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Part 2 from the last homework

Let P = Y2" piz’ € Z[z] be the polynomial P(z) = (1 + z + z2)V.

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

(b) Show that P satisfies a linear differential equation of order 1 with
polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

(d) Give an algorithm that computes py in O(Mz(N log N)log N) bit ops.



Solution (a)

Let P = ZZ o Piz’ € Z]x] be the polynomial P(z) = (1 4+ x + z?)V

(a) Show that the parity of all coefficients of P can be determined in
O(M(N)) bit ops.

> n is even if and only if n =0 in K := Z/2Z.

> It is sufficient to compute Py (z) := (1 + 2 + 22)" in K[x]

> DAC algorithm based on Py (z) = P|yy2)(2)? - (1 4+ + 2?) ™42 in K[z]
> Cost recurrence: C(N) = C(N/2) + M(N/2) + O(N)

> Conclusion: C(N) = M(N) + O(N)



Solution (b), (c)

Let P = ZZ o Piz' € Z]x] be the polynomial P(z) = (1 4+ x + z*)V

(b) Show that P satisfies a linear differential equation of order 1 with

polynomial coefficients.

(c) Determine a linear recurrence of order 2 satisfied by the sequence (p;);.

P'(x) N@Qx+1)
P(z) z22+xz+1

> Logarithmic derivative:

o P =Y pat, P'=3(i+pins’, [ +a+ )P - NQRo+1)P =0
i>0 i>0

> (Z — 1)]%’—1 + ipz- + (Z + 1)pz~+1 = 2Np7;_1 + sz', for all 2 > 0

> The recurrence satisfied by the sequence (p;) is

1

1 ((N —i)p; + (2N —i + 1)])@-_1) for i3> 0.

Pi+1 =



Solution (d)

Let P = Z —, pix' € Z[z] be the polynomial P(z) = (1 + z + %)V
(d) Give an algorithm that computes py in O(Mz(N log N)log N) bit ops.

> The recurrence rewrites in matrix form: F; = 1 —=A;F;_1, where
N—1 2N —1+1 ;
A = and F, = [ P
1+ 1 0 Di
o . . 1 . N
> By unrolling it, we obtain the equality: F; = (i1 1) A(i)--- A1)
1 ! 1

> To compute py we determine Fy by binary splitting on the integer
f = (N +1)! and on the matrix B = A(N)--- A(1), followed by the

1
f’U.

> The integer f, and the elements of B and v, have O(N log(NN)) bits.
> Cost: O(Mz(N log(N))log(N)) bit ops.

T
matrix-vector product v = B X ( N 1 ) and an (exact) division



Bonus

Let P = >2" piz’ € Z[z] be the polynomial P(z) = (1 + = + z2)V.

Questions:
1. What is the total bitsize of P?
2. What is the bit complexity for computing P:
e using the algorithm in (a)?

e using the linear recurrence in (c)?



Bonus

Let P = Zz Opzzc € Z[x] be the polynomial P(z) = (1 +x + 2?)"

Questions:
1. What is the total bitsize of P? O(N?)
2. What is the bit complexity for computing P:
e using the algorithm in (a)? O(N?)
e using the linear recurrence in (c)? O(N?)

> Similar to

N(N +1
Zlog( ) N—|—1)logN'—QZlogk' W+ 1)

2
k=0

by Stirling’s approximation log k! = klog k — k + % log k + log /27 + o(1).
> Without Stirling, by using AGM inequality only:

2N+1 N 2N+1
+ot 3
-y < (BEUEE) T (B S sl = OV

2N +1 2N +1



Resultants and Euclid’s algorithm



Back to the Homework:
computation with algebraic numbers

Let A = H(m — ;) and B = H(:C — ;) be polynomials of K[z]. Then
' J

A® B := H (o; + B35)) is equal to Res ,(A(x), B(t — x)).

Proof: By Poisson’s formula, Res (P, Q) = Ic(P)de® . [p)=0 QM)

Thus, Res . (A(x), B(t — x)) HB t— ;) —H(t—o@—ﬁj):A@B.

2%}

> Algorithm and Complexity? If deg A, deg B < d, then deg(A @ B) < d>.
Evaluation-interpolation on d? 4+ 1 points t; € K, and d? + 1 computations of
Res . (A(z), B(t; — x)), each in O(d?). Total: O(d’*2) ops.

> Upcoming: each Res,(A(z), B(t; — x)) in O(d?) [so, total in O(d*)], and

~

even in O(d) [so, total in O(d*)]. Not today: Total in O(d?) = quasi-optimal.



Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q|x] correspond to points on a line.

Roots of polynomials A € Q[z, y] correspond to plane curves A = 0.

Let now A and B be in Q|x,y]. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.



Application: Resultants compute projections

Theorem. Let A = a,,y"™ +--- and B = b,y" + --- be polynomials in Q|z][y].
The roots of Res (A, B) € Q[z] are either the abscissas of points in the
intersection A = B = 0, or common roots of a,, and b,,.

e /
:II"'-.
| | Y | | |

Proof. Elimination property: Res, (A, B) =UA+ VB, for U,V € Qz,y].
Thus A(a, ) = B(a, ) =0 implies Res, (A4, B)(a) =0

Conversely: if Res (A, B)(«) = 0 and a,,(a) # 0, then Res, (A(e,y), B(a,y))
is equal to Res, (4, B)(a)=0, thus 38 € Q with A(a,8) = B(a, ) = 0.



Application: Resultants compute projections

Graphically, the degenerated roots of the second case (“common roots of a,

and b,,”) correspond to the presence of vertical asymptotes

> Example: taking A = 2%y +x + 1 and B = 2y — 1, one has

).

N

Res, (A, B) = —z(2z + 1) (asymptote in « = 0, true solution in z = —
-

3_




Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(?).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

A1 —t?)? 8t (1 —t?)
T At T AT e)p

Res ((1+t%)%z —4t(1—2)2, (14+¢)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .



Euclidean-type algorithm for the resultant

o If A=QB+ R, and R # 0, then (by Poisson’s formula)
Res (A, B) = (—1)deeAdee B |c(p)dee A—dee B Ras (B R).

o If B is constant, then Res (A4, B) = Bd&4,

If (Ro,...,R¢_1, Ry =gcd(A, B),0) is the remainder sequence produced by the
Fuclidean algorithm for Ry = A and Ry = B, then

e cither deg R, # 0, in which case Res (A4, B) = 0,
-2

o clse: Res (A,B) _ Rﬁdeg Ro—1 H(_l)deg R;deg Rit+1 |C(Ri+1)deg R;—deg Rit2
1=0

> This leads to a O(n?) algorithm for Res (A, B), where deg(A), deg(B) < n.

> Divide-and-conquer O(M(n)logn) algorithms exist but require extra-work.



Euclidean algorithm

Euclid(A, B)

Input A and B in K|z].
Output A gcd G of A and B.
1. Ry .= A; Ry :=B;1:=1.

2. While R; is non-zero, do:
R;+q1 := R;—1 mod R;
1:=1+ 1.

3. Return R;_;.

> Termination: deg(B) > deg(R2) > deg(R3) > - --
> Correctness: gced(A, B) = ged(B, A mod B)
> Quadratic complexity: O( deg(A) deg(B)) operations in K



Euclidean-type algorithm for the resultant
Res(A, B)

Input A and B in K[x].
Output The resultant Res(A, B).
1. Rp = A; Ry:=B;r;:=1;1:=1.

2. While deg(R;) > 0, do:
R7;+1 = Rz’—l mod RZ

r; = (—1)dee(Ri1) deg(Ri) ¢( R, )dea(Ri1)—deg(Rit1) . . |

1 =1+ 1.

3. If R; # 0, then return r;_1 - RrAeeEi-1) plse return 0.

1

> Termination: deg(B) > deg(Rz2) > deg(Rs3) > - --

> Correctness: In step 3, R; is a constant. If R; =0, then R; 1 = gcd(A, B)
has degree > 0, thus Res (A, B) = 0. If R; # 0, then R; = gcd(A, B).

> Quadratic complexity: O( deg(A) deg(B)) operations in K



Padé approximants



Rational reconstruction

Let K be a field, A € K[x| of degre n > 0 and B € K|z] of degre < n.

For k € {1,...,n}, the k-th rational reconstruction of B modulo A is
the problem of finding a pair (R, V) € K[z]? satisfying:
R

(RRi) gcd(V,A) =1, v = B mod A, deg(R) <k, deg(V)<n-—Ek.

> Particular cases: Padé approximation for A = 2™, and Cauchy (rational)
interpolation for A = [].(x — ;) where u;,...,u, € K mutually distinct.

> Remarks:
e If Kk =mn, then (R,V) = (B,1) is a solution of (RRy)
o If k < n, (RR;) may have no solution! E.g., A=2%,B=2?+1,k =2

e If (RRg) admits a solution (R, V'), then R/V is unique:
if (Ry,V1) € K[z]? another solution, then A divides RV -WViR

7

~~

degn deg<n



A simpler problem

Let K be a field, A € K[z] of degre n > 0 and B € K|[z] of degre < n.
For k € {1,...,n}, the k-th simplified rational reconstruction of B modulo A is

the problem of finding a pair (R, V) € K[z]? satisfying:

(SRRg) R=VBmod A, deg(R)<k, deg(V)<n-—Ek.

> Remarks:

e (SRRy) always admits a non-trivial solution!
Indeed, (SRRg) is equivalent to a homogeneous linear algebra problem

with n equations and k + (n — k + 1) = n + 1 unknowns O(n?)

e If (SRR;) admits a solution (R, V'), then R/V is unique:
if (R1,V1) € K[z]? another solution, then A divides RV -WViR

~~

degn deg<n




Teasers

> One can solve (SRRy) using the Extended Euclidean Algorithm O(n?)

> One can deduce a decision/computation procedure for (RRg) O(n?)

> Intuition of the link with the ged:

R=VBmodA if U, st. UA+VB=R

> The case k = 1:
o If gcd(A,B)=1then R=UA+VB for R=1and degV <degA=n
o If gcd(A,B) # 1then R=VBmod A for R=0andV =Ilcm(A,B)/B



Extended Euclidean Algorithm

EEA(A, B)

Input A and B in K|z].

Output A gcd G of A and B, and cofactors U and V.
1. Ry =A;Uy:=1;Vy:=0; Ry =B; Uy =0, V], :=1;1:=1.
2. While R; is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(R;_1, R;) #R,_1 = Q:Ri + R
(b) Uit1 :=U;—1 — QiUs; Vig1 =V — Q5
(c) i:=i+1

3. Return (Ri—la Uq;_l, ‘/z'—l) .

> Correctness: R; = U; A+ V;B (by induction):
Ri1=Ri1—-QR, =U_1A+V,_1B-Q;(UA+V,B)=U; 1A+ V,;1B

> Quadratic complexity: O(deg(A) deg(B)) operations in K



Extended Euclidean Algorithm: properties

> Matrix reformulation:

u, Vi 0 1 Ui—1 Vi
U1 Vigr I —Q; Ui Vi

> Consequences:

(1) UiVigr = Vilipa = (1)
(2) ged(Us, Vi) =1

(3) ged(R;, Vi) = ged(A, Vi)

> Degrees of cofactors: If ng =n = deg(A) > n; =deg(B) > ny > ... > ny are
the degrees of R; in EEA(A, B), then deg(V;) =n —n,;_q forall ¢ > 1

Proof by complete induction:  since deg(Vik—1) =n — ng—2 <n —ng—1 = deg(Vx),
deg(Vi+1) = deg(Qr Vi) = deg(Qk) + deg(Vi) = (nk—1 — nk) + (0 —ng—1) =n — ny



Main result for Rational Reconstruction

Theorem: Let A € K[x]| have degree n > 0 and let B € K|z] have degree < n.
Let k€ {1,2,...,n} and let R;,U;,V; be the jth row in EEA(A, B), where
J is minimal s.t. deg(R;) < k. Then:

(1) (R;,V;) is a nontrivial solution of (SRRg).
If moreover gcd(R;, V;) =1, then (R, V;) also solves (RR).

(2) If (RRg) admits a solution, then ged(R;,V;) = 1.
Precisely, if R/V € K(x) is an irreducible form of the solution of (RRy),
then 3o € K\ {0} s.t. R=aR; and V = aVj.

In summary: (RRy) admits a solution iff gcd(R;,V;) =1 iff ged(A, V) = 1.



Proof of (1)

Let us prove that (R;,V;) is a nontrivial solution of (SRRy):

e« R =U;A+V;B=V;B mod A

o deg R; < k (by assumption)

o degV; =n—degR;_1 <n — k (by minimality of j s.t. deg(R;) < k)

If moreover 1 = ged(R;,V;) = ged(A,V;), then (R;,V;) also solves (RRy).



Proof of (2)

Assume (R, V) is a solution of (RRg). Then:
(a) R=UA+ VB for a certain U € K|[z]

(b) U;V = UV;: otherwise, the system ( J ) < 4 ):( i ) is
V;

/

Ui Vj
U Vv

of Cramer-type, and thus 4 = ‘ By Y , satisfies:

R |4

deg(A) < deg(R;V—RV;) < max{k—1+deg(V), deg(R)+n—deg(R;_

<max{k—14+n—%k),(k—1)+n—-k)} =n—1.
(c) V; divides U;V, and thus V. Write V' = oV, for a € K[z]. Then,
U=aU;and R=UA+VB=a(U;A+V,;B) = aR;.
(d) oo € K\ {0}, since ged(R,V) =1

1)}



Algorithm for Rational Reconstruction

RR(A, B, k)

Input A, B in K[z| with deg B <degA=nand k € {1,...,n}
Output A solution (R, V) of (RRy), or FAIL if no solution

1. Rp = A; V=0, Ry =B; V; :=1;1:=1.

2. While deg R; > k, do:

(a) (Qi, Rix1) := QuotRem(R;_1, R;) #R;,_1 = QR + Rit1
(b) Vig1 :=Vie1 — Q;V;
(¢) i:=i+1

3. If gcd(A,V;) =1 then return (R;, V;); else return FAIL.

> Correctness: Previous result.
> Quadratic complexity: O( deg(A)deg(B)) = O(n?) operations in K

> There exist quasi-linear time algorithms O(M(n)logn)



Algorithm for Padé approximation

Pade(B, n, k): for computing an approximant of type (k —1,n — k)

Input B in K|z] with deg B < n and k € {1,...,n}

Output (R,V) s.t. R/V = Bmod 2", deg R < k,degV < n — k, or FAIL
1. Rp:=2™; Vo :=0;, Ry .=B; V; :=1;1:= 1.
2. While deg R; > k, do:

(a) (Qi, Ri+1) == QuotRem(R;_1, R;) #R,_1 = Q:Ri + R
(b) Vig1 :=Vie1 — QiVi
(¢) i:=1i+1

3. If V;(0) # 0 then return (R;, V;); else return FAIL.

> Quadratic complexity: O(n?) operations in K

> There exist quasi-linear time algorithms O(M(n)logn)



First exercise for next time (2/11/2020)

Show, using the previous algorithm, that there is no Padé approximant of

type (1,1) for 1 + x2, i.e. no pair (R, V) of polynomials of degree at most 1

R
such that V(0) # 0 and v 1 + 22 mod z°.



Algorithm for Cauchy interpolation

Cauchy(u, v, k)

Input wuq,...,u, € K mutually distinct, v1,...,v, € K, and k € {1,...,n}
Output é s.t. %(uz) =v; for all 7, deg R < k,degV < n — k, or FAIL

1. A:=][,(x —u;) and B s.t. B(u;) =v; for all ¢, deg B < n.

2. Ry = A; V=0, Ry . =B; V; .=1;41:=1.

3. While deg R; > k, do:

(a) (Q’w Rz‘—i—l) = QuotRem(Ri_l, Rz) #Rz’—l — Qsz -+ Ri—l—l
(b) Vig1 :=Vie1 — QiV;
(c) 1:=i+1

4. If Vi(u;) # 0 for all j, then return (R;, V;); else return FAIL.

> Quadratic complexity: O(n?) operations in K

> There exist quasi-linear time algorithms O(M(n)logn)



Guessing: what's the next term of the sequence?

9, 54, 378

16, 192, 2816

30, 420, 6930



Guessing: what's the next term of the sequence?

9, 54, 378

16, 192, 2816

30, 420, 6930

42

2916

46592

126126



o 1,

Guessing: what's the next term of the sequence?

3,

9, 54, 378

16, 192, 2816

30, 420, 6930

1/(1—1)

1/(1—t—1t?)

(1—1—4t)/(2t)

271%T? + (1 —184) T + 16t — 1

64t2T° +16tT? + (1 —72¢) T + 54t — 1

(2782 —t)y" (t) + (54t —2)y (t) + 6y (?)

> Automated guessing: algorithmic computation of these equations



Berlekamp-Massey algorithm

——guessing linear recurrences with constant coefficients—



Linear recurrences with constant coefficients

Def. (an)n>0 is a linearly recurrent sequence with constant coefficients
(Lr.s.c.c., or C-recursive) if 3fq, ..., fq4 € K not all zero, s.t.

fatniq+ -+ foan, =0, forall n>0.

> f(x) = fax? + -+ fo is called a characteristic polynomial of (as)n>0-

> The minimal polynomial of (ay),>0, denoted MinPol(a,,) is the monic,

minimal degree, characteristic polynomial of (ay)n>0.

> Computing MinPol(a,,) is equivalent to solving the Padé approximation pb:

g = Amod 2", =z} V, deg(R) < N, deg(V) < N and gcd(R,V) =1,

where deg MinPol(a,) < N and A = ag + a1x + ax? + -+ - + aoy_ 122V 1.



Recall: duality lemma

Duality lemma (link between Lr.s.c.c. and rational functions)
Let A(z) = ), 50 anz™ € K|[z]] be the generating function of (an)n>0-

The following assertions are equivalent:
(i) (an) is a Lr.s.c.c., having P as characteristic polynomial of degree d.

(ii) A(x) is rational, of the form A = @Q/revy(P) for some Q € K|x|.4, where
revg(P) = P(2)z.

Moreover, if P is the minimal polynomial of (a)n>0, then

d = max{1l + deg(Q), deg(revy(P))} and gecd(Q,revy(P)) = 1.

> E.g., the generating function of the Fibonacci sequence (F),),,>o given by
Fo=F =1,F,,0=F, .1 +F,is1/(1—2—2%). Haee P=2a2%*—-2—-1,Q = 1.



Berlekamp-Massey algorithm

Input A bound N € N on the degree of the minimal polynomial of (ay)n>0
and the first 2N terms ag,...,aon_1 € K.

Output the minimal polynomial of (ay)n>0.

(1) A=ap+aix+ - +agn_12*N 71

(2) Compute the solution (R,V) € K[z]? of Pade(A4,2N,N) s.t. V(0) = 1.
(3) d = max{1 + deg(R),deg(V)}. Return revg(V) = V(1/x)x?.

> Quadratic complexity: O(N?) operations in K

> There exist quasi-linear time algorithms O(M(N)log N)




Berlekamp-Massey algorithm, a variant

Input A bound N € N on the degree of the minimal polynomial of (a,)n>0
and the first 2N terms ag,...,aon_1 € K.

Output the minimal polynomial of (ay)n>0.
1. RO = £U2N; VO = O; Rl = QoN_1+ "+ aonN_l; Vl = 1; 1= 1.

2. While deg R; > N, do:

(a) (Qi, Rit+1) := QuotRem(R;_1, R;) #R; 1 =Q;R; + R 1
(b) Vig1 :=Vie1 — Q;V;
(c) i:=i+1

3. Return V;/lc(V;).

> Quadratic complexity: O(N?) operations in K

> There exist quasi-linear time algorithms O(M(N)log N)



Wiedemann’s algorithm

—solving sparse matrices—



Sparse matrices

Def. A matrix M € M, (K) is called sparse if it has s < n° nonzero entries.

> Typically: s & n Pagefank

> Cost of matrix-vector product Mwv, for v € K", is ¢(M) = O(s) ops. in K.

> Applications: web ranking, integer factorization, discrete logarithm



Algorithms for sparse matrices

Def. A matrix M € M, (K) is called sparse if it has s < n? nonzero entries.
> Algorithmic questions for sparse matrices

e solving linear systems My =b (b € K")

e computing determinant det(M ), rank rk(M), etc.

e computing characteristic polynomial ys(x), minimal polynomial pps(x)

> Answers: probabilistic algorithms of complexity O(ns 4+ n?), or O(ns + n?)

> Roughly speaking, “wsparse = 27



Wiedemann's algorithm for solving sparse linear systems

> solving My = b reduces to computing an annihilating polynomial g :
if py = Z;'l:o m,;z? is the minimal polynomial of the vector sequence

v = (M"b);>0, i.e. the minimal degree polynomial s.t. Z;'i:o m;M7b = 0, then

(1) wy divides pas (since pps annihilates v)

(2) thus py also divides xar, and in particular d < n

(3) if M is invertible, then mo # 0 (since xar(0) = det(M) # 0)

(4) sol. y=M 'b= —(%b+ o I Md 'p) in O(d(c(M)+ n))=0(ns + n?)

> computing s, reduces (probabilistically) to computing MinPol((ul - M* - b);)
for a randomly chosen vector u € K":

(1) (as)i = (u' - M*-b); is a Lr.s.c.c.

(2) its minimal polynomial p, = MinPol((a;);) has degree at most n

(3) o divides uy; in addition, they coincide with good probability

(4) jtq can be computed from ao, ..., a2,_1 in O(n?) by Berlekamp-Massey algo
(5) ao,...,a2,—1 can be computed in O(n(c(M)+n))=0(ns + n?)



Wiedemann's algorithm for solving sparse linear systems

Input A sparse invertible matrix M € M,,(K) and b € K".
Output The solution y € K" of the linear system My = b.

(1) Compute py =MinPol((M*b);>¢), as below.

(2) Compute h = “‘;vg)‘g(o) € K[z] and return y = h(M)b.

Input A sparse matrix M € M, (K) and b € K".

Output The minimal polynomial of the vector sequence v = (M*D);>.

1
2

If 5 =0, then return 1.
Choose U C K a finite subset of cardinal > 2n.

(1)
(2)
(3) Choose u € U™ uniformly at random; compute a; = u? v; for 0 < i < 2n.
(4) Compute the minimal polynomial u, of the l.r.s.c.c. (a;);.

(5)

5) If pe(M)b =0 in K™, return p,; else go back to (3).

> Randomized algorithm; expected complexity O(nc(M) + n?) if |K| > 2n.
> Probability (e = pv) > 1 — 77> thus 2 expected iterations if K| > 2n.
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Probability of success in Wiedemann's algorithm

Let P be Probability(l\/linPoI((uTMib)iZO) —= f), where f = MinPol ((Mib)iz())

(1) The map ¥ : K” — A = Klz]/(f) defined by 9 (u) := Z?:_Ol(uT - M- b)x
is K-linear, surjective and such that

f is the minpoly of (u’ - M" - b);>q <= (u) is invertible in A.

(2) R(yla s 7yn) ‘= ReSx(y1¢(€1) T+t ynw(en)a f(l')) S K[yla s 7yn] \ {O}
has total degree at most d := deg(f) and for all u = (uq,...,u,)’ € K",

Y(u) is invertible in A <—  R(uy,...,uy) # 0.

(3) R admits at most deg(R) - |U|""* < d-|U|""! roots U™.

(4) Probability that an element in U™ is a root of R is at most d/|U].

d
5) P>1— —.



A second exercise for next time (2/11/2020)

Let K = F5 be the finite field with 5 elements, let M € M3(K) and b € K® be

1 4 4 3
M=14 0 3], b=]1
1 2 4 2

We want to find y € K3 such that My = b, by using Wiedemann’s algorithm.

1. For the choice u = (1,0,0)?, show that the algorithm computes the
sequence (3,0,4,2,3,0,...), then its minimal polynomial 2 + 2z + 2, and
that it eventually rejects this choice of u.

2. Apply the algorithm for the choice u = (1,2,0)%, and deduce that the
minimal polynomial of (M*b);>o equals x° + 3x + 1.

3. Determine the solution y by using this minimal polynomial.



Hermite-Padé approximants



Definition of Hermite-Padé approximants

Definition: Given a column vector F = (fi,..., fn)? € K[[z]]™ and an n-tuple
d=(dy,...,d,) € N" a Hermite-Padé approximant of type d for F is a row
vector P = (Py,..., P,) € K|z]", (P # 0), such that:

(1) PF:P1f1—|——|—Pnfn:O<SI}U) WlthO':ZZ(dZ—Fl)—l,
(2) deg(P;) < d; for all 1.

o is called the order of the approximant P.

> Very useful concept in number theory (irrationality /transcendence):
e [Hermite, 1873]: e is transcendent.
e [Lindemann, 1882]: 7 is transcendent; so does e® for any o € Q \ {0}.

o [Apéry, 1978; Beukers, 1981]: ((3) = ), =5 is irrational.

e [Rivoal, 2000]: there exist infinite values of k such that {(2k + 1) ¢ Q.



Sur la généralisation des fractions continues algébriques;

Paz M. H. PADE,
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INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X, X, ..., X,, de degrés p,, pyy .- e,
qui satisfont & I'équation

SI 1t,':-| -+ ngg - ea st S.Kn =8 Q;I"'.""I-'-.*...-i-[-l-,-h#-lr

S, S, ..., S, étant des séries entiéres données, et S une série égale-
ment entiére. Ou plutét, il s’agitc@obtenir un algorithmigxqui permette
le calcul de proche en proche de ces systémes de n polynomes, et qui

[Padé, 1894]




