
Newton iteration

Part 2

Alin Bostan

MPRI C-2-22
October 18, 2022



MPRI, C-2-22 2

Newton iteration – main theorem

1. (“Implicit function theorem”) Let φ ∈ K[[x, y]] s.t. φ(0, 0) = 0 and

φy(0, 0) ̸= 0. There exists a unique solution S ∈ xK[[x]] to φ(x, S) = 0.

2. (“Newton iteration”) Define Yκ = S mod x2κ . Then,

Y0 = 0 and Yκ+1 = Yκ − φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

for κ ≥ 0.

Proof of (1). Let φ(x, y) =
∑

j≥0 fjy
j with fj =

∑
i≥0 fj,ix

i.

Then φ(x, S) = 0, with S =
∑

ℓ≥1 sℓx
ℓ, is equivalent to

f0,0 = 0, f1,0s1 + f0,1 = 0, f1,0sκ + Polκ(s1, . . . , sκ−1, fj,i, i+ j ≤ κ) = 0

Since f0,0 = φ(0, 0) = 0 and f1,0 = φy(0, 0) ̸= 0, system has a unique solution.

Proof of (2). Y0 = S mod x, hence Y0 = S(0) = 0. By Taylor’s formula,

0 = φ(x, S) = φ(x, Yκ+(S−Yκ)) = φ(x, Yκ)+φy(x, Yκ)·(S−Yκ)+O((S−Yκ)
2).

Now, φy(x, Yκ) mod x = φy(0, 0) ̸= 0, hence φy(x, Yκ) invertible. Thus,

0 =
φ(x, Yκ)

φy(x, Yκ)
+S−Yκ+O(x2κ+1

) =⇒ Yκ−
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

= S mod x2κ+1

= Yκ+1.



MPRI, C-2-22 3

Examples: reciprocal and exponential, again

▷ Using φ(x, y) = (F (0)−1 + y)−1 − F (x) to invert F ∈ K[[x]], will find

S = F (x)−1 − F (0)−1

after using the Newton operator N : G 7→ 2(G+ 1
F (0) )− F (G+ 1

F (0) )
2 − 1

F (0) .

=⇒ this is equivalent to N : G 7→ 2G− FG2 with initial value G = F (0)−1

▷ Using φ(x, y) = F (x)− log(1 + y), to compute exp of F ∈ xK[[x]], will find

S = exp(F )− 1

after using the Newton operator N : G 7→ G+ (1 +G)(F − log(1 +G)).

=⇒ this is equivalent to N : G 7→ G+G(F − logG) with initial value G = 1



MPRI, C-2-22 4

Newton iteration: a variant

�� ��Idea: Interlace two Newton schemes, one for solving φ, one for φ−1
y

Input Some N ∈ N>0, the truncation P = rem(φ, {xN , yN}) of a power series

φ ∈ K[[x, y]] such that φ(0, 0) = 0 and φy(0, 0) ̸= 0.

Output Polynomials F = rem(S, xN ) and G = rem(T, x⌈N/2⌉), where S is the

unique series solution in xK[[x]] to φ(x, S) = 0 and T = φy(x, S)
−1.

If N = 1, return F = 0, G = φy(0, 0)
−1. Otherwise:

(a) Recursively call the algorithm with ⌈N/2⌉, in order to compute

truncations F1 = rem(S, x⌈N/2⌉) and G1 = rem(T, x⌈⌈N/2⌉/2⌉).

(b) Compute U1 = rem(P (x, F1), x
N ) and V1 = rem(Py(x, F1), x

⌈N/2⌉).

(c) Compute G := G1 + rem((1−G1V1)G1, x
⌈N/2⌉).

(d) Compute F := F1 − rem(GU1, x
N ).

(e) Return F and G.



MPRI, C-2-22 5

Application: extension of recurrences
[Shoup, 1991]

Problem: Given r,N ∈ N, a linear recurrence with constant coefficients of

order r for (un)n and the first r terms u0, . . . , ur−1, compute ur, . . . , uN

Naive algorithm: unroll the recurrence O(rN) ⊆ O(N2)

Idea:
∑

i≥0 uix
i is rational A(x)/B(x), with B given by the input recurrence,

and deg(A) < deg(B)

Example (Fibonacci): Fi+2 = Fi+1 + Fi ⇐⇒
∑
i

Fix
i =

F0 + (F1 − F0)x

1− x− x2

Algorithm:

• Compute A from B and u0, . . . , ur−1 O(M(r))

• Expand A/B modulo xN+1 O(M(N))



MPRI, C-2-22 6

Application: conversion coefficients ↔ power sums
[Schönhage, 1982]

Any polynomial F = xn + a1x
n−1 + · · ·+ an in K[x] can be represented by its

first n power sums Si =
∑

F (α)=0

αi

Conversions coefficients ↔ power sums can be performed

• either in O(n2) using Newton identities (naive way):

iai + S1ai−1 + · · ·+ Si = 0, 1 ≤ i ≤ n

• or in O(M(n)) using generating series

rev(F )′

rev(F )
= −

∑
i≥0

Si+1x
i ⇐⇒ rev(F ) = exp

−
∑
i≥1

Si

i
xi





MPRI, C-2-22 7

Application: special bivariate resultants
[B-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

F ⊗G =
∏

F (α)=0,G(β)=0

(x− αβ), F ⊕G =
∏

F (α)=0,G(β)=0

(x− (α+ β))

Output size: N = deg(F ) deg(G)

Linear algebra: χxy, χx+y in K[x, y]/(F (x), G(y)) O(MM(N))

Resultants: Resy
(
F (y), ydeg(G)G(x/y)

)
, Resy (F (y), G(x− y)) O(N1.5)

Better: ⊗ and ⊕ are easy in Newton representation O(M(N))∑
αs

∑
βs =

∑
(αβ)s and∑ ∑

(α+ β)s

s!
xs =

(∑ ∑
αs

s!
xs

)(∑ ∑
βs

s!
xs

)

Corollary: Fast polynomial shift P (x+ a) = P (x)⊕ (x+ a) O(M(deg(P )))



MPRI, C-2-22 8

Newton iteration on power series: operators and systems

In order to solve an equation φ(Y ) = 0, with φ : (K[[x]])r → (K[[x]])r,

1. Linearize: φ(Yκ − U) = φ(Yκ)−Dφ|Yκ · U +O(U2),

where Dφ|Y is the differential of φ at Y .

2. Iterate: Yκ+1 = Yκ − Uκ+1, where Uκ+1 is found by

3. Solve linear equation: Dφ|Yk
· U = φ(Yκ) with valU > 0.

Then, the sequence Yκ converges quadratically to the solution Y .



MPRI, C-2-22 9

Application: inversion of power series matrices
[Schulz, 1933]

To compute the inverse Z of a matrix of power series Y ∈ Mr(K[[x]]):

• Choose the map φ : Z 7→ I − Y Z with differential Dφ|Y : U 7→ −Y U

• Equation for U : −Y U = I − Y Zκ mod x2κ+1

• Solution: U = −Y −1 (I − Y Zκ) = −Zκ (I − Y Zκ) mod x2κ+1

This yields the following Newton-type iteration for Y −1

Zκ+1 = Zκ + Zκ(Ir − Y Zκ) mod x2κ+1

Complexity:

Cinv(N) = Cinv(N/2) +O(MM(r,N)) =⇒ Cinv(N) = O(MM(r,N))



MPRI, C-2-22 10

Application: non-linear systems

In order to solve a system Y = H(Y ) = φ(Y ) + Y , with

H : (K[[x]])r → (K[[x]])r, such that Ir − ∂H/∂Y is invertible at 0.

1. Linearize: φ(Yκ − U)− φ(Yκ) = U − ∂H/∂Y (Yκ) · U +O(U2).

2. Iterate Yκ+1 = Yκ − Uκ+1, where Uκ+1 is found by

3. Solve linear equation: (Ir − ∂H/∂Y (Yκ)) ·U = H(Yκ)− Yκ with valU > 0.

This yields the following Newton-type iteration:Zκ+1 = Zκ + Zκ(Ir − (Ir − ∂H/∂Y (Yκ))Zκ) mod x2κ+1

Yκ+1 = Yκ − Zκ+1(H(Yκ)− Yκ) mod x2κ+1

computing simultaneously a matrix and a vector.



MPRI, C-2-22 11

Application: quasi-exponential of power series matrices
[B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007]

To compute the solution Y ∈ Mr(K[[x]]) of the system Y ′ = AY

• choose the map φ : Y 7→ Y ′ −AY , with differential φ.

• the equation for U is U ′ −AU = Y ′
κ −AYκ mod x2κ+1

• the method of variation of constants yields the solution

U = YκVκ mod x2κ+1

, Y ′
κ −AYκ = YκV

′
κ mod x2κ+1

This yields the following Newton-type iteration for Y :

Yκ+1 = Yκ − Yκ

∫
Y −1
κ (Y ′

κ −AYκ) mod x2κ+1

Complexity:

Csolve(N) = Csolve(N/2)+O(MM(r,N)) =⇒ Csolve(N) = O(MM(r,N))



MPRI, C-2-22 12

Bonus



MPRI, C-2-22 13

Composition of series (just sketched)

▷ Naive approach (by Horner scheme) O(N M(N))

▷ [Paterson and Stockmeyer, 1973] O(
√
N(M(N) +MM(

√
N)))

By Shanks’ 1969 baby-steps giant-steps technique: split polynomials in

chunks of length
√
N , matrices in blocks of size

√
N ×

√
N .

▷ [Brent and Kung, 1978] O(
√
N logN M(N))

Similar splitting + Taylor formula.



MPRI, C-2-22 14

Faster Modular Composition


