Newton iteration
Part 2

y 4

: informatiques g” mathématiques

Alin Bostan

MPRI C-2-22
October 18, 2022

MPRI, C-2-22 2
Newton iteration — main theorem

1. (“Implicit function theorem”) Let ¢ € K[|z, y]] s.t. ¢(0,0) = 0 and
©,(0,0) # 0. There exists a unique solution S € zK[[z]] to ¢(z,S) = 0.

2. (“Newton iteration”) Define Y,, = S mod 2?". Then,
plz,Yy)
Py (5’77 Ym)
Proof of (1). Let p(z,y) =), [y’ with f; = 250 fiaix".
Then ¢(z,S5) =0, with S =}, sex’, is equivalent to

f0,0 — 07 fl,Osl + fO,l — 07 fl,OSFL _|_P01/<c(817 .- '78/4—17fj,i7i +] S /ﬁ)) =0

k+1

Yo=0 and Y11 =Y, — mod for k > 0.

Since fo0 = ¢(0,0) =0 and f10 = ¢,(0,0) # 0, system has a unique solution.
Proof of (2). Yy =S mod «x, hence Yy = S(0) = 0. By Taylor’s formula,

0=(z,5) =p(z,Ye+(5-Yy)) = ¢z, Ye) +oy (2, Y,)-(S=Yo)+0((S—Y5)?).
Now, ¢, (z,Y,) mod x = ¢,(0,0) # 0, hence ¢,(z,Y,) invertible. Thus,

p(z, Ye) grt1 o(z,Yy)
Spy(x7Yli) () Spy(x7YH;)

+1

k—+1 K
2 = Smod z? = -

mod x

MPRI, C-2-22
Examples: reciprocal and exponential, again

> Using ¢(z,y) = (F(0)~' +y)~' — F(z) to invert F € K[[z]], will find
S=F(x)"'-F0)™!
after using the Newton operator N : G — 2(G + F(O)) F(G + F(O)) 1

F(0)°

— this is equivalent to N : G — 2G — FG? with initial value G = F(0)~!

> Using ¢(x,y) = F(x) — log(1 + y), to compute exp of F' € xK[[z]], will find
S =exp(F)—1
after using the Newton operator N : G — G + (1 + G)(F — log(1 + G)).

—> this is equivalent to N : G — G + G(F — log G) with initial value G = 1

MPRI, C-2-22
Newton iteration: a variant

[Idea: Interlace two Newton schemes, one for solving ¢, one for ¢ 1 J

Input Some N € Ny, the truncation P = rem(p, {z"V,y" }) of a power series
¢ € K||x,y]] such that ¢(0,0) =0 and ¢,(0,0) # 0.

Output Polynomials F' = rem(S, 2") and G = rem(T, z!N/21), where S is the

unique series solution in zK[[z]] to p(z,S5) =0 and T = ¢, (z,5)"*.

If N =1, return F =0, G = ¢,(0,0)"*. Otherwise:

(a) Recursively call the algorithm with [N/2], in order to compute
truncations Fy = rem(S, 2/ V/21) and G = rem(T, 2! IN/21/21),

(b) Compute U; = rem(P(x, Fy),z") and Vi = rem(P,(x, Fy), ! N/21),
(¢c) Compute G := G1 +rem((1 — G1V1)Gy, ! V/21).

(d) Compute F := F| —rem(GU;, z").

(e) Return F and G.

MPRI, C-2-22
Application: extension of recurrences
[Shoup, 1991]

Problem: Given r, N € N, a linear recurrence with constant coefficients of

order r for (u,), and the first r terms ug, ..., u,_1, compute u,,...,un
Naive algorithm: unroll the recurrence O(rN) C O(N?)
ldea: > .o, u;a’ is rational A(x)/B(z), with B given by the input recurrence,

and deg(A) < deg(B)
F() -+ (Fl — Fo)x

Example (Fibonacci): Fiio = Fioqy + F; <= Z Fa' = —————
Algorithm:
e Compute A from B and ug, ..., u,_1 O(M(r))

e Expand A/B modulo V! O(M(N))

MPRI, C-2-22
Application: conversion coefficients <+ power sums
[Schonhage, 1982]

Any polynomial F' = 2™ + a12" ! + -+ + a,, in K[z] can be represented by its

first n power sums S; = Z o
F(a)=0

Conversions coefficients <> power sums can be performed

e cither in O(n?) using Newton identities (naive way):
wa; +S1a,1+---+95;, =0, 1<:1<n

e orin O(M(n)) using generating series

rev(F)’ : Si
- Z (] F _ . — (2
= g Sit1xt <= rev(F) =exp g T

ev(F) s =

MPRI, C-2-22
Application: special bivariate resultants
[B-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

FeaG= J[(@-ep), FacG=] (@-(a+p)
F()=0,G(8)=0 F(0)=0,G(8)=0
Output size: N = deg(F) deg(G)
Linear algebra: Xuy, Xz+y in Kz, y]/(F(z),G(y)) O(MM(N))
Resultants: Res, (F(y),y¢(“G(x/y)), Res, (F(y), G(z —y)) O(N1-?)
Better: ® and & are easy in Newton representation O(M(N))

S 0S8 =Y (af)* and |
SER (5 (55

Corollary: Fast polynomial shift P(z +a) = P(z) @ (z + a) O(M(deg(P)))

MPRI, C-2-22
Newton iteration on power series: operators and systems

In order to solve an equation ¢(Y') = 0, with ¢ : (K[[x]])" — (K[[z]])",

1. Linearize: (Y, —U) = o(Y,) — Dyply. - U + O(U?),
where Dyly is the differential of ¢ at Y.

2. lterate: Y, 1 =Y, — U,11, where U, is found by
3. Solve linear equation: Dyply, - U = ¢(Y,) with valU > 0.

Then, the sequence Y, converges quadratically to the solution Y.

MPRI, C-2-22
Application: inversion of power series matrices
[Schulz, 1933]

To compute the inverse Z of a matrix of power series Y € M,.(K][[z]]):

e Choose the map ¢ : Z +— I — Y Z with differential Dp|ly : U — =Y U
e Equation for U: —YU =1 —Y Z, mod 2>
o Solution: U =~V (I ~YZ,) = —Z.(I —YZ,) mod z

2/‘1—}—1

This yields the following Newton-type iteration for Y —!

2I£—|—1

o1 =2s+ Z(I.—YZ,;) modx

Complexity:
Cinv(N) = Cinv(N/2) + OMM(r,N)) = Cino(IN) = O(MM(r, N))

MPRI, C-2-22 10
Application: non-linear systems

In order to solve a system Y = H(Y) = o(Y) + Y, with
H : (K[[z]])" — (K|[z]])", such that I, — O0H/JY is invertible at 0.

1. Linearize: (Y, —U) — o(Y,) =U — 0H/IY (Y,,) - U + O(U?).
2. lterate Y, =Y, — Usi1, where U,y is found by

3. Solve linear equation: (I, —90H/0Y (Y,)) -U = H(Y,) — Y, with valU > 0.

This yields the following Newton-type iteration:

2/4:—|—1

Zwr1 =2w+ 2. — (1. —0H/0Y (Yx))Z,:) mod x
Yoy1 =Y. — Zop1 (HY,) = Y,) mod 2™

computing simultaneously a matrix and a vector.

MPRI, C-2-22
Application: quasi-exponential of power series matrices
[B-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007]

To compute the solution Y € M,.(K|[[z]]) of the system Y’ = AY

e choose the map ¢ : Y — Y’ — AY, with differential ¢.
e the equation for Uis U’ — AU =Y. — AY, mod 22"

e the method of variation of constants yields the solution
U =Y.V, mod 22", Y/ — AY, = Y,.V/ mod 22"

This yields the following Newton-type iteration for Y':

2/‘1—|—1

Yoi1 =Y, — YK/Y,;l (Y — AY,) mod x

Complexity:
Csolve (V) = Cyorve (N/2) + O(MM(r, N)) — Csolve(IN) = O(MM(r, N))

11

MPRI, C-2-22

Bonus

12

MPRI, C-2-22 13
Composition of series (just sketched)

> Naive approach (by Horner scheme) O(N M(N))

> [Paterson and Stockmeyer, 1973] O(VN(M(N) + MM(v/N)))

By Shanks’ 1969 baby-steps giant-steps technique: split polynomials in
chunks of length VN , matrices in blocks of size VN x +/N.

> [Brent and Kung, 1978] O(v/Nlog N M(N))
Similar splitting + Taylor formula.

[cs.SC] 15 Oct 2021

MPRI, C-2-22 14
Faster Modular Composition

Faster Modular Composition

VINCENT NEIGER, Sorbonne Université, France
BRUNO SALVY, Inria, France

ERIC SCHOST, University of Waterloo, Canada
GILLES VILLARD, CNRS, France

A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an
arbitrary field. When the degrees of these polynomials are bounded by n, the algorithm uses O(n!-*3) field
operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic
algorithms, due to Brent and Kung in 1978, require O(n'-¢%) field operations in general, and n3/2t°(1) field
operations in the particular case of power series over a field of large enough characteristic. If using cubic-time
matrix multiplication, the new algorithm runs in n%/3+°(1) gperations, while previous ones run in O(n?)

operations.
Our approach relies on the computation of a matrix of algebraic relations that is typically of small size.
Randomization is used to reduce arbitrary input to this favorable situation.

CCS Concepts: « Computing methodologies — Algebraic algorithms; « Theory of computation —
Algebraic complexity theory.

Additional Key Words and Phrases: composition of polynomials, complexity

