
Padé and Hermite-Padé approximants

Alin Bostan

Specfun, Inria

MPRI C-2-22
October 26, 2020

Part 2 from the last homework

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

(a) Show that the parity of all coefficients of P can be determined in

O(M(N)) bit ops.

(b) Show that P satisfies a linear differential equation of order 1 with

polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

(d) Give an algorithm that computes pN in O(MZ(N logN) logN) bit ops.

Solution (a)

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

(a) Show that the parity of all coefficients of P can be determined in

O(M(N)) bit ops.

. n is even if and only if n = 0 in K := Z/2Z.

. It is sufficient to compute PN (x) := (1 + x+ x2)N in K[x]

. DAC algorithm based on PN (x) = PbN/2c(x)2 · (1 + x+ x2)N mod 2 in K[x]

. Cost recurrence: C(N) = C(N/2) + M(N/2) +O(N)

. Conclusion: C(N) = M(N) +O(N)

Solution (b), (c)

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

(b) Show that P satisfies a linear differential equation of order 1 with

polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (pi)i.

. Logarithmic derivative:
P ′(x)

P (x)
=
N (2x+ 1)

x2 + x+ 1

. P =
∑
i≥0

pix
i, P ′ =

∑
i≥0

(i+ 1)pi+1x
i, [xi](x2 +x+ 1)P ′−N(2x+ 1)P = 0

. (i− 1)pi−1 + ipi + (i+ 1)pi+1 = 2Npi−1 +Npi, for all i ≥ 0

. The recurrence satisfied by the sequence (pi) is

pi+1 =
1

i+ 1

(
(N − i)pi + (2N − i+ 1)pi−1

)
for i ≥ 0.

Solution (d)

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

(d) Give an algorithm that computes pN in O(MZ(N logN) logN) bit ops.

. The recurrence rewrites in matrix form: Fi = 1
i+1AiFi−1, where

Ai =

 N − i 2N − i+ 1

i+ 1 0

 and Fi =

 pi+1

pi

 .

. By unrolling it, we obtain the equality: Fi =
1

(i+ 1)!
A(i) · · ·A(1)

 N

1

 .

. To compute pN we determine FN by binary splitting on the integer

f = (N + 1)! and on the matrix B = A(N) · · ·A(1), followed by the

matrix-vector product v = B ×
(
N 1

)T
and an (exact) division 1

f v.

. The integer f , and the elements of B and v, have O(N log(N)) bits.

. Cost: O(MZ(N log(N)) log(N)) bit ops.

Bonus

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

Questions:

1. What is the total bitsize of P?

2. What is the bit complexity for computing P :

• using the algorithm in (a)?

• using the linear recurrence in (c)?

Bonus

Let P =
∑2N
i=0 pix

i ∈ Z[x] be the polynomial P (x) = (1 + x+ x2)N .

Questions:

1. What is the total bitsize of P? O(N2)

2. What is the bit complexity for computing P :

• using the algorithm in (a)? Õ(N2)

• using the linear recurrence in (c)? Õ(N2)

. Similar to

N∑
k=0

log

(
N

k

)
= (N + 1) logN !− 2

N∑
k=0

log k! ∼ N(N + 1)

2

by Stirling’s approximation log k! = k log k − k + 1
2 log k + log

√
2π + o(1).

. Without Stirling, by using AGM inequality only:

p0 · · · p2N ≤
(
p0 + · · ·+ p2N

2N + 1

)2N+1

=

(
3N

2N + 1

)2N+1

=⇒
∑
i

log(pi) = O(N2).

Resultants and Euclid’s algorithm

Back to the Homework:
computation with algebraic numbers

Let A =
∏
i

(x− αi) and B =
∏
j

(x− βj) be polynomials of K[x]. Then

A⊕B :=
∏
i,j

(t− (αi + βj)) is equal to Res x(A(x), B(t− x)).

Proof: By Poisson’s formula, Res (P,Q) = lc(P)degQ ·
∏
P (γ)=0Q(γ).

Thus, Res x(A(x), B(t− x)) =
∏
i

B(t− αi) =
∏
i,j

(t− αi − βj) = A⊕B.

. Algorithm and Complexity? If degA,degB ≤ d, then deg(A⊕B) ≤ d2.

Evaluation-interpolation on d2 + 1 points ti ∈ K, and d2 + 1 computations of

Res x(A(x), B(ti − x)), each in O(dθ). Total: O(dθ+2) ops.

. Upcoming: each Res x(A(x), B(ti − x)) in O(d2) [so, total in O(d4)], and

even in Õ(d) [so, total in Õ(d3)]. Not today: Total in Õ(d2) = quasi-optimal.

Systems of two equations and two unknowns

Geometrically, roots of a polynomial f ∈ Q[x] correspond to points on a line.

Roots of polynomials A ∈ Q[x, y] correspond to plane curves A = 0.

Let now A and B be in Q[x, y]. Then:

• either the curves A = 0 and B = 0 have a common component,

• or they intersect in a finite number of points.

Application: Resultants compute projections

Theorem. Let A = amy
m + · · · and B = bny

n + · · · be polynomials in Q[x][y].

The roots of Res y(A,B) ∈ Q[x] are either the abscissas of points in the

intersection A = B = 0, or common roots of am and bn.

Proof. Elimination property: Res y(A,B) = UA+ V B, for U, V ∈ Q[x, y].

Thus A(α, β) = B(α, β) = 0 implies Res y(A,B)(α) = 0

Conversely: if Res y(A,B)(α) = 0 and am(α) 6= 0, then Res y(A(α, y), B(α, y))

is equal to Res y(A,B)(α)=0, thus ∃β ∈ Q with A(α, β) = B(α, β) = 0.

Application: Resultants compute projections

Graphically, the degenerated roots of the second case (“common roots of am

and bn”) correspond to the presence of vertical asymptotes

. Example: taking A = x2y + x+ 1 and B = xy − 1, one has

Res y(A,B) = −x(2x+ 1) (asymptote in x = 0, true solution in x = − 1
2).

Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

x = A(t), y = B(t), A,B ∈ K(t),

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x−A(t) and y −B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

x =
4t(1− t2)2

(1 + t2)3
, y =

8t2(1− t2)

(1 + t2)3
,

Res t((1+t2)3x−4t(1−t2)2, (1+t2)3y−8t2(1−t2)) = 224
(
(x2 + y2)3 − 4x2y2

)
.

Euclidean-type algorithm for the resultant

• If A = QB +R, and R 6= 0, then (by Poisson’s formula)

Res (A,B) = (−1)degA degB lc(B)degA−degR Res (B,R).

• If B is constant, then Res (A,B) = B degA.

If (R0, . . . , R`−1, R` = gcd(A,B), 0) is the remainder sequence produced by the

Euclidean algorithm for R0 = A and R1 = B, then

• either degR` 6= 0, in which case Res (A,B) = 0,

• else: Res (A,B) = R
degR`−1

`

`−2∏
i=0

(−1)degRi degRi+1 lc(Ri+1)degRi−degRi+2 .

. This leads to a O(n2) algorithm for Res (A,B), where deg(A),deg(B) ≤ n.

. Divide-and-conquer O(M(n) log n) algorithms exist but require extra-work.

Euclidean algorithm

Euclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B.

1. R0 := A; R1 := B; i := 1.

2. While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri

i := i+ 1.

3. Return Ri−1.

. Termination: deg(B) > deg(R2) > deg(R3) > · · ·

. Correctness: gcd(A,B) = gcd(B,A mod B)

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K

Euclidean-type algorithm for the resultant

Res(A,B)

Input A and B in K[x].

Output The resultant Res(A,B).

1. R0 := A; R1 := B; r1 := 1; i := 1.

2. While deg(Ri) > 0, do:

Ri+1 := Ri−1 mod Ri

ri := (−1)deg(Ri−1) deg(Ri) · lc(Ri)
deg(Ri−1)−deg(Ri+1) · ri−1

i := i+ 1.

3. If Ri 6= 0, then return ri−1 ·Rdeg(Ri−1)
i . Else return 0.

. Termination: deg(B) > deg(R2) > deg(R3) > · · ·

. Correctness: In step 3, Ri is a constant. If Ri = 0, then Ri−1 = gcd(A,B)

has degree > 0, thus Res (A,B) = 0. If Ri 6= 0, then Ri = gcd(A,B).

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K

Padé approximants

Rational reconstruction

Let K be a field, A ∈ K[x] of degre n > 0 and B ∈ K[x] of degre < n.

For k ∈ {1, . . . , n}, the k-th rational reconstruction of B modulo A is

the problem of finding a pair (R, V) ∈ K[x]2 satisfying:

(RRk) gcd(V,A) = 1,
R

V
≡ B mod A, deg(R) < k, deg(V) ≤ n− k.

. Particular cases: Padé approximation for A = xn, and Cauchy (rational)

interpolation for A =
∏
i(x− ui) where u1, . . . , un ∈ K mutually distinct.

. Remarks:

• If k = n, then (R, V) = (B, 1) is a solution of (RRk)

• If k < n, (RRk) may have no solution! E.g., A = x3, B = x2 + 1, k = 2

• If (RRk) admits a solution (R, V), then R/V is unique:

if (R1, V1) ∈ K[x]2 another solution, then A︸︷︷︸
degn

divides R1V − V1R︸ ︷︷ ︸
deg<n

A simpler problem

Let K be a field, A ∈ K[x] of degre n > 0 and B ∈ K[x] of degre < n.

For k ∈ {1, . . . , n}, the k-th simplified rational reconstruction of B modulo A is

the problem of finding a pair (R, V) ∈ K[x]2 satisfying:

(SRRk) R ≡ V B mod A, deg(R) < k, deg(V) ≤ n− k.

. Remarks:

• (SRRk) always admits a non-trivial solution!

Indeed, (SRRk) is equivalent to a homogeneous linear algebra problem

with n equations and k + (n− k + 1) = n+ 1 unknowns O(nθ)

• If (SRRk) admits a solution (R, V), then R/V is unique:

if (R1, V1) ∈ K[x]2 another solution, then A︸︷︷︸
degn

divides R1V − V1R︸ ︷︷ ︸
deg<n

Teasers

. One can solve (SRRk) using the Extended Euclidean Algorithm O(n2)

. One can deduce a decision/computation procedure for (RRk) O(n2)

. Intuition of the link with the gcd:

R ≡ V B mod A iff ∃U, s.t. UA+ V B = R

. The case k = 1:

• If gcd(A,B) = 1 then R = UA+ V B for R = 1 and deg V < degA = n

• If gcd(A,B) 6= 1 then R = V B mod A for R = 0 and V = lcm(A,B)/B

Extended Euclidean Algorithm

EEA(A,B)

Input A and B in K[x].

Output A gcd G of A and B, and cofactors U and V .

1. R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi; Vi+1 := Vi−1 −QiVi
(c) i := i+ 1

3. Return
(
Ri−1, Ui−1, Vi−1

)
.

. Correctness: Ri = UiA+ ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1A+ Vi−1B −Qi(UiA+ ViB) = Ui+1A+ Vi+1B

. Quadratic complexity: O
(

deg(A) deg(B)
)

operations in K

Extended Euclidean Algorithm: properties

. Matrix reformulation: Ui Vi

Ui+1 Vi+1

 =

 0 1

1 −Qi

×
 Ui−1 Vi−1

Ui Vi

. Consequences:

(1) UiVi+1 − ViUi+1 = (−1)i

(2) gcd(Ui, Vi) = 1

(3) gcd(Ri, Vi) = gcd(A, Vi)

. Degrees of cofactors: If n0 = n = deg(A) > n1 = deg(B) > n2 > . . . > n` are

the degrees of Ri in EEA(A,B), then deg(Vi) = n− ni−1 for all i ≥ 1

Proof by complete induction: since deg(Vk−1) = n− nk−2 < n− nk−1 = deg(Vk),

deg(Vk+1) = deg(QkVk) = deg(Qk) + deg(Vk) = (nk−1 − nk) + (n− nk−1) = n− nk

Main result for Rational Reconstruction

Theorem: Let A ∈ K[x] have degree n > 0 and let B ∈ K[x] have degree < n.

Let k ∈ {1, 2, . . . , n} and let Rj , Uj , Vj be the jth row in EEA(A,B), where

j is minimal s.t. deg(Rj) < k. Then:

(1) (Rj , Vj) is a nontrivial solution of (SRRk).

If moreover gcd(Rj , Vj) = 1, then (Rj , Vj) also solves (RRk).

(2) If (RRk) admits a solution, then gcd(Rj , Vj) = 1.

Precisely, if R/V ∈ K(x) is an irreducible form of the solution of (RRk),

then ∃α ∈ K \ {0} s.t. R = αRj and V = αVj .

In summary: (RRk) admits a solution iff gcd(Rj , Vj) = 1 iff gcd(A, Vj) = 1.

Proof of (1)

Let us prove that (Rj , Vj) is a nontrivial solution of (SRRk):

• Rj = UjA+ VjB ≡ VjB mod A

• degRj < k (by assumption)

• deg Vj = n− degRj−1 ≤ n− k (by minimality of j s.t. deg(Rj) < k)

If moreover 1 = gcd(Rj , Vj) = gcd(A, Vj), then (Rj , Vj) also solves (RRk).

Proof of (2)

Assume (R, V) is a solution of (RRk). Then:

(a) R = UA+ V B for a certain U ∈ K[x]

(b) UjV = UVj : otherwise, the system
(

Uj Vj

U V

)
×
(

A

B

)
=

(
Rj

R

)
is

of Cramer-type, and thus A =

∣∣∣∣∣ Rj Vj

R V

∣∣∣∣∣/
∣∣∣∣∣ Uj Vj

U V

∣∣∣∣∣, satisfies:

deg(A) ≤ deg(RjV−RVj) ≤ max{k−1+deg(V),deg(R)+n−deg(Rj−1)}

≤ max{k − 1 + (n− k), (k − 1) + n− k)} = n− 1.

(c) Vj divides UjV , and thus V . Write V = αVj , for α ∈ K[x]. Then,

U = αUj and R = UA+ V B = α(UjA+ VjB) = αRj .

(d) α ∈ K \ {0}, since gcd(R, V) = 1

Algorithm for Rational Reconstruction

RR(A,B, k)

Input A, B in K[x] with degB < degA = n and k ∈ {1, . . . , n}

Output A solution (R, V) of (RRk), or FAIL if no solution

1. R0 := A; V0 := 0; R1 := B; V1 := 1; i := 1.

2. While degRi ≥ k, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Vi+1 := Vi−1 −QiVi
(c) i := i+ 1

3. If gcd(A, Vi) = 1 then return (Ri, Vi); else return FAIL.

. Correctness: Previous result.

. Quadratic complexity: O
(

deg(A) deg(B)
)

= O(n2) operations in K

. There exist quasi-linear time algorithms O(M(n) log n)

Algorithm for Padé approximation

Pade(B,n, k): for computing an approximant of type (k− 1, n− k)

Input B in K[x] with degB < n and k ∈ {1, . . . , n}

Output (R, V) s.t. R/V = B mod xn, degR < k,deg V ≤ n− k, or FAIL

1. R0 := xn; V0 := 0; R1 := B; V1 := 1; i := 1.

2. While degRi ≥ k, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Vi+1 := Vi−1 −QiVi
(c) i := i+ 1

3. If Vi(0) 6= 0 then return (Ri, Vi); else return FAIL.

. Quadratic complexity: O(n2) operations in K

. There exist quasi-linear time algorithms O(M(n) log n)

First exercise for next time (2/11/2020)

Show, using the previous algorithm, that there is no Padé approximant of

type (1, 1) for 1 + x2, i.e. no pair (R, V) of polynomials of degree at most 1

such that V (0) 6= 0 and
R

V
= 1 + x2 mod x3.

Algorithm for Cauchy interpolation

Cauchy(u,v, k)

Input u1, . . . , un ∈ K mutually distinct, v1, . . . , vn ∈ K, and k ∈ {1, . . . , n}

Output R
V s.t. R

V (ui) = vi for all i, degR < k,deg V ≤ n− k, or FAIL

1. A :=
∏
i(x− ui) and B s.t. B(ui) = vi for all i, degB < n.

2. R0 := A; V0 := 0; R1 := B; V1 := 1; i := 1.

3. While degRi ≥ k, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Vi+1 := Vi−1 −QiVi
(c) i := i+ 1

4. If Vi(uj) 6= 0 for all j, then return (Ri, Vi); else return FAIL.

. Quadratic complexity: O(n2) operations in K

. There exist quasi-linear time algorithms O(M(n) log n)

Guessing: what’s the next term of the sequence?

• 1, 1, 1, 1, 1

• 1, 1, 2, 3, 5

• 1, 1, 2, 5, 14

• 1, 2, 9, 54, 378

• 1, 2, 16, 192, 2816

• 1, 3, 30, 420, 6930

Guessing: what’s the next term of the sequence?

• 1, 1, 1, 1, 1 1

• 1, 1, 2, 3, 5 8

• 1, 1, 2, 5, 14 42

• 1, 2, 9, 54, 378 2916

• 1, 2, 16, 192, 2816 46592

• 1, 3, 30, 420, 6930 126126

Guessing: what’s the next term of the sequence?

• 1, 1, 1, 1, 1 1/(1− t)

• 1, 1, 2, 3, 5 1/(1− t− t2)

• 1, 1, 2, 5, 14 (1−
√

1− 4t)/(2t)

• 1, 2, 9, 54, 378 27 t2T 2 + (1− 18 t)T + 16 t− 1

• 1, 2, 16, 192, 2816 64 t2 T 3 + 16 t T 2 + (1− 72 t)T + 54 t− 1

• 1, 3, 30, 420, 6930
(
27 t2 − t

)
y′′ (t) + (54 t− 2) y′ (t) + 6 y (t)

. Automated guessing: algorithmic computation of these equations

Berlekamp-Massey algorithm

—guessing linear recurrences with constant coefficients—

Linear recurrences with constant coefficients

Def. (an)n≥0 is a linearly recurrent sequence with constant coefficients

(l.r.s.c.c., or C-recursive) if ∃f0, . . . , fd ∈ K not all zero, s.t.

fdan+d + · · ·+ f0an = 0, for all n ≥ 0.

. f(x) = fdx
d + · · ·+ f0 is called a characteristic polynomial of (an)n≥0.

. The minimal polynomial of (an)n≥0, denoted MinPol(an) is the monic,

minimal degree, characteristic polynomial of (an)n≥0.

. Computing MinPol(an) is equivalent to solving the Padé approximation pb:

R

V
≡ A mod x2N , x 6 | V, deg(R) < N, deg(V) ≤ N and gcd(R, V) = 1,

where deg MinPol(an) ≤ N and A = a0 + a1x+ a2x
2 + · · ·+ a2N−1x

2N−1.

Recall: duality lemma

Duality lemma (link between l.r.s.c.c. and rational functions)

Let A(x) =
∑
n≥0 anx

n ∈ K[[x]] be the generating function of (an)n≥0.

The following assertions are equivalent:

(i) (an) is a l.r.s.c.c., having P as characteristic polynomial of degree d.

(ii) A(x) is rational, of the form A = Q/revd(P) for some Q ∈ K[x]<d, where

revd(P) = P (1
x)xd.

Moreover, if P is the minimal polynomial of (an)n≥0, then

d = max{1 + deg(Q),deg(revd(P))} and gcd(Q, revd(P)) = 1.

. E.g., the generating function of the Fibonacci sequence (Fn)n≥0 given by

F0 = F1 = 1, Fn+2 = Fn+1 +Fn is 1/(1− x− x2). Here P = x2−x− 1, Q = 1.

Berlekamp-Massey algorithm

Input A bound N ∈ N on the degree of the minimal polynomial of (an)n≥0

and the first 2N terms a0, . . . , a2N−1 ∈ K.

Output the minimal polynomial of (an)n≥0.

(1) A = a0 + a1x+ · · ·+ a2N−1x
2N−1.

(2) Compute the solution (R, V) ∈ K[x]2 of Pade(A, 2N,N) s.t. V (0) = 1.

(3) d = max{1 + deg(R),deg(V)}. Return revd(V) = V (1/x)xd.

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) logN)

Berlekamp-Massey algorithm, a variant

Input A bound N ∈ N on the degree of the minimal polynomial of (an)n≥0

and the first 2N terms a0, . . . , a2N−1 ∈ K.

Output the minimal polynomial of (an)n≥0.

1. R0 := x2N ; V0 := 0; R1 := a2N−1 + · · ·+ a0x
2N−1; V1 := 1; i := 1.

2. While degRi ≥ N , do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Vi+1 := Vi−1 −QiVi
(c) i := i+ 1

3. Return Vi/lc(Vi).

. Quadratic complexity: O(N2) operations in K

. There exist quasi-linear time algorithms O(M(N) logN)

Wiedemann’s algorithm

—solving sparse matrices—

Sparse matrices

Def. A matrix M ∈Mn(K) is called sparse if it has s� n2 nonzero entries.

. Typically: s ≈ n

. Cost of matrix-vector product Mv, for v ∈ Kn, is c(M) = O(s) ops. in K.

. Applications: web ranking, integer factorization, discrete logarithm

Algorithms for sparse matrices

Def. A matrix M ∈Mn(K) is called sparse if it has s� n2 nonzero entries.

. Algorithmic questions for sparse matrices

• solving linear systems My = b (b ∈ Kn)

• computing determinant det(M), rank rk(M), etc.

• computing characteristic polynomial χM (x), minimal polynomial µM (x)

. Answers: probabilistic algorithms of complexity O(ns+ n2), or Õ(ns+ n2)

. Roughly speaking, “ωsparse = 2”

Wiedemann’s algorithm for solving sparse linear systems

. solving My = b reduces to computing an annihilating polynomial µv:

if µv =
∑d
j=0mjx

j is the minimal polynomial of the vector sequence

v = (M ib)i≥0, i.e. the minimal degree polynomial s.t.
∑d
j=0mjM

jb = 0, then

(1) µv divides µM (since µM annihilates v)

(2) thus µv also divides χM , and in particular d ≤ n
(3) if M is invertible, then m0 6= 0 (since χM (0) = det(M) 6= 0)

(4) sol. y=M−1b= −
(
m1
m0
b+ · · ·+ md

m0
Md−1b

)
in O(d(c(M)+ n))=O(ns+ n2)

. computing µv reduces (probabilistically) to computing MinPol((uT ·M i · b)i)
for a randomly chosen vector u ∈ Kn:

(1) (ai)i = (uT ·M i · b)i is a l.r.s.c.c.

(2) its minimal polynomial µa = MinPol((ai)i) has degree at most n

(3) µa divides µv; in addition, they coincide with good probability

(4) µa can be computed from a0, . . . , a2n−1 in O(n2) by Berlekamp-Massey algo

(5) a0, . . . , a2n−1 can be computed in O(n(c(M)+ n))=O(ns+ n2)

Wiedemann’s algorithm for solving sparse linear systems

Input A sparse invertible matrix M ∈Mn(K) and b ∈ Kn.
Output The solution y ∈ Kn of the linear system My = b.

(1) Compute µv =MinPol((M ib)i≥0), as below.

(2) Compute h = −µv−µv(0)
µv(0)x

∈ K[x] and return y = h(M)b.

Input A sparse matrix M ∈Mn(K) and b ∈ Kn.

Output The minimal polynomial of the vector sequence v = (M ib)i≥0.

(1) If b = 0, then return 1.

(2) Choose U ⊆ K a finite subset of cardinal ≥ 2n.

(3) Choose u ∈ Un uniformly at random; compute ai = uT vi for 0 ≤ i < 2n.

(4) Compute the minimal polynomial µa of the l.r.s.c.c. (ai)i.

(5) If µa(M)b = 0 in Kn, return µa; else go back to (3).

. Randomized algorithm; expected complexity O(nc(M) + n2) if |K| ≥ 2n.

. Probability(µa = µv) ≥ 1− n
|U | , thus 2 expected iterations if |K| ≥ 2n.

Probability of success in Wiedemann’s algorithm

Let P be Probability
(
MinPol((uTM ib)i≥0) = f

)
, where f = MinPol

(
(M ib)i≥0

)
(1) The map ψ : Kn → A = K[x]/(f) defined by ψ(u) :=

∑n−1
i=0 (uT ·M i · b)xi

is K-linear, surjective and such that

f is the minpoly of (uT ·M i · b)i≥0 ⇐⇒ ψ(u) is invertible in A.

(2) R(y1, . . . , yn) := Resx(y1ψ(e1) + · · ·+ ynψ(en), f(x)) ∈ K[y1, . . . , yn] \ {0}
has total degree at most d := deg(f) and for all u = (u1, . . . , un)T ∈ Kn,

ψ(u) is invertible in A ⇐⇒ R(u1, . . . , un) 6= 0.

(3) R admits at most deg(R) · |U |n−1 ≤ d · |U |n−1 roots Un.

(4) Probability that an element in Un is a root of R is at most d/|U |.

(5) P ≥ 1− d

|U |
.

A second exercise for next time (2/11/2020)

Let K = F5 be the finite field with 5 elements, let M ∈M3(K) and b ∈ K3 be

M =

1 4 4

4 0 3

1 2 4

 , b =

3

1

2

 .

We want to find y ∈ K3 such that My = b, by using Wiedemann’s algorithm.

1. For the choice u = (1, 0, 0)T , show that the algorithm computes the

sequence (3, 0, 4, 2, 3, 0, . . .), then its minimal polynomial x2 + 2x+ 2, and

that it eventually rejects this choice of u.

2. Apply the algorithm for the choice u = (1, 2, 0)T , and deduce that the

minimal polynomial of (M ib)i≥0 equals x3 + 3x+ 1.

3. Determine the solution y by using this minimal polynomial.

Hermite-Padé approximants

Definition of Hermite-Padé approximants

Definition: Given a column vector F = (f1, . . . , fn)T ∈ K[[x]]n and an n-tuple

d = (d1, . . . , dn) ∈ Nn, a Hermite-Padé approximant of type d for F is a row

vector P = (P1, . . . , Pn) ∈ K[x]n, (P 6= 0), such that:

(1) P · F = P1f1 + · · ·+ Pnfn = O(xσ) with σ =
∑
i(di + 1)− 1,

(2) deg(Pi) ≤ di for all i.

σ is called the order of the approximant P.

. Very useful concept in number theory (irrationality/transcendence):

• [Hermite, 1873]: e is transcendent.

• [Lindemann, 1882]: π is transcendent; so does eα for any α ∈ Q \ {0}.

• [Apéry, 1978; Beukers, 1981]: ζ(3) =
∑
n≥1

1
n3 is irrational.

• [Rivoal, 2000]: there exist infinite values of k such that ζ(2k + 1) /∈ Q.

[Padé, 1894]

