N-th term of a linear recurrent sequence

Alin Bostan

MPRI

C-2-22

October 25, 2022
BINARY SPLITTING
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$

Naive (iterative) algorithm: unbalanced multiplicands $\tilde{O}(N^2)$
Example: fast factorial

Problem: Compute $N! = 1 \times \cdots \times N$

Naive (iterative) algorithm: unbalanced multiplicands $\tilde{O}(N^2)$

- **Binary Splitting:** balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

 $$N! = (1 \times \cdots \times \lfloor N/2 \rfloor) \times (\lfloor N/2 \rfloor + 1) \times \cdots \times N$$

 and recurse. Complexity $\tilde{O}(N)$.

Alin Bostan
N-th term of a linear recurrent sequence
Example: fast factorial

Problem: Compute \(N! = 1 \times \cdots \times N \)

Naive (iterative) algorithm: unbalanced multiplicands \(\tilde{O}(N^2) \)

- **Binary Splitting:** balance computation sequence so as to take advantage of fast multiplication (operands of same sizes):

\[
N! = \left(1 \times \cdots \times \left\lfloor \frac{N}{2} \right\rfloor \right) \times \left(\left(\left\lfloor \frac{N}{2} \right\rfloor + 1 \right) \times \cdots \times N\right)
\]

size \(\frac{1}{2} N \log N \) size \(\frac{1}{2} N \log N \)

and recurse. Complexity \(\tilde{O}(N) \).

- Extends to **matrix factorials** \(A(N)A(N - 1) \cdots A(1) \) \(\tilde{O}(N) \)

\(\rightarrow \) recurrences of arbitrary order.
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$
Application to recurrences

Problem: Compute the N-th term u_N of a P-recursive sequence

$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$

Naive algorithm: unroll the recurrence \[\tilde{O}(N^2)\) bit ops.
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $\tilde{O}(N^2)$ bit ops.

Binary splitting: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)}A(n)U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence \(\tilde{O}(N^2)\) bit ops.

Binary splitting: \(U_n = (u_n, \ldots, u_{n+r-1})^T\) satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$

\(\Rightarrow\) u_N reads off the matrix factorial $A(N-1) \cdots A(0)$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence \(\tilde{O}(N^2) \) bit ops.

Binary splitting: \(U_n = (u_n, \ldots, u_{n+r-1})^T \) satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) & -p_1(n) & \ldots & -p_{r-1}(n) \end{bmatrix}.$$

\[\Rightarrow u_N \text{ reads off the matrix factorial } A(N-1) \cdots A(0) \]

[Chudnovsky-Chudnovsky, 1987]: Binary splitting strategy \(\tilde{O}(N) \) bit ops.
Application: fast computation of $e = \exp(1)$ [Brent 1976]

$$e_n = \sum_{k=0}^{n} \frac{1}{k!} \quad \rightarrow \quad \exp(1) = 2.7182818284590452\ldots$$

Recurrence $e_n - e_{n-1} = 1/n! \iff n(e_n - e_{n-1}) = e_{n-1} - e_{n-2}$ rewrites

$$\begin{bmatrix} e_{N-1} \\ e_N \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 0 & N \\ -1 & N+1 \end{bmatrix} \begin{bmatrix} e_{N-2} \\ e_{N-1} \end{bmatrix} = \frac{1}{N!} C(N)C(N-1) \cdots C(1) \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

▷ e_N in $\tilde{O}(N)$ bit operations [Brent 1976]
▷ generalizes to the evaluation of any D-finite series at an algebraic number [Chudnovsky-Chudnovsky 1987] $\tilde{O}(N)$ bit ops.
Implementation in \texttt{gfun} [Mezzarobba, Salvy 2010]

\begin{verbatim}
> rec:={n*(e(n) - e(n-1)) = e(n-1) - e(n-2), e(0)=1, e(1)=2};
> pro:=rectoproc(rec,e(n));

pro := proc(n::nonnegint)
local i1, loc0, loc1, loc2, tmp2, tmp1, i2;
if n <= 22 then
 loc0 := 1; loc1 := 2;
 if n = 0 then return loc0
 else for i1 to n - 1 do
 loc2 := (-loc0 + loc1 + loc1*(i1 + 1))/(i1 + 1);
 loc0 := loc1; loc1 := loc2
 end do
 end if; loc1
else
 tmp1 := 'gfun/rectoproc/binsplit'(['ndmatrix'(Matrix([[0, i2 + 2], [-1, i2 + 3]]), i2 + 2), i2, 0, n,
matrix_ring(ad, pr, ze, ndmatrix(Matrix(2, 2, [[...],[...]],
datatype = anything, storage = empty, shape = [identity]), 1)),
expected_entry_size], Vector(2, [...], datatype = anything));
tmp1 := subs({e(0) = 1, e(1) = 2}, tmp1); tmp1
end if
end proc

> tt:=time(): x:=pro(210000): time()-tt;
> tt:=time(): y:=evalf(exp(1), 1000000): time()-tt, evalf(x-y, 1000000);
3.730, 24.037, 0.
\end{verbatim}

Alin Bostan

N-th term of a linear recurrent sequence
Application: record computation of π

[Chudnovsky-Chudnovsky 1987] fast convergence hypergeometric identity

$$\frac{1}{\pi} = \frac{1}{53360 \sqrt{640320}} \sum_{n \geq 0} \frac{(-1)^n (6n)! (13591409 + 545140134n)}{n!^3 (3n)! (8 \cdot 100100025 \cdot 327843840)^n}.$$

▷ Used in Maple & Mathematica: 1st order recurrence, yields 14 correct digits per iteration \longrightarrow 4 billion digits [Chudnovsky-Chudnovsky 1994]

▷ Current record: 100 trillion digits [Iwao 2022]
Example [Flajolet, Salvy, 1997]

What is the coefficient of x^{3000} in the expansion of

$$(x + 1)^{2000} \left(x^2 + x + 1\right)^{1000} \left(x^4 + x^3 + x^2 + x + 1\right)^{500}$$
Example [Flajolet, Salvy, 1997]

What is the coefficient of x^{3000} in the expansion of

$$(x + 1)^{2000} \left(x^2 + x + 1\right)^{1000} \left(x^4 + x^3 + x^2 + x + 1\right)^{500}$$

\[
\begin{align*}
\text{> st:=time(); n3:=500; n1:=4*n3; n2:=2*n3; } \\
\text{> P1:=x+1; P2:=x^2+x+1; P3:=x^4+x^3+x^2+x+1;} \\
\text{> d1:={diff(u(x),x)*P1-n1*diff(P1,x)*u(x)=0, u(0)=1};} \\
\text{> d2:={diff(v(x),x)*P2-n2*diff(P2,x)*v(x)=0, v(0)=1};} \\
\text{> d3:={diff(w(x),x)*P3-n3*diff(P3,x)*w(x)=0, w(0)=1};} \\
\text{> deq:=poltodiffeq(u(x)*v(x)*w(x),[d1,d2,d3],[u(x),v(x),w(x)],y(x));} \\
\text{> rec:=diffeqtorec(deq,y(x),u(n)); pro:=rectoproc(rec,u(n));} \\
\text{> co3000:=pro(3000); time()-st;}
\end{align*}
\]

3973942265580043039696 \cdots [1379 \text{ digits}] \cdots 90713429445793420476320

0.24 seconds
Example [Flajolet, Salvy, 1997]

What is the coefficient of x^{3000} in the expansion of

$$(x + 1)^{2000} \left(x^2 + x + 1\right)^{1000} \left(x^4 + x^3 + x^2 + x + 1\right)^{500}$$

```
> st:=time(); n3:=500; n1:=4*n3; n2:=2*n3;
> P1:=x+1; P2:=x^2+x+1; P3:=x^4+x^3+x^2+x+1;
> d1:={diff(u(x),x)*P1-n1*diff(P1,x)*u(x)=0, u(0)=1}:
> d2:={diff(v(x),x)*P2-n2*diff(P2,x)*v(x)=0, v(0)=1}:
> d3:={diff(w(x),x)*P3-n3*diff(P3,x)*w(x)=0, w(0)=1}:
> deq:=poltodiffeq(u(x)*v(x)*w(x),[d1,d2,d3],[u(x),v(x),w(x)],y(x)):
> rec:=diffeqtorec(deq,y(x),u(n)); pro:=rectoproc(rec,u(n));
> co3000:=pro(3000); time()-st;
```

3973942265580043039696 · · · [1379 digits] · · · 90713429445793420476320

0.24 seconds

```
> st:=time(): P:=expand(P1^n1*P2^n2*P3^n3): co:=coeff(P,x,3000):
> co:=co3000, time()-st:
```

0, 93.57 seconds
BABY STEPS / GIANT STEPS
Problem: Given a K-algebra A, $a \in A$ and $P \in K[x]_{<N}$, compute $P(a)$
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A
Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^{\ell})^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$
Problem: Given a K-algebra A, $a \in A$ and $P \in K[x]_{< N}$, compute $P(a)$

Horner's rule: \hspace{2cm} \text{O}(N) \text{ products in } A$

Better algorithm [Paterson-Stockmeyer, 1973]: \hspace{2cm} \text{O}(\sqrt{N}) \text{ products in } A$

Write $P(x) = P_0(x) + \cdots + P_{\ell - 1}(x) \cdot (x^\ell)^{\ell - 1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ \hspace{2cm} \text{O}(\sqrt{N}) \text{ products in } A$
Problem: Given a \(\mathbb{K} \)-algebra \(A \), \(a \in A \) and \(P \in \mathbb{K}[x]_{<N} \), compute \(P(a) \)

Horner's rule: \(O(N) \) products in \(A \)

Better algorithm [Paterson-Stockmeyer, 1973]: \(O(\sqrt{N}) \) products in \(A \)
Write \(P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^{\ell})^{\ell-1} \), with \(\ell = \sqrt{N} \) and \(\deg(P_i) < \ell \)

(BS) Compute \(a^2, \ldots, a^\ell =: b \) \(O(\sqrt{N}) \) products in \(A \)

(GS) Compute \(b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1} \) \(O(\sqrt{N}) \) products in \(A \)
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(1) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A

(2) Compute $b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1}$ $O(\sqrt{N})$ products in A

Evaluate $c_0 = P_0(a), \ldots, c_{\ell-1} = P_{\ell-1}(a)$ no product in A
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A

(GS) Compute $b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1}$ $O(\sqrt{N})$ products in A

Evaluate $c_0 = P_0(a), \ldots, c_{\ell-1} = P_{\ell-1}(a)$ no product in A

Return $P(a) = b_0c_0 + \cdots + b_{\ell-1}c_{\ell-1}$ $O(\sqrt{N})$ products in A
Problem: Given a \mathbb{K}-algebra A, $a \in A$ and $P \in \mathbb{K}[x]_{<N}$, compute $P(a)$

Horner's rule: $O(N)$ products in A

Better algorithm [Paterson-Stockmeyer, 1973]: $O(\sqrt{N})$ products in A

Write $P(x) = P_0(x) + \cdots + P_{\ell-1}(x) \cdot (x^\ell)^{\ell-1}$, with $\ell = \sqrt{N}$ and $\deg(P_i) < \ell$

(BS) Compute $a^2, \ldots, a^\ell =: b$ $O(\sqrt{N})$ products in A

(GS) Compute $b_0 = 1, b_1 = b, \ldots, b_{\ell-1} = b^{\ell-1}$ $O(\sqrt{N})$ products in A

Evaluate $c_0 = P_0(a), \ldots, c_{\ell-1} = P_{\ell-1}(a)$ no product in A

Return $P(a) = b_0c_0 + \cdots + b_{\ell-1}c_{\ell-1}$ $O(\sqrt{N})$ products in A

Application: evaluation of $P \in \mathbb{K}[x]_{<N}$ at a matrix in $\mathcal{M}_r(\mathbb{K})$ $O(\sqrt{N} r^\theta)$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$
Problem: Compute \(N! = 1 \times 2 \times \cdots \times N \)

Naive algorithm: unroll the recurrence \(O(N) \)
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$

$$(BS) \quad \text{Compute } P = (x + 1)(x + 2) \cdots (x + \sqrt{N}) \quad O(M(\sqrt{N}) \log N)$$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$

(BS) Compute $P = (x + 1)(x + 2)\cdots(x + \sqrt{N})$ $O(M(\sqrt{N}) \log N)$

(GS) Evaluate P at $0, \sqrt{N}, 2\sqrt{N}, \ldots, (\sqrt{N} - 1)\sqrt{N}$ $O(M(\sqrt{N}) \log N)$
Problem: Compute $N! = 1 \times 2 \times \cdots \times N$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm [Strassen, 1976]: BS-GS strategy $O(M(\sqrt{N}) \log N)$

(BS) Compute $P = (x + 1)(x + 2) \cdots (x + \sqrt{N})$ $O(M(\sqrt{N}) \log N)$

(GS) Evaluate P at $0, \sqrt{N}, 2\sqrt{N}, \ldots, (\sqrt{N} - 1)\sqrt{N}$ $O(M(\sqrt{N}) \log N)$

Return $u_N = P((\sqrt{N} - 1)\sqrt{N}) \cdots P(\sqrt{N}) \cdot P(0)$ $O(\sqrt{N})$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence \(O(N) \)

Better algorithm: \(U_n = (u_n, \ldots, u_{n+r-1})^T \) satisfies the 1st order recurrence

\[
U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix}
p_r(n) \\
\vdots \\
-p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n)
\end{bmatrix}.
\]
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)} A(n) U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) & \cdot & \cdot \\ -p_0(n) & -p_1(n) & \cdots & -p_{r-1}(n) \end{bmatrix}.$$

$$\implies u_N \text{ reads off the matrix factorial } A(N-1) \cdots A(0)$$
Problem: Compute the N-th term u_N of a P-recursive sequence

$$p_r(n)u_{n+r} + \cdots + p_0(n)u_n = 0, \quad (n \in \mathbb{N})$$

Naive algorithm: unroll the recurrence $O(N)$

Better algorithm: $U_n = (u_n, \ldots, u_{n+r-1})^T$ satisfies the 1st order recurrence

$$U_{n+1} = \frac{1}{p_r(n)}A(n)U_n \quad \text{with} \quad A(n) = \begin{bmatrix} p_r(n) \\ \vdots \\ -p_0(n) & -p_1(n) & \ldots & -p_{r-1}(n) \end{bmatrix}.$$

$$\implies u_N \text{ reads off the matrix factorial } A(N-1) \cdots A(0)$$

[Chudnovsky-Chudnovsky, 1987]: (BS)-(GS) strategy $O(M(\sqrt{N}) \log N)$
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{p-1}/2$
Problem: count the number \(n \) of solutions of the equation \(y^2 = f(x) \) over \(\mathbb{F}_p \)

Basic idea [Deuring, 1941]: if \(\text{deg}(f) = 3 \), then \(n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}} \)

Explanation: \(z \) is a non-zero square in \(\mathbb{F}_p \) exactly when \(z^{(p-1)/2} = 1 \)
Problem: count the number \(n \) of solutions of the equation \(y^2 = f(x) \) over \(\mathbb{F}_p \)

Basic idea [Deuring, 1941]: if \(\deg(f) = 3 \), then \(n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}} \)

Explanation: \(z \) is a non-zero square in \(\mathbb{F}_p \) exactly when \(z^{(p-1)/2} = 1 \)

Generalization [Cartier-Manin, 1956]: if \(\deg(f) = 2g + 1 \), then \(n \mod p \) reads off the Hasse-Witt matrix \((h_{i,j})_{i,j=1}^{g}\), with \(h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2} \)
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}}$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$

Generalization [Cartier-Manin, 1956]: if $\deg(f) = 2g + 1$, then $n \mod p$ reads off the Hasse-Witt matrix $(h_{i,j})_{i,j=1}^g$, with $h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2}$

Corollary [B-Gaudry-Schost, 2007]: $\tilde{O}(\sqrt{p})$ hyperelliptic point counting / \mathbb{F}_p
Problem: count the number n of solutions of the equation $y^2 = f(x)$ over \mathbb{F}_p

Basic idea [Deuring, 1941]: if $\deg(f) = 3$, then $n \mod p = -[x^{p-1}]f(x)^{\frac{p-1}{2}}$

Explanation: z is a non-zero square in \mathbb{F}_p exactly when $z^{(p-1)/2} = 1$

Generalization [Cartier-Manin, 1956]: if $\deg(f) = 2g + 1$, then $n \mod p$ reads off the Hasse-Witt matrix $(h_{i,j})_{i,j=1}^g$, with $h_{i,j} = [x^{ip-j}]f(x)^{(p-1)/2}$

Corollary [B-Gaudry-Schost, 2007]: $\tilde{O}(\sqrt{p})$ hyperelliptic point counting / \mathbb{F}_p

Based on [Flajolet-Salvy, 1997]: $h = f^N$ satisfies the differential equation $fh' - Nf'h = 0$, thus its coefficient sequence is P-recursive.
(1) Show that if $P \in \mathbb{K}[x]$ has degree d, then the sequence $(P(n))_{n \geq 0}$ is C-recursive, and admits $(x - 1)^{d+1}$ as a characteristic polynomial.

Deduce that P can be evaluated at the $N \gg d$ points 1, 2, ..., N in $O(N M(d)/d)$ operations in \mathbb{K}.

(2) Let $P = \sum_{i=0}^{2N} p_i x^i \in \mathbb{Z}[X]$ be the polynomial $P(x) = (1 + x + x^2)^N$.

1. Show that the parity of all coefficients of P can be determined in $O(M(N))$ bit ops.
2. Show that P satisfies a linear differential equation of order 1 with polynomial coefficients.
3. Determine a linear recurrence of order 2 satisfied by the sequence $(p_i)_i$.
4. Give an algorithm that computes p_N in $\tilde{O}(N)$ bit ops.