Reconstruct the n entries of y = A−1b in K(x) using Padé approximation

. Correctness: same argument as for inversion via expansion/reconstruction

. Complexity:

(i) Newton iteration O(MM(n, d))

(ii) O(n) polynomial matrix-vector products O(n · n2M(d))

(iii) n Padé approximants O(nM(N) logN) = Õ(n2 d) (quasi-optimal)

Total: O(n3M(d)) (dominant step is (ii))

High order lifting: statement

Problem: Given an invertible polynomial matrix A of degree d, compute the

high order components (C0, C1), (C2, C3), (C6, C7), (C14, C15), . . . in the Taylor

expansion of its inverse

A−1 =
∑
i≥0

CiP
i, with P = xd, Ci ∈Mn (K[x]<d)

Particular cases:

• If d = 1 and A = In − xM , then Ci = M i, and the high order components

can be computed fast by binary powering O(MM(n) log n)

• If n = 1, then high order component = N -th term of a recurrent sequence

−→ can be computed fast by Fiduccia’s algorithm O(M(d) log n)

Upcoming: Storjohann’s algorithm O(MM(n, d) log n)

Generalized Newton identity

Theorem (generalized Newton identity) The following holds modulo P s+t+2 :

Cs+1P
s+1+· · ·+Cs+t+1P

s+t+1 =
(
C0 + · · ·+ CtP

t
)
·(In −A · (C0 + · · ·+ CsP

s))

Particular case: If s = t = 2i, we recover a Newton-type iteration

Proof:

In −A(C0 + C1P + · · ·+ CsP
s) = AP s+1(Cs+1 + Cs+2P + · · ·)

=⇒ RHS = (C0 + C1P + · · ·+ CtP
t)A︸ ︷︷ ︸

I−P t+1(Ct+1+···)A

·P s+1(Cs+1 + Cs+2P + · · ·)

= LHS mod P s+t+2

High order lifting: algorithm
[Storjohann, 2002]

Corollary (Storjohann 2002): For all s, t ≥ 0:

Cs+t+1 = −
{ (

Ct−1 + CtP
)
·
{
A · Cs

} }
Recall:

{
B
}

denotes the coefficient of P 1 in B.

Corollary (Storjohann 2002): For all i ≥ 2, the following equalities holdC2i−2 = −
{ (

C2i−1−2 + C2i−1−1P
)
·
{
A · C2i−1−2

} }
C2i−1 = −

{ (
C2i−1−2 + C2i−1−1P

)
·
{
A · C2i−1−1

} }
,

and they allow to compute the high order components

(C0, C1)→ (C2, C3)→ (C6, C7)→ (C14, C15)→ . . .

Cost: O(MM(n, d)) ops. per arrow O(MM(n, d) log n)

Generalizes simultaneously binary powering (d = 1) and Fiduccia (n = 1)

Example (fast computation of Fibonacci numbers)

1

1− x− x2
= C0 + C1P + C2P

2 + · · · , P = x2, Cn = F2n + F2n+1x

The Storjohann identities becomeC2i−2 = −
{ (

C2i−1−2 + C2i−1−1x
2
)
·
{ (

1− x− x2
)
· C2i−1−2

} }
,

C2i−1 = −
{ (

C2i−1−2 + C2i−1−1x
2
)
·
{ (

1− x− x2
)
· C2i−1−1

} }
,

and allow to compute the high order components

(F0, F1, F2, F3)→ (F4, F5, F6, F7)→ (F12, F13, F14, F15)→ . . . by
F2i+1−2 = F2i−2 · F2i + F2i−1 · F2i−3,

F2i+1−4 = F 2
2i−2 + F 2

2i−3,

F2i+1−1 = F2i−1 · F2i + F2i−2 · F2i−1,

F2i+1−3 = F2i−1 · F2i−2 + F2i−2 · F2i−3,

⇐⇒

F2n−2 = F 2
n−2 + F 2

n−1

F2n−1 = F 2
n−1 + 2Fn−1Fn−2︸ ︷︷ ︸

Shortt’s algorithm (1978)

Keller-Gehrig algorithm

Problem: Given M ∈Mn(K) and v ∈ Kn, compute the Krylov sequence

K =
(
v, Mv, M2v, . . . , Mn−1v

)
Interest: If M is generic, K forms a basis of Kn, and the matrix C of v 7→Mv

w.r.t. K is companion =⇒ the characteristic polynomial det(xIn −M) reads off

C = P−1MP , where P =
[
v |Mv | · · · |Mn−1v

]
.

Naive algorithm: Compute iteratively vi+1 = Mvi, v0 = v.

Cost: O(n) matrix-vector products −→ O(n3) ops. in K.

Keller-Gehrig algorithm (1985) Compute

(1) M0 = M , M1 = M2, M2 = M4, M3 = M8, . . . (binary powering)

(2)
[
M2kv | · · · |M2k+1−1v

]
:= Mk ×

[
v |Mv | · · · |M2k−1v

]
, k ≥ 0

Cost: O(log n) matrix products for both (1) and (2) −→ O(MM(n) log n)

Solving linear systems with polynomial coefficients

Problem: Given A ∈Mn(K[x]≤d) invertible, and b ∈ K[x]n<d, compute A−1b

[Moenck-Carter, 1979]: One can recover the exact solution y = A−1b ∈ K(x)n

of Ay = b from its approximation

y2nd = A−1b mod x2nd = c0+c1P+c2P
2+· · ·+c2nP 2n, where ci ∈ K[x]n<d

Conversion y2nd → y by Padé approximation O(nM(nd) log(nd)) = Õ(n2d)

Particular case: If d = 1 and A = In−xM , with M ∈Mn(K) and b ∈ Kn, then

ci = M ib, and c0, . . . , c2n can be computed fast by the Keller-Gehrig algorithm.

Storjohann’s algorithm

Pb: Given A ∈Mn(K[x]≤d) invertible, b ∈ K[x]n<d, compute A−1b mod x2nd

Theorem (Storjohann 2002): For all s, t ≥ 0:

cs+t+1 = −
{ (

Ct−1 + CtP
)
·
{
A · cs

} }
Recall:

{
v
}

denotes the coefficient of P 1 in v ∈ K[x]n.

Corollary (Storjohann 2002): For all i ≥ 2, the following equality holds[
c2k | · · · | c2k+1−1

]
= −

{ (
C2k−2 + C2k−1P

)
·
{
A ·
[
c0 | · · · | c2k−1

]} }
,

which allows to compute

(c0, c1)→ (c2, c3)→ (c4, c5, c6, c7)→ (c8, c9, c10, c11, c12, c13, c14, c15)→ . . .

Generalizes Keller-Gehrig’s algorithm

Cost: O(MM(n, d)) ops. per arrow O(MM(n, d) log n)

Structured Matrices

Structured Matrices

Motivation

Problem 1. (Hermite-Padé approximation) Recognize that

y = 1 + 2x− 1

2
x2 +

5

24
x4 − 3

20
x5 +

67

720
x6 − 73

1260
x7 +

1577

40320
x8 +O

(
x9
)

satisfies (1 + x)y′′ + (1− x)y = 0.

Problem 2. (Interpolation) Let P ∈ Q[x, y] of total degree ≤ 2, such that

P (0, 0) = 1, P (0, 1) = 2, P (0, 2) = 1, P (1, 4) = 13, P (1,−1) = −2, P (2, 3) = 36.

Find that

P = 1 + x+ 2y + 3x2 + 4xy − y2.

These are linear algebra problems, with a lot of structure!

Basic algorithms in linear algebra

Classical approach – Gaussian elimination.

• Most questions of linear algebra in size n (matrix product, inverse, system

solving, characteristic polynomial, . . .) can be solved in O(n3) operations.

Faster algorithms – from Strassen (1969) to Alman & Williams (2020).

• Strassen’69: n× n matrices can be multiplied in O(nθ) operations, θ < 3.

• As of now, one can take θ ≤ 2.37286, even though the algorithms are quite

impractical (huge logarithmic factors and constants hidden in the O()).

• Most problems in linear algebra can be solved in time O(nθ).

. However, none of these algorithms takes structure into account.

Toeplitz matrices

A Toeplitz matrix is invariant along its main diagonals:

A =


c d e

b c d

a b c

 .

Crucial remark: The Toeplitz displacement operator φ:

φ(A) = A− (A shifted right and down by 1) =


c d e

b 0 0

a 0 0


is such that φ(A) has rank α ≤ 2.

Compact representation

The matrix

φ(A) =


c d e

b 0 0

a 0 0


can be represented in a compact way as

φ(A) = GHT , with G =


c d

b 0

a 0

 and H =


1 0

0 1

0 e/d

 .

. This feature can be used to obtain algorithms of complexity Õ(n) for solving

the system Ax = b (Õ means that (poly-)logarithmic factors are hidden).

Def. The rank α of φ(A) is called the displacement rank of A;

Def. G,H ∈ Kn×α are called generators of A, of length α.

More structure . . .

Toeplitz structure:


c d e

b c d

a b c


Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:


e d c

d c b

c b a


Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:


1 a a2

1 b b2

1 c c2


Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:


1/(a− x) 1/(a− y) 1/(a− z)

1/(b− x) 1/(b− y) 1/(b− z)

1/(c− x) 1/(c− y) 1/(c− z)


The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).

More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

Def. In all these cases, the displacement rank α of A is the rank of φ(A).

Def. If α� n, the matrix A is called quasi-Toeplitz, quasi-Hankel,. . .

Common features

All these classes of n× n matrices share two nice features:

. They can be represented using O(n) elements

. Their product by a vector can be computed in quasi-linear time. E.g.,

• Toeplitz × vector −→ for 0 ≤ i ≤ n− 1, the entry ci of
an−1 · · · a0

...
. . .

...

a2n−2 · · · an−1

×


b0
...

bn−1

 =


c0
...

cn−1


is the coefficient of xn−1+i in the polynomial product O(M(n))

(a0 + · · ·+ a2n−2x
2n−2)× (b0 + · · ·+ bn−1x

n−1).

• Vandermonde × vector −→ multipoint evaluation O(M(n) log n)

• Cauchy × vector −→ Ex. 3, next slide O(M(n) log n)

Ex. 3: Product of a Cauchy matrix by a vector

Show that the product Cv of a Cauchy matrix C ∈Mn(K) by a vector

v ∈ Kn can be performed in O(M(n) log n) operations in K.

Common features: pros and cons

All these classes of n× n matrices share two nice features:

(1) They can be represented using O(n) elements

(2) Their product by a vector can be computed in quasi-linear time. E.g.,

• Toeplitz (ti−j)i,j × vector −→ polynomial product O(M(n))

• Vandermonde (xji)i,j × vector −→ multipoint evaluation O(M(n) log n)

• (1
xi−yj)i,j × vector −→ Ex.1, previous slide O(M(n) log n)

. Unfortunately, (1) + (2) alone do not directly allow quasi-linear algorithms.

. A Wiedemann-type approach provides algorithms in Õ(n2).

. Moreover, the previous classes of structured matrices (Toeplitz, Hankel,

Vandermonde, Cauchy, . . .) are not closed under inversion.

. The salvation (good algorithmic definition of the structure) comes from the

notion of displacement rank: it measures how far A is from being Toeplitz

Displacement rank and generators

Def. The displacement operator φ+ is the map A 7→ A− Z ·A · ZT , where

Z =


0 0 . . . 0

1 0 . . . 0
...

. . . · · ·
...

0 · · · 1 0

 .

. ZA = (A shifted down by 1) and A · ZT = (A shifted right by 1)

Def. The displacement rank of A ∈Mn(K) is

α+(A) := rank(φ+(A)).

Def. If α := α+(A)� n, we say that A is quasi-Toeplitz.

Def. A displacement generator of A (for φ+) is a pair (G,H) ∈Mn,α(K) s.t.

φ+(A) = G ·HT .

Def. The integer α := α+(A) is called length of the generator (G,H).

Displacement rank and generators, cont.

One can similarly define quasi-Vandermonde and quasi-Cauchy matrices, but

for different displacement operators:

• Va 7→ Va −Diaga ·Va · ZT for the Vandermonde case,

• Ca,b 7→ Ca,b −Diaga
−1 ·Ca,b ·Diagb for the Cauchy case,

where Va = (aji)i,j , Ca,b = (1/(ai − bj))i,j and Diaga has diagonal a = (ai)i

. In all these cases, the map φM,N is defined by φM,N (A) = A−MAN , with

M and N well-chosen (in terms of the target structure), and the displacement

rank of A is defined as the usual rank of φM,N (A).

. Ex.: compute the displacement ranks of Vandermonde and Cauchy matrices.

Main results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or

prove that no such solution exists, in (Las Vegas) time Õ(α2n).

Main results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or

prove that no such solution exists, in (Las Vegas) time Õ(α2n).

Remarks.

• For α = 2 (or more generally α constant), this is Õ(n), which is optimal,

up to log factors −→ quasi-optimal gcd, resultant, Padé approximation,. . .

• For large α, not so good: when α ' n, cost Õ(n3), worse than the cost

O(nθ) of generic linear algebra algorithms.

• [B., Jeannerod, Mouilleron, Schost, 2017]: Improvement to Õ(αθ−1n)

Some application examples

Hermite-Padé approximation. Given power series f1, . . . , fm at precision σ,

degree bounds di, one can find in time Õ(mθ−1σ) polynomials p1, . . . , pm s.t.

deg(pi) ≤ di and
∑

pifi = O(xσ) with σ =
∑

(di + 1)− 1

Some application examples

Hermite-Padé approximation. Given power series f1, . . . , fm at precision σ,

degree bounds di, one can find in time Õ(mθ−1σ) polynomials p1, . . . , pm s.t.

deg(pi) ≤ di and
∑

pifi = O(xσ) with σ =
∑

(di + 1)− 1

Generalized simultaneous Hermite-Padé approximation. Given a vector of

polynomials P ∈ K[x]s of degree ≤ σ/s and m vectors f1, . . . , fm of

polynomials in K[x]s of degree < σ/s, one can find in time Õ(mθ−1σ)

polynomials p1, . . . , pm such that

deg(pi) < σ/m and
∑

pifi = 0 mod P.

Some application examples

Bivariate interpolation. Given values of a degree-d polynomial P (x, y) at points

(ai, bj) 0 ≤ i+ j ≤ d,

one can recover its coefficients in time Õ(dθ+1), which is sub-quadratic in the

number of terms

(generally, interpolation problems whose monomial support indexes the sample points).

Toeplitz-block-Toeplitz systems.

Let n = pq and let A be block-Toeplitz, with p2 blocks of size q that are

Toeplitz. One can solve the system Ax = b in Õ(n
θ+1
2) operations.

Quasi-Toeplitz matrices: the strategy

. To be able to exploit the compact representation by generators, we need to:

• multiply a quasi-Toeplitz matrix by a vector fast Õ(n)

−→ as fast as Toeplitz matrices, using the
∑
LU formula

• prove that the sum and product of quasi-Toeplitz matrices is still

quasi-Toeplitz, and that they can be computed fast Õ(n)

−→ algorithms relying again on the
∑
LU formula

• prove that the inverse of a quasi-Toeplitz matrix is still quasi-Toeplitz,

and that it can be computed fast Õ(n)

−→ Strassen-like inversion algorithm, adapted to the structured case

Inverse of a quasi-Toeplitz is quasi-Toeplitz

Need to introduce a dual displacement operator φ−:

φ−(A) = A− ZT ·A · Z = A− (A shifted up and left by 1).

The dual displacement rank α− is defined as

α−(A) = rank(φ−(A)).

Theorem. If A is quasi-Toeplitz and invertible, then A−1 is also quasi-Toeplitz.

Proof. Consequence of |α+(A)− α−(A)| ≤ 2 (Exercise!) and

α−(A) = rank(A− ZT ·A · Z) = rank(In −A−1 · ZT ·A · Z)

= rank(In − Z ·A−1 · ZT ·A) = rank(A−1 − Z ·A−1 · ZT) = α+(A−1),

where we have used that rank(In −A ·B) = rank(In −B ·A) (Exercise!)

Recall: Inversion of dense matrices
[Strassen, 1969]

To invert a dense matrix A =

 A1,1 A1,2

A2,1 A2,2

 ∈ Kn×n:

1. Invert A1,1 (recursively).

2. Compute the Schur complement ∆ := A2,2 −A2,1A
−1
1,1A1,2.

3. Invert ∆ (recursively).

4. Recover the inverse of A as

A−1 =

 I −A−1
1,1A1,2

I

×
 A−1

1,1

∆−1

×
 I

−A2,1A
−1
1,1 I


Complexity: C(n) = 2C(n2) + O(nθ).

Corollary: A−1b in time O(nθ).

Inversion of quasi-Toeplitz matrices
[Morf, 1980], [Bitmead & Anderson, 1980], [Kaltofen 1994], [Pan 2001]

To find generators of the inverse of a quasi-Toeplitz A =

 A1,1 A1,2

A2,1 A2,2

 ∈ Kn×n

1. Compute generators of the inverse of A1,1 (recursively).

2. Compute generators of ∆.

3. Compute generators of the inverse of ∆ (recursively).

4. Compute generators of the inverse of A (by Strassen’s formula).

Complexity: If A is given by generators of length α,

C(n, α) = 2C
(n

2
, α
)

+O(K(n, α)) + Õ(αθ−1n),

where K(n, α) is the cost of quasi-Toeplitz matrix multiplication, for n× n
matrices given by generators of size α. Upcoming: K(n, α) = Õ(α2n)

∑
LU formula for quasi-Toeplitz matrices

Let A ∈Mn(K) be quasi-Toeplitz of displacement rank α = φ(A). Then,

φ(A) = A− Z ·A · ZT = GHT =
α∑
j=1

gj · hTj ,

where gj , hj ∈ Kn are the columns of the displacement generators G and H.

Theorem (
∑
LU formula). One can recover A from its generators:

A =
α∑
j=1

L(gj) · U(hj), with

L(gj) =

 gj,1
gj,2 gj,1

...
. . .

. . .
gj,n gj,n−1 ... gj,1

 and U(hj) =


h1,j h2,j ··· hn,j

h1,j

. . . hn−1,j

. . .
...

h1,j


Proof. By linearity, it is sufficient to treat the case α = 1. If A = L(g) · U(h),

then ai,j = gihj + gi−1hj−1 + · · · , so ai,j − ai−1,j−1 = gihj and φ+(A) = g ·hT .

∑
LU formula for quasi-Toeplitz matrices

Let A ∈Mn(K) be quasi-Toeplitz of displacement rank α = φ(A). Then,

φ(A) = A− Z ·A · ZT = GHT =
α∑
j=1

gj · hTj ,

where gj , hj ∈ Kn are the columns of the displacement generators G and H.

Theorem (
∑
LU formula). One can recover A from its generators:

A =
α∑
j=1

L(gj) · U(hj), with

L(gj) =

 gj,1
gj,2 gj,1

...
. . .

. . .
gj,n gj,n−1 ... gj,1

 and U(hj) =


h1,j h2,j ··· hn,j

h1,j

. . . hn−1,j

. . .
...

h1,j


Corollary. Products Av and AT v can be computed in O(αM(n)) ops.

Proof. If v ∈ Kn, then L(g)U(h)v ≡ g(x) (h(x)v(x) mod xn) div xn−1 O(M(n))

∑
LU formula for quasi-Toeplitz matrices

Let A ∈Mn(K) be quasi-Toeplitz of displacement rank α = φ(A). Then,

φ(A) = A− Z ·A · ZT = GHT =
α∑
j=1

gj · hTj ,

where gj , hj ∈ Kn are the columns of the displacement generators G and H.

Theorem (
∑
LU formula). One can recover A from its generators:

A =
α∑
j=1

L(gj) · U(hj), with

L(gj) =

 gj,1
gj,2 gj,1

...
. . .

. . .
gj,n gj,n−1 ... gj,1

 and U(hj) =


h1,j h2,j ··· hn,j

h1,j

. . . hn−1,j

. . .
...

h1,j


Remark. Converse also holds: if A =

∑α
j=1 L(gj) · U(hj), then φ(A) = GHT .

Proof. Consequence of the injectivity of φ (Exercise!)

∑
LU formula for quasi-Toeplitz matrices

Let A ∈Mn(K) be quasi-Toeplitz of displacement rank α = φ(A). Then,

φ(A) = A− Z ·A · ZT = GHT =

α∑
j=1

gj · hTj ,

where gj , hj ∈ Kn are the columns of the displacement generators G and H.

Theorem (
∑
LU formula). One can recover A from its generators:

A =

α∑
j=1

L(gj) · U(hj), with

L(gj) =

 gj,1
gj,2 gj,1

...
. . .

. . .
gj,n gj,n−1 ... gj,1

 and U(hj) =


h1,j h2,j ··· hn,j

h1,j

. . . hn−1,j

. . .
...

h1,j


Corollary (equivalent definition): α+(A) is the least integer α s.t. A writes:

A =

α∑
i=1

LiUi

for some lower Toeplitz matrices Li and some upper Toeplitz matrices Ui.

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A+B and A×B also do.

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A+B and A×B also do.

Proof. Assume A and B given by generators (T ,U), (G,H) of length α. Then:

(1)
(
[T | G], [U | H]

)
is a generator of length 2α for A+B.

(2)
(
[T |W | a], [V | H | −b]

)
is a generator of length 2α+ 1 for A×B, with

• V := BT × U
• W := (A shifted right and down by 1)×G
• a (resp. b) is the down-shift of the last column of A (resp. BT).

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A+B and A×B also do.

Proof. Assume A and B given by generators (T ,U), (G,H) of length α. Then:

(1)
(
[T | G], [U | H]

)
is a generator of length 2α for A+B.

(2)
(
[T |W | a], [V | H | −b]

)
is a generator of length 2α+ 1 for A×B, with

• V := BT × U
• W := (A shifted right and down by 1)×G
• a (resp. b) is the down-shift of the last column of A (resp. BT).

Proof of (2). We have T · UT = A− Z ·A · ZT , G ·HT = B − Z ·B · ZT and

V = BT ·U, W = (Z ·A·ZT)·G, a = (ZA)e, b = (ZBT)e, e = [0, . . . , 0, 1]T , so

T · V T +W ·HT − a · bT = T · (UT ·B) + (Z ·A · ZT) ·G ·HT − a · bT =

(A− Z ·A · ZT) ·B + (Z ·A · ZT) · (B − Z ·B · ZT)− (ZA)e · eT (BZT) =

A·B−(Z ·A)·(In−D)·(B ·ZT)−(ZA)D(BZT) = φ+(AB), where D = Diag(e)

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A+B and AB also do.

Proof. Assume A and B given by generators (T ,U), (G,H) of length α. Then:

•
(
[T | G], [U | H]

)
is a generator of length 2α for A+B.

•
(
[T |W | a], [V | H | −b]

)
is a generator of length 2α+ 1 for A×B, with

– V := BT × U
– W := (A shifted right and down by 1)×G
– a (resp. b) is the down-shift of the last column of A (resp. BT).

Corollary. In compact representation, one can compute:

(1) the sum A+B in O(αn) operations.

(2) the product A×B in K(n, α) = Õ(α2n) operations, using
∑
LU formula.

Proof. Computing W,V ,a,b amounts to α products quasi-Toeplitz × vector

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A+B and AB also do.

Proof. Assume A and B given by generators (T ,U), (G,H) of length α. Then:

•
(
[T | G], [U | H]

)
is a generator of length 2α for A+B.

•
(
[T |W | a], [V | H | −b]

)
is a generator of length 2α+ 1 for A×B, with

(1) V := BT × U
(2) W := (A shifted right and down by 1)×G
– a (resp. b) is the down-shift of the last column of A (resp. BT).

Corollary. In compact representation, one can compute:

• the sum A+B in O(αn) operations.

• the product A×B in K(n, α) = Õ(α2n) operations, using
∑
LU formula.

−→ The cost K(n, α) for × can be lowered to Õ(αθ−1n) operations.

Faster product in compact representation

Through the ΣLU formula, K(n, α) is seen as the time of computing

A` =

α∑
j=1

Gj (HjV` mod xn), 1 ≤ ` ≤ α

with Gj , Hj , V` in K[x] of degree < n.

Remark: the inner modulo prevents us from factoring out the V`.

Matrix reformulation: Given H ∈ K[x]α×1, V ∈ K[x]1×α and G ∈ K[x]α×1, all

of degree < n, compute (HV mod xn)G.

−→ Recast this into a polynomial matrix multiplication in size α and degree n
α

−→ Deduce the bound K(n, α) = Õ(αθ−1n)

Short-product techniques

Idea: compute (HV mod xn)G by divide-and-conquer, as((
H0 + x

n
2 H1

) (
V0 + x

n
2 V1

)
mod xn

) (
G0 + x

n
2 G1

)
= H0V0G0 +

x
n
2

(
H0V0G1 + (H0V1 + H1V0 mod x

n
2)G0

)
+xn

(
(H0V1 + H1V0 mod x

n
2)G1

)
The desired quantities for the recursive step read off[H0 H1

]V1

V0

 mod xn/2

[G0 G1

]

Let K(d, α, `) be the cost of: given A ∈ K[x]α×`, B ∈ K[x]`×α and

C ∈ K[x]α×`, of degree < d, compute
(
AB mod xd`

)
C. Thus

K(n, α)=K(n, α, 1) ≤ K
(n

2
, α, 2

)
≤ K

(n
4
, α, 4

)
≤ . . . ≤ K

(n
α
, α, α

)
= Õ(αθ−1n)

Here K
(
n
α , α, α

)
= cost of polynomial matrix multiplication in size α, degree ≤ n

α

Vandermonde and Cauchy
[Pan 1990] [Gohberg-Olshevsky 1994]

One can reduce the study of Vandermonde operators

φV (A) = A− (diagonal matrix) × (A shifted right by 1)

and Cauchy operators

φC(A) = A− (diagonal matrix) × A × (diagonal matrix)′

to that of Toeplitz operators.

. The reduction involves a question similar to the one before: multiply a

quasi-Vandermonde (quasi-Cauchy) matrix, given by α generators, by α vectors

. Similar techniques apply.

