Polynomial Matrices and Structured Matrices

Alin Bostan

y 4

: informatiques g”mathématiques

Specfun, Inria

MPRI C-2-22
November 2, 2020

Hermite-Padé approximants

Definition of Hermite-Padé approximants

Definition: Given a column vector F = (fi,..., f,)! € K[[z]]" and an n-tuple

d =

(dy,...,d,) € N" a Hermite-Padé approximant of type d for F is a row

vector P = (Py,..., P,) € K|z]", (P # 0), such that:

(1) PF:P1f1—|——|—Pnfn:O<SI}U) WlthO':ZZ(dZ—Fl)—l,

(2) deg(P;) < d; for all 1.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality /transcendence):

Hermite, 1873]: e is transcendental.
Lindemann, 1882]: 7 is transcendental; so does e® for any o € Q \ {0}.

Apéry, 1978; Beukers, 1981]: ((3) =, 5, =5 is irrational.

Rivoal, 2000]: there exist infinitely many k € N such that ((2k + 1) ¢ Q.

Sur la généralisation des fractions continues algébriques;

Paz M. H. PADE,

Docteur ¢s Sciences mathématiques,
Professeur au lycée de Lille,

INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X, X, ..., X,, de degrés p,, pyy .- e,
qui satisfont & I'équation

SI 1t,':-| -+ ngg - ea st S.Kn =8 Q;I"'.""I-'-.*...-i-[-l-,-h#-lr

S, S, ..., S, étant des séries entiéres données, et S une série égale-
ment entiére. Ou plutét, il s’agitc@obtenir un algorithmigxqui permette
le calcul de proche en proche de ces systémes de n polynomes, et qui

[Padé, 1894]

Journal of Symbolic Computation 102 (2021) 279-303

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

R Journal of
il
Computation

Algorithms for simultaneous Hermite-Padé §

approximations

Check for
updates

Johan Rosenkilde ?, Arne Storjohann”

2 Technical University of Denmark, Denmark

b University of Waterloo, Canada

ARTICLE INFO

Article history:

Received 26 November 2018
Accepted 4 July 2019

Available online 18 October 2019

Keywords:

Padé approximation
Approximant bases
Structured linear systems

ABSTRACT

We describe how to compute simultaneous Hermite-Padé approxi-
mations, over a polynomial ring K[x] for a field K using 0~(n®~td)
operations in K, where d is the sought precision, where n is the
number of simultaneous approximations using t < n polynomials,
and where O (n®) is the cost of multiplying n x n matrices over
K. We develop two algorithms using different approaches. Both
algorithms return a reduced sub-basis that generates the complete
set of solutions to the input approximation problem that satisfy
the given degree constraints. Previously, the cost 0~(n®~'td) has
only been reached with randomized algorithms finding a single
solution for the case t < n. Our results are made possible by recent
breakthroughs in fast computations of minimal approximant bases
and Hermite-Padé approximations for the case t > n.

Worked example

Let us compute a Hermite-Padé approximant of type (1,1, 1) for (1,C,C?),
where C'(z) = 1 + o + 222 + 52° + 14z* + 422° + O(2Y).

This boils down to finding «ag, a1, B9, 81,70, 71 (not all zero) such that
aton oH Bo+B1x) (1+z+22° +52° + 14z Y(vo+712) (14224527 +142° +422*) = O («)

Identifying coeflicients, this is equivalent to a homogeneous linear system:

_ i _Oéo- _ o - - _
10 1 0 1 0 10 1 0 1] [ao 0
01 1 1 2 1| |7 01 1 1 2| |a 1
002152><”80:0<:>00215><50:—712
00 5 2 14 5| |” 00 5 2 14| |/ 5
0 0 14 5 42 14] ZO 0 0 14 5 42| [y 14]
1

By homogeneity, one can choose 4 = 1. Then, the violet minor shows that
one can take (8o, 51,7) = (—1,0,0). The other values are ag = 1, a3 = 0.

Thus the approximant is (1, —1, z), which corresponds to P =1 — y + xy?
such that P(x,C(z)) = 0 mod z°.

Algebraic and differential approximation = guessing

e Hermite-Padé approximants of n = 2 power series are related to Padé

approximants, i.e. to approximation of series by rational functions

e algebraic approximants = Hermite-Padé approximants for f, = A*~1,
where A € K||z]] seriestoalgeq, listtoalgeq

e differential approximants = Hermite-Padé approximants for f, = A(g_l),
where A € K||z]] seriestodiffeq, listtodiffeq

> listtoalgeq([1,1,2,5,14,42,132,429],y(x)) [1];

L=y (2) +(y(2)

> listtodiffeq([1,1,2,5,14,42,132,429],y(x)) [1][1];

2y () + (=42 +2) Ly (z) + 2Ly (2)

Existence and naive computation

Theorem For any vector F = (f1,..., f,)! € K[[z]]" and for any n-tuple

d = (dy,...,d,) € N", there exists a Hermite-Padé approx. of type d for F.

Proof: The undetermined coefficients of P; = Z?;O pz-,ja:j satisfy a linear
homogeneous system with o =) .(d; +1) — 1 egs and o + 1 unknowns.

Corollary Computation in O(¢?), for 2 < 6 < 3 (linear algebra exponent)

> There are better algorithms (the linear system is structured, Sylvester-like):

e Derksen’s algorithm (Euclidean-like elimination) O(c?)

~

e Beckermann-Labahn algorithm (DAC) O(o) = O(olog® o)

e structured linear algebra algorithms for Toeplitz-like matrices

O(o)

Quasi-optimal computation

Theorem [Beckermann, Labahn, 1994] One can compute a Hermite-Padé
approximant of type (d,...,d) for F = (f1,..., fn) in O(n’d) ops. in K.
|deas:

e Compute a whole matrix of approximants

e LExploit divide-and-conquer

Algorithm:

1. If o =n(d+ 1) — 1 < threshold, call the naive algorithm

2. Else:
(a) recursively compute Py € K[z]"*" s.t. Py - F = O(2°/?), deg(P;)
(b) compute “residue” R such that Py -F = 27/2 . (R + O(2°/?))
(c) recursively compute Py € K[z]"*" s.t. Py - R = O(2°/?), deg(P>)
(d) return P := P, - Py

> The precise choices of degrees is a delicate issue

> Corollary: Ged, extended ged, Padé approximants in O(d) ops. in K.

Y
Y

Y
Y

(V]IsH

(V][S¥

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K|[z]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K[z, y] of degree at most d in = and at most n in y.

If ZQZ — O(z?™*1) and deg@Q; < d, then ZQZ) = 0.

1=0

In other words, A is a root of the polynomial () = Z?:o Qi(x)y’

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K|[z]] is an algebraic series, and that it is a root of a

(unknown) polynomial in K[z, y] of degree at most d in = and at most n in y.

If ZQZ — O(z?™*1) and deg@Q; < d, then ZQZ) = 0.

1=0
In other words, A is a root of the polynomial @ = >, Q;(z)y".

Proof: Let P € K|z, y] be an irreducible polynomial such that

P(x,A(r)) =0, and deg,(P) <d, deg,(P) < n.

Application: certified algebraic guessing
Guess + Bound = Proof

Theorem. Suppose A € K||z]] is an algebraic series, and that it is a root of a
(unknown) polynomial in K|z, y] of degree at most d in x and at most n in y.

If ZQZ — O(z?™*1) and degQ; < d, then ZQZ) = 0.

In other words, A is a root of the polynomial @ = >, Q;(x)y’
Proof: Let P € K|z, y] be an irreducible polynomial such that
P(x, A(r)) =0, and deg,(P) <d, deg,(P) < n.
e By definition, R(x) = Res ,(P, Q) € K[z] has degree at most 2dn.
e By elimination, R(x) = UP +VQ for U,V € Kz, y] with deg, (V') < n.
e Evaluation at y = A(x) yields
R(zx) =U(z, A(x))f(a@, A(:l:)Z—I—V(x, A(.CU))Q(.CIZ, A(x)z = O(z?9" 1),

-~

0 O(z2dn+1)

e Thus R =0, that is gcd(P, Q) # 1, and thus P | @, and A is a root of Q.

Ex. 1

Let (an)n>0 be a sequence with ag = a; = 1 satisfying the recurrence
(n+3)ans1 = 2n+ 3)a, + 3na,_1.
Show that a,, is an integer for all n, by following the next steps:

(1) Compute the first 5 terms of the sequence, ag, ..., a4;

(2) Show that [1,z — 1,2?] is a Hermite-Padé approximant of type (0,1, 2) for
(1, f, f?), where f = > o anx’;
(3) Deduce that P(x,y) := 1+ (x — 1)y + 22y satisfies P(x, f(z)) = 0 mod z°;

(4) Show that the equation P(z,y) = 0 admits a root y = g(x) € Q|[z]] whose

coeflicients satisfy the same linear recurrence as (a,)n>0;

(5) Deduce that anyo = ant1 + Y1 ak - Gn—k for all n, and conclude.

Polynomial Matrices

Context

> Linear algebra questions in M, (A), where A is a ring in which

multiplication does not have unit cost. Typically: A = K[z] or A = Z.

> Although some algorithms (e.g., naive, or Strassen’s multiplication) remain
well-adapted to this framework, this is not the case for other important tasks:

e matrix inversion by Strassen’s algorithm — Ex. 2

e system solving by Gaussian elimination

> Main reason: expression swell during intermediate computations

> ...sometimes leading even to an exponential blow-up

> Conclusion: Need for new algorithmic ideas!

Ex. 2: Strassen’s inversion for polynomial matrices

Let M(x) € M, (K[z]<4) be an invertible polynomial matrix.

Assume one computes its inverse using Strassen’s inversion algorithm for

dense (scalar) matrices.

Estimate the complexity of this computation, counting operations in K, in
terms of the two parameters n and d, under the assumption that all matrices

encountered during the inversion algorithm are invertible.

Using the evaluation/interpolation paradigm

> The modular approach allows to recover polynomial-time complexity
> ...but it usually yields non-optimal algorithms

> Recall (multiplication of polynomial matrices)

If A,B € M, (K|zx]-q), then one can compute C' = AB by eval/interp in

MM(n, d) = O(n?* M(d) + MM(n)d) = O(n’d)

> Recall (determinant of polynomial matrices)

If A e M, (K|z]<q), then one can compute det(A) by eval /interp in

O(n? M(nd) + nd MM(n)) = O(n’*td)

Main results

Theorem [complexity results for polynomial matrices]
Let K be a field, n,d € N, and 6 a feasible exponent for product in M,, (K).
Let A € M,,(K|z]<q) and b € K[z]” ;. Then one can compute:

(a) A~ in O(MM(n,nd)) = O(n?* d) ops. in K

(b) y € M,(K(z)) s.t. Ay =bin O(MM(n,d)logn) = O(n’d) ops. in K
(¢) det(A) in O(MM(n,d)log®n) = O(n’ d) ops. in K

(d) rk(A) and a basis of ker(A) in O(n? d) ops. in K.

Main results

Theorem [complexity results for polynomial matrices]
Let K be a field, n,d € N, and 6 a feasible exponent for product in M,,(K).
Let A € M, (K[z]<q) and b € K[z|Z ;. Then one can compute:

(a) A= in O(MM(n,nd)) = O(n?*1d) ops. in K

(b) y € M,(K(z)) s.t. Ay =bin O(MM(n,d)logn) = O(n’ d) ops. in K

(¢) det(A) in O(MM(n, d)log”n) = O(n’ d) ops. in K
) (

(d) rk(A) and a basis of ker(A) in O(n? d) ops. in K.

> (Generic) output sizes: n°d for (a); n®d for (b) and (d); nd for (c).
> Partic. case of (¢): A =uxzl, — M, for M € M,,(K) — xm(x) in O(n?)
> Open problem: is it possible to compute y 4 in O(n? d)?

> Similar results for integer matrices: if A € M,,(Z) with |a;;| < 2°, then
product/det /system solving in O(n’ ¢) binary ops. [Storjohann, 2005]

> [Zhou, Labahn, Storjohann, 2015] improved (a) to O(n®d).

Main results

Theorem [complexity results for polynomial matrices]
Let K be a field, n,d € N, and 6 a feasible exponent for product in M,,(K).
Let A € M, (K|z]<q) and b € K[z|Z ;. Then one can compute:

(a) A~'in O(MM(n,nd)) = O(n?*1d) ops. in K

(b) y € M,(K(z)) s.t. Ay =bin O(MM(n,d)logn) = O(n’d) ops. in K
(¢) det(A) in O(MM(n, d)log®n) = O(n’ d) ops. in K

(d) rk(A) and a basis of ker(A) in O(n’ d) ops. in K.

> Main new algorithmic ideas:
for (a) Newton iteration + Padé approximation (1979)

for (b) and (c) Storjohann’s algorithm (2002)
e high order lifting (sort of binary powering)

e generalized Keller-Gehrig iterations

for (d) Storjohann-Villard algorithm (2005)

Inversion of polynomial matrices
[Moenck-Carter, 1979]

Input: A € M,,(K[z]<q) with A(0) invertible
Output: A~ € M, (K(x))

(i) Expand A~! in power series to precision N = 2nd using Newton iteration

2R+1

Yo=A;", Y. =Y. +Y.([,—AY,) modz

(ii) Reconstruct the n? entries of A~! in K(z) using Padé approximation
> Correctness:
e entries of A7 write Q(z)/D(x), with deg Q < (n — 1)d and deg D < nd

e If such a Q(z)/D(x) is known to prec. z2"?, then a Padé approx. R/V of
type ((n — 1)d, nd) will recover it: Q/D = R/V[x?>"] implies Q/D = R/V

> Complexity:
(i) C(V) =C(5)+O(MM(n,N)) = C(N)=O0(MM(n,N))=O(n’*"d)

~

(ii) n? Padé approximants O(n*M(N)log N) = O(n® d) (quasi-optimal)

Linear system solving, first ideas and notation

> If A € M, (K[z]<q) invertible and b € K[z]|™,, then y = A~'b has size nd

> Thus, cannot afford to compute the whole inverse A~! (size n°d)
> Instead, we will use (a variant of) the expansion/reconstruction method

Useful compact notation for what follows:
o P =g
o N =2nd

e for a matrix W in K[[z]]P*4, write { W } for the coeflicient of P* in W:

if W=Wo+W,P+WyP>+--- for W, € K[z]Z3? then {W } := W,

<d

Linear system solving for polynomial matrices
[Moenck-Carter, 1979]

Lemma Let P = z¢, and write A ! = Z C;P'andy = A1 = Z ¢; P, for
i>0 i>0
polynomial matrices C; € M,, (K[z]-4) and polynomial vectors ¢; € K[z|” ,.

Then Cy = A~ mod P, ¢y = Cyb mod P and for all s > 0:

CS_|_1 = _CO . {A . CS} mod P and Cs+1 — _CO : {A : CS} mod P

Proof:
e co=A"'b mod P=Cyb mod P
e Extracting the coefficient of P*T! in
I, = ACy + ACiP + -+ -+ AC,P° + AC, P ...
yields O {A C } + (A Csy+1 mod P) thus
Csi1 = —A_l{A : Cs} mod P = —C’O{A : CS} mod P.

Linear system solving for polynomial matrices
[Moenck-Carter, 1979]

Input: A € M,,(K[z]<q) invertible, with A(0) invertible
Output: y = A~ b € K(z)"

(i) Compute Cy and ¢y using Newton iteration

(ii) For s =0,1,..., % = 2n, compute cs11 = —C - {A : cs} mod P

iii) Reconstruct the n entries of y = A='b in K(z) using Padé approximation
Y g

> Correctness: same argument as for inversion via expansion/reconstruction

> Complexity:

(i) Newton iteration O(MM(n,d))
(ii) O(n) polynomial matrix-vector products O(n - n*M(d))
(iii) n Padé approximants O(nM(N)log N) = O(n?d) (quasi-optimal)

Total: O(n*M(d)) (dominant step is (ii))

High order lifting: statement

Problem: Given an invertible polynomial matrix A of degree d, compute the
high order components (Cy, C1), (Cs, Cs), (Cgs, C7), (C14,C15), . . . in the Taylor

expansion of its inverse

ATt =) P, with P=2a’ Cie M, (Klz]w)

i>0

Particular cases:

o Ifd=1and A=1, —xM, then C; = M*, and the high order components
can be computed fast by binary powering O(MM(n) logn)

e If n =1, then high order component = N-th term of a recurrent sequence
— can be computed fast by Fiduccia's algorithm O(M(d) logn)

Upcoming: Storjohann’s algorithm O(MM(n, d) logn)

Generalized Newton identity

Theorem (generalized Newton identity) The following holds modulo P$T+2

Co1 P4 4 Coypn PP = (Co+ - + CoPY)-(In — A- (Co + - - - + Co P?))

Particular case: If s =t = 2°, we recover a Newton-type iteration

Proof:
I, —A(Co+C1P+ -4+ CsP?) = APt (Csy1 + Csp2P + -+)

— RHS :(Co+01P+“'+CtPt)A'PS+1(CS+1+CS+2P+"')

\ 4

[—Pt+1(Cypyq+-)A

— LHS mod Pstt+2

High order lifting: algorithm

[Storjohann, 2002]

Corollary (Storjohann 2002): For all s,t > 0:

Csttr1 = —{ (Ct—l + Ctp) ' {A ' Cs} }

Recall: { B } denotes the coefficient of P! in B.

Corollary (Storjohann 2002): For all i > 2, the following equalities hold

021'_2 —_— { (sz'—l_Q —|— C2z’—1_1P) : {A : Czi—l_Q} }
021'_1 — { (021'—1_2 —|— 021'—1_1P)) {A) 021'—1_1} },

and they allow to compute the high order components

(00,01) — (02,03) — (06707) — (014,015) — ...
Cost: O(MM(n,d)) ops. per arrow O(MM(n, d) logn)

Generalizes simultaneously binary powering (d = 1) and Fiduccia (n = 1)

Example (fast computation of Fibonacci numbers)

1

1_x_w2:Co+ClP+CgP2+---, P:xQ, On:F2n+F2n—|-137

The Storjohann identities become

021'_2 = — { <02¢—1_2 + CQz'—l_lZEQ) : { (1 — L — 5132) : 021'—1_2} },
021'_1 = — { (021'—1_2 —+ C2i—1_1£l§'2) . { (1 — X — 372) . CQi—l_l} },

and allow to compute the high order components

(Fo, F1, Fo, F3) = (Fy, F5, Fg, F7) — (Fio, Fi3, Fi4, Fi5) — ... by

p
Foivi_o=Fo5i_o-Foi 4+ Foi_q - Foi_5,
Fyor_y = F2_, + I Fon_p = F2_, + F?
2t+l 4 — L9i_o + 2139 2n—2 — 4L'n—92 + n—1
2
Foivi_1 = Foi_1 - Foi + Foi_g - Fai_q, Fon 1 =F, 1 +2F, 1F, o
\F2i+1—3 = I5iq - Foig + Foi_g - Foi_g, Shortt's algorithm (1978)

Keller-Gehrig algorithm
Problem: Given M € M, (K) and v € K", compute the Krylov sequence
IC = (v, Mv, M?*v, ..., M”_lv)
Interest: If M is generic, K forms a basis of K", and the matrix C of v — Mwv

w.r.t. K is companion = the characteristic polynomial det(xI,, — M) reads off
C =P 'MP, where P=|v|Mv| - | M" tv].

Naive algorithm: Compute iteratively v;11 = Mwv;, vg = v.

Cost: O(n) matrix-vector products — O(n?) ops. in K.

Keller-Gehrig algorithm (1985) Compute
(1) Mo= M, My = M?, My = M*, M3 = M3, ... (binary powering)

(2) [MQR'U|,,. |M2k+1_1v] = M X [’U|M‘U‘ ‘MQ’f_lv}, k>0

Cost: O(logn) matrix products for both (1) and (2) — O(MM(n)logn)

Solving linear systems with polynomial coefficients

Problem: Given A € M,,(K[z]<4) invertible, and b € K[z]2 ;, compute A™'b

[Moenck-Carter, 1979]: One can recover the exact solution y = A~1b € K(z)"

of Ay = b from its approximation

Yond = A7Tb mod 22" = co+c1 P+co P2+ - -4 co, P?™, where ¢; € K[z]Z,

Conversion 15,4 — y by Padé approximation O(nM(nd)log(nd)) = O(n?d)

Particular case: If d=1and A = I,, — M, with M € M, (K) and b € K", then
c; = M'b, and cg, . .., cay, can be computed fast by the Keller-Gehrig algorithm.

Storjohann’s algorithm

Pb: Given 4 € M,,(K[z]<q) invertible, b € K[z]?,;, compute A~'b mod z?"*
Theorem (Storjohann 2002): For all s, > 0:

Cstt4+1 = —{ (Ct—l + CtP) ' {A ' Cs} }
Recall: {v } denotes the coefficient of P in v € K[z]".

Corollary (Storjohann 2002): For all ¢ > 2, the following equality holds

[CQk e yc2k+1_1] - —{(C2k_2+02k_1p)-{A. [CO\ \c%_l}}},

which allows to compute

(00701) — (62703) — (04705706707) — (08709701070117012701370147015) 7 ..

Generalizes Keller-Gehrig’s algorithm

Cost: O(MM(n,d)) ops. per arrow O(MM(n, d) logn)

Structured Matrices

Structured Matrices

VictorY. Pan

C ONTEMPORARY

HISNVHNYIE

MATHEMATICS

STRUCTURED MATRICES
AND POLYNOMIALS

Numerical Methods for
Structured Matrices

Unified Superfast Algorithms Fast Algorithms and Applications
for Structured Matrices: 5 :
Theory and AppliCOﬂOﬂS The Georg Heinig Memorial Volume

AMS-IMS-SIAM Joint Summer Research Conference
on Fast Algorithms in Mathematics,
Computer Science and Engineering
August 5-9, 2001
Mount Holyoke College, South Hadley,
Massachusetts

Vadim Olshevsky
Editor

American Mathematical Society

Soclety for indusirial and Applied Mathematics $m L

Motivation

Problem 1. (Hermite-Padé approximation) Recognize that

1 5 3 67 73 1577
— 1 L9y T2 T4 T 5y T 6 7 8
Y=l er = ol o T 90" T 70” T 12607 T 203207

satisfies (1 + x)y” + (1 — x)y = 0.

+ 0 (:I;g)

Problem 2. (Interpolation) Let P € Q|z,y] of total degree < 2, such that
P(0,0) =1, P(0,1) =2, P(0,2) =1, P(1,4) = 13, P(1,-1) = -2, P(2,3) = 36.
Find that

P=1+x+2y+ 3z° + day — y°.

These are linear algebra problems, with a lot of structure!

Basic algorithms in linear algebra

Classical approach — Gaussian elimination.

e Most questions of linear algebra in size n (matrix product, inverse, system

solving, characteristic polynomial, ...) can be solved in O(n?) operations.

Faster algorithms — from Strassen (1969) to Alman & Williams (2020).
e Strassen’69: m x n matrices can be multiplied in O(n?) operations, 0 < 3.

e As of now, one can take # < 2.37286, even though the algorithms are quite
impractical (huge logarithmic factors and constants hidden in the O()).

e Most problems in linear algebra can be solved in time O(n?).

> However, none of these algorithms takes structure into account.

Toeplitz matrices

A Toeplitz matrix is invariant along its main diagonals:

c d
A=1|b ¢ d
a b C

Crucial remark: The Toeplitz displacement operator ¢:

¢(A) = A — (A shifted right and down by 1) =

is such that ¢(A) has rank o < 2.

Compact representation

The matrix

PR
p(A)=1b 0 0
a 0 0]
can be represented in a compact way as
¢ d 1 0
p(A)=GH", with G=|p 0| and H=|0 1
a 0 0 ¢/d

> This feature can be used to obtain algorithms of complexity O(n) for solving

the system Az =b (O means that (poly-)logarithmic factors are hidden).
Def. The rank «a of ¢(A) is called the displacement rank of A;

Def. G, H € K"*® are called generators of A, of length «.

More structure . ..

Toeplitz structure: |b ¢ d

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure: |d ¢ b

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

2
1 a a

Vandermonde structure: [1 b 2

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)
1(a—x) 1/(a—y) 1@-2)
Cauchy structure: [1/(b—2z) 1/(b—y) 1/(b—2)

1/(c—z) 1/(c—y) 1/(c—2)

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)

Cauchy structure:

$(A) = A — (diagonal matrix) x A x (diagonal matrix)’

More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

®(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)

Cauchy structure:

$(A) = A — (diagonal matrix) x A x (diagonal matrix)’

Def. In all these cases, the displacement rank « of A is the rank of ¢(A).

Def. If &« < n, the matrix A is called quasi-Toeplitz, quasi-Hankel,. ..

Common features

All these classes of n X n matrices share two nice features:
> They can be represented using O(n) elements

> Their product by a vector can be computed in quasi-linear time. E.g.,

e Toeplitz x vector — for 0 < ¢ < n — 1, the entry c; of

G o w) () [
Lo o ai) s) e

is the coefficient of 2 1** in the polynomial product O(M(n))

(CLO + -+ agn_gibzn_2) X (bo + -+ bn_l.ilfn_l).

e Vandermonde X vector — multipoint evaluation O(M(n)logn)

e Cauchy x vector — Ex. 3, next slide O(M(n)logn)

Ex. 3: Product of a Cauchy matrix by a vector

Show that the product Cv of a Cauchy matrix C' € M,,(K) by a vector
v € K" can be performed in O(M(n)logn) operations in K.

Common features: pros and cons

All these classes of n X n matrices share two nice features:
(1) They can be represented using O(n) elements

(2) Their product by a vector can be computed in quasi-linear time. E.g.,

e Toeplitz (t;—;);; < vector — polynomial product O(M(n))
e Vandermonde (27); ; X vector — multipoint evaluation O(M(n)logn)
o (ﬁ)w x vector — Ex.1, previous slide O(M(n)logn)

> Unfortunately, (1) + (2) alone do not directly allow quasi-linear algorithms.
> A Wiedemann-type approach provides algorithms in O(nz)

> Moreover, the previous classes of structured matrices (Toeplitz, Hankel,

Vandermonde, Cauchy, ...) are not closed under inversion.

> The salvation (good algorithmic definition of the structure) comes from the

notion of displacement rank: it measures how far A is from being Toeplitz

Displacement rank and generators

Def. The displacement operator ¢ is the map A+ A — 7 - A- 71 where

(o0 0 ... 0)
10 0

\ 0 -~ 1 0
> ZA = (A shifted down by 1) and A - Z1 = (A shifted right by 1)
Def. The displacement rank of A € M, (K) is

Def. If a := a4 (A) < n, we say that A is quasi- Toeplitz.
Def. A displacement generator of A (for ¢) is a pair (G, H) € M, (K) s.t.
64 (A)=G-H".

Def. The integer « := a1 (A) is called length of the generator (G, H).

Displacement rank and generators, cont.

One can similarly define quasi- Vandermonde and quasi-Cauchy matrices, but
for different displacement operators:

o V,+— V, —Diag, -V, -Z" for the Vandermonde case,

o Copb— Cap — Diaga_1 - C,p - Diagy for the Cauchy case,

where V, = (a7)i.;, Cap = (1/(a; — b;));; and Diag, has diagonal a = (a;);

> In all these cases, the map ¢ v is defined by ¢ v(A) = A — M AN, with
M and N well-chosen (in terms of the target structure), and the displacement
rank of A is defined as the usual rank of ¢ n(A).

> Ex.: compute the displacement ranks of Vandermonde and Cauchy matrices.

Main results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, ...

Theorem. Let ¢ be one of Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or

prove that no such solution exists, in (Las Vegas) time O(a’n).

Main results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, ...

Theorem. Let ¢ be one of Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or

prove that no such solution exists, in (Las Vegas) time O(a’n).

Remarks.

e For a = 2 (or more generally « constant), this is O(n), which is optimal,

up to log factors — quasi-optimal gcd, resultant, Padé approximation,. . .

e For large a, not so good: when a ~ n, cost O(n?), worse than the cost

O(n?) of generic linear algebra algorithms.

0—1

e [B., Jeannerod, Mouilleron, Schost, 2017]: Improvement to O(a’ 'n)

Some application examples

Hermite-Padé approximation. Given power series fi,..., f,, at precision o,

degree bounds d;, one can find in time O(m?~'¢) polynomials p1, ..., pm s.t.

deg(p;) < d; and sz-fi = 0(x?) with o= Z(dZ +1)—1

Some application examples

Hermite-Padé approximation. Given power series fi,..., f,, at precision o,
degree bounds d;, one can find in time O(m?~'¢) polynomials p1, ..., pm s.t.

deg(p;) < d; and sz'fi = 0(x?) with o= Z(dZ +1)—1

Generalized simultaneous Hermite-Padé approximation. Given a vector of
polynomials P € K|z]® of degree < ¢/s and m vectors fy,..., £, of
polynomials in K[z]® of degree < o /s, one can find in time O(m’~ ‘o)

polynomials p1,...,p, such that

deg(p;) < o/m and qu;fz- =0 mod P.

Some application examples

Bivariate interpolation. Given values of a degree-d polynomial P(x,y) at points

one can recover its coefficients in time O(d’*!), which is sub-quadratic in the

number of terms

(generally, interpolation problems whose monomial support indexes the sample points).

Toeplitz-block-Toeplitz systems.
Let n = pq and let A be block-Toeplitz, with p? blocks of size ¢ that are

0+1

Toeplitz. One can solve the system Az = bin O(n =) operations.

Quasi-Toeplitz matrices: the strategy

> To be able to exploit the compact representation by generators, we need to:

e multiply a quasi-Toeplitz matrix by a vector fast O(n)
— as fast as Toeplitz matrices, using the > LU formula

e prove that the sum and product of quasi-Toeplitz matrices is still
quasi-Toeplitz, and that they can be computed fast O(n)
— algorithms relying again on the > LU formula

e prove that the inverse of a quasi-Toeplitz matrix is still quasi-Toeplitz,
and that it can be computed fast O(n)

— Strassen-like inversion algorithm, adapted to the structured case

Inverse of a quasi-Toeplitz is quasi- Toeplitz

Need to introduce a dual displacement operator ¢_:
p_(A)=A—-Z" A.Z = A— (Ashifted up and left by 1).
The dual displacement rank «_ is defined as

a_(A) =rank(¢p_(A)).

Theorem. If A is quasi-Toeplitz and invertible, then A~! is also quasi-Toeplitz.

Proof. Consequence of |y (A) —a_(A)| < 2 (Exercise!) and
a_(A) =rank(A - Z1' - A-Z) =rank(I, — A~ - Z1 - A. 2)
—rank(l, — Z- A" . ZT . A)=rank(A™' —Z- A7 ZT) = a (A7),

where we have used that rank([,, — A - B) =rank(l,, — B - A) (Exercise!)

Recall: Inversion of dense matrices
[Strassen, 1969]

A1 Ao
As1 Aapo

To invert a dense matrix A = c Knxn.

1. Invert Ay (recursively).
2. Compute the Schur complement A = AQ’Q — A271A1_7%A172.
3. Invert A (recursively).

4. Recover the inverse of A as

AL = [I —Ari A } X
I

Complexity: C(n) = 2C(%) + O(n?).

Corollary: A=1b in time O(n?).

Inversion of quasi- Toeplitz matrices
[Morf, 1980], [Bitmead & Anderson, 1980], [Kaltofen 1994], [Pan 2001]

A1 Al
Az1 Az

To find generators of the inverse of a quasi-Toeplitz A = c Kmxn

1. Compute generators of the inverse of A; ; (recursively).
2. Compute generators of A.
3. Compute generators of the inverse of A (recursively).

4. Compute generators of the inverse of A (by Strassen’s formula).

Complexity: If A is given by generators of length «,
C(n, o) = 2C (g a) + O(K(n,a)) + O(a®1n),

where K(n,) is the cost of quasi-Toeplitz matrix multiplication, for n x n

matrices given by generators of size a. Upcoming: K(n,a) = O(a’n)

> LU formula for quasi-Toeplitz matrices

Let A € M,,(K) be quasi-Toeplitz of displacement rank oo = ¢(A). Then,
HA)=A-Z-A-Z"=GH" =) g;-h!,
j=1
where g;, h; € K" are the columns of the displacement generators G and H.

Theorem () LU formula). One can recover A from its generators:

A= ZL(gj) : U(hj), with
J=1

- g1 - hi,; ha ; P
dj,2 gj,1 .
Lg;)=1| . . - and U(h;) = hij e haovg
_gj.,n gj,n.—l gj,1 | " h |
- 1,5 -

Proof. By linearity, it is sufficient to treat the case « = 1. If A = L(g) - U(h),
then a; ; = gih; + gi—1hj—1+--+, 80 a;j —a;—1 j—1 = g;h; and ¢ (A) = g-h'.

> LU formula for quasi-Toeplitz matrices

Let A € M, (K) be quasi-Toeplitz of displacement rank a = ¢(A). Then,
HA)=A-Z-A-Z"=GH" =) g;-h!,
j=1

where g;, h; € K" are the columns of the displacement generators G and H.

Theorem () LU formula). One can recover A from its generators:

A= ZL(QJ) U(]’Lj), with
J=1

- 4.1 - hi,; hz2 ; hn g
gj,2 9j,1 .
Ligi)=1| . . . and U(h;) = hig b1y
_gj.,n gj,n.—l gj,1 | ‘.
- hi,;

Corollary. Products Av and ATv can be computed in O(aM(n)) ops.
Proof. If v € K”, then L(g)U(h)v = g(z) (h(z)v(x) mod z™) div 2”1 O(M(n))

> LU formula for quasi-Toeplitz matrices

Let A € M, (K) be quasi-Toeplitz of displacement rank a = ¢(A). Then,
HA)=A-Z-A-Z"=GH" =) g;-h!,
j=1

where g;, h; € K" are the columns of the displacement generators G and H.

Theorem () LU formula). One can recover A from its generators:

A:ZL(QJ) U(]’Lj), with
J=1

- 4.1 - hi,; hz2 ; R i
gj,2 9j,1 .
Ligi)=1{ . . - and U(h;) = hig e hnoig
_gj.,n gj,n.—l gj,1 | ‘.
- hi,;

Remark. Converse also holds: if A = Z?:1 L(g;) - U(hj), then ¢(A) = GH'.

Proof. Consequence of the injectivity of ¢ (Exercise!)

> LU formula for quasi-Toeplitz matrices

Let A € M, (K) be quasi-Toeplitz of displacement rank a = ¢(A). Then,

JA)=A-Z-A-Z"'=GH" = g;-h],
j=1

where g;, h; € K" are the columns of the displacement generators G and H.

Theorem () LU formula). One can recover A from its generators:

A=) L(gj)-U(h;), with
j=1

- g1 - " hi,; h2 B j T
dj,2 9j,1 .
Lgi)=| . . . and U(h;) = hig e Bnoy
_gj.,n 9djn—1 .-+ Gj5,1 | ‘.
L hl,j .

Corollary (equivalent definition): ay (A) is the least integer « s.t. A writes:

(07

A= Z L;U;
1=1

for some lower Toeplitz matrices L; and some upper Toeplitz matrices Uj;.

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A + B and A x B also do.

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A + B and A x B also do.
Proof. Assume A and B given by generators (7,U), (G, H) of length . Then:
(1) ([T'] G], [U]| H)) is a generator of length 2« for A + B.

(2) ([T'| W |al], [V | H| —b]) is a generator of length 2a + 1 for A x B, with
o V=B xU

o |V := (A shifted right and down by 1) x G
e a (resp. b) is the down-shift of the last column of A (resp. BT).

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A + B and A x B also do.
Proof. Assume A and B given by generators (7,U), (G, H) of length o. Then:
(1) ([T'] G], [U | H]) is a generator of length 2« for A + B.

(2) ([T'| W |al], [V | H| —b]) is a generator of length 2a + 1 for A x B, with
o V=B xU

o IV := (A shifted right and down by 1) x G
e a (resp. b) is the down-shift of the last column of A (resp. BT).

Proof of (2). Wehave T-Ul'=A-Z72-A-Z',G-H' =B—-Z-B-Z' and
V=B"'"U W= (Z2-A2Z")G, a=(ZA)e, b= (ZB")e, e=[0,...,0,1]", so
T Vi4+WwW -H' —a- b =T (U - BY+(Z-A-Z').-G-H" —a-b! =
(A-Z-A-Z"Y.B+(Z-A-Z")Y. (B-Z-B-Z") - (ZAe-e' (BZ") =
A-B—(Z-A)-(I,—D)-(B-Z')—(ZA)D(BZ") = ¢_(AB), where D = Diag(e)

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A + B and AB also do.
Proof. Assume A and B given by generators (7,U), (G, H) of length . Then:

e ([T"| G], [U | H)) is a generator of length 2« for A + B.

e ([T'| W]a], [V|H| —b])is a generator of length 2a + 1 for A x B, with
— V=BT xU
— W := (A shifted right and down by 1) x G
— a (resp. b) is the down-shift of the last column of A (resp. BT).

Corollary. In compact representation, one can compute:

(1) the sum A + B in O(an) operations.

(2) the product A x B in K(n,a) = O(an) operations, using > LU formula.

Proof. Computing W,V , a, b amounts to a products quasi-Toeplitz X vector

Matrix operations in compact representation

Theorem. If A and B are quasi-Toeplitz, then A + B and AB also do.
Proof. Assume A and B given by generators (7,U), (G, H) of length . Then:

e ([T"| G], [U | H)) is a generator of length 2« for A + B.

e ([T'| W]a], [V|H| —b])is a generator of length 2a + 1 for A x B, with
(1) V=B xU
(2) W := (A shifted right and down by 1) x G
— a (resp. b) is the down-shift of the last column of A (resp. BT).

Corollary. In compact representation, one can compute:
e the sum A + B in O(an) operations.

e the product A x B in K(n,a) = O(a’n) operations, using 3 LU formula.

0—1

— The cost K(n, @) for x can be lowered to O(a’'n) operations.

SIAM J. MATRIX ANAL. APPL. (©) 2017 Society for Industrial and Applied Mathematics
Vol. 38, No. 3, pp. 733-775

ON MATRICES WITH DISPLACEMENT STRUCTURE:
GENERALIZED OPERATORS AND FASTER ALGORITHMS*

A. BOSTANT, C.-P. JEANNEROD?, C. MOUILLERONS, AND E. SCHOSTY

Abstract. For matrices with displacement structure, basic operations like multiplication, in-
version, and linear system solving can all be expressed in terms of the following task: evaluate the
product AB, where A is a structured n X n matrix of displacement rank «, and B is an arbitrary
n X a matrix. Given B and a so-called generator of A, this product is classically computed with a
cost ranging from O(a?.#(n)) to O(a?.# (n)log(n)) arithmetic operations, depending on the type of
structure of A; here, .# is a cost function for polynomial multiplication. In this paper, we first gen-
eralize classical displacement operators, based on block diagonal matrices with companion diagonal
blocks, and then design fast algorithms to perform the task above for this extended class of structured
matrices. The cost of these algorithms ranges from O(a¥~1.#(n)) to O(a®~1.#(n)log(n)), with
w such that two n X n matrices can be multiplied using O(n“) ring operations. By combining this
result with classical randomized regularization techniques, we obtain faster Las Vegas algorithms for
structured inversion and linear system solving.

Key words. structured linear algebra, matrix multiplication, computational complexity

Faster product in compact representation

Through the LU formula, K(n, «) is seen as the time of computing

Ag:ZGj(Hngmodx”), 1</<a

g=1

with G, H;,V, in K|z| of degree < n.

Remark: the inner modulo prevents us from factoring out the V4.

Matrix reformulation: Given H € K[z]**!, V € K[z]|'X% and G € K[z]**!, all
of degree < n, compute (HV mod z") G.

— Recast this into a polynomial matrix multiplication in size o and degree

— Deduce the bound K(n,a) = O(a?~1n)

Short-product techniques

Idea: compute (HV mod z™)G by divide-and-conquer, as

((HO + ZE‘%Hl) (VO + 33%V1) mod Zl?n) (GO + ZE%Gl) = H()V()GO +

|3

CIZ% (H()V()Gl + (Hovl —+ H1V0 mod ZE‘%)Go)—I-CIZn ((H()Vl -+ H1V0 mod xXr)Gl\

/

The desired quantities for the recursive step read off

{Ho Hl} mod /2 [Go Gl}

Let K(d,a, /) be the cost of: given A € K[z]**¢, B € K[z]**® and
C € K[z]**, of degree < d, compute (AB mod z%) C. Thus

Kn,a)=K(n,a,1) <K (g,a,Q) <K (g,a,él) <...<K (ﬁ,a,oz) = O0(a?"In)
e

Here K (ﬂ, Q, oz) = cost of polynomial matrix multiplication in size a, degree < 2
(87 (87

Vandermonde and Cauchy
[Pan 1990] [Gohberg-Olshevsky 1994]

One can reduce the study of Vandermonde operators

oy (A) = A — (diagonal matrix) x (A shifted right by 1)
and Cauchy operators

¢c(A) = A — (diagonal matrix) x A x (diagonal matrix)’

to that of Toeplitz operators.

> The reduction involves a question similar to the one before: multiply a
quasi-Vandermonde (quasi-Cauchy) matrix, given by « generators, by « vectors

> Similar techniques apply.

