Resultant
&

Newton iteration

y 4

: informatiques , mathématiques

Alin Bostan

MPRI C-2-22
October 11, 2022

MPRI, C-2-22

The exercise from last week

Let f and g in K|x,y| have degrees at most d, in x and at most d,, in y.

(a)

Show that it is possible to compute the product h = fg using
O(M(dzdy))

arithmetic operations in K.
Hint: Use the substitution x < y?%*! to reduce the problem to the

product of univariate polynomials.

Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in
O(de M(dy) + dy, M(d))

arithmetic operations in K.

MPRI, C-2-22

Solution of (a)

(a) Show that it is possible to compute h = fg using O(M(d,d,)) ops. in K.
Hint: Use the substitution z < y??v*1 to reduce the problem to the

product of univariate polynomials.

Solution:

> Write h(x,y) = ho(y) + zhi(y) + - - - + 2*% hog, (y) with deg, h; < 2d,, for
0 < i < 2d, and observe that in the specialization h(y??v ™1, y), the

terms y(?%v+1ih;(y) have distinct supports.

2d,+1
Y

> So one gets h(z,y) from h(y y) in no arithmetic operation.

2d,+1
Y

> Similarly, f(y y) is obtained from f(x,y) with no calculation, the same

holds for g.

> The only needed calculation is h(y?¥v 1 y) = f(y2W Tl y) x g(y?@ T y),
which requires O(M(d,d,,)) ops. in K. []

MPRI, C-2-22

Solution of (b)

(b) Improve this result by proposing an evaluation-interpolation scheme
which allows the computation of h in O(d, M(d,,) + d,, M(d,)) ops. in K.

Solution:

> Each polynomial h;(y) has degree < 2d,, and so can be obtained by
interpolation from values at 2d, 4 1 points.

> To minimize costs, use (1,q,¢>,...,q*%) and get evaluations of all h;(y)
simultaneously. So first write f(z,y) = fo(y) + zfi(y) + -+ + 22% fou_(y) with
deg, fi < d, for 0 <i < d, and similarly for g(z,y).

e For 0 <i < d,, evaluate f;(y) and g;(y) at (¢’)o<j<2d, - O(dzM(dy))
e For 0 <7 <2d,, do:

— compute f(z,q¢’) = Z:;lio ' fi(¢?);

— compute g(z,q¢’) = Z;lio 2'g;(q?);

— compute h(x,¢’) = f(x,¢’) X g(x,q¢?). O(dyM(d.))
e For 0 <i < 2d,, interpolate (h;(¢’))o<j<2a, to get hi(y). O(d
e Return h(z,y) = Z?i”é x'h;(y).

MPRI, C-2-22

Resultant

MPRI, C-2-22

The Sylvester matrix of A = a, 2™ + -+ - + a9 € Klz], (@ # 0), and of
B =b,z" 4+ --- 4+ by € K|z], (b, # 0), is the square matrix of size m +n

Syl(A, B) =

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

Definition

Am Am—1
Am

bn bn— 1
b,

ao

aop

> Definition extends to polynomials over any commutative ring R.

MPRI, C-2-22
Key observation

If A=a, 2™ +---+ay and B=b,2" +---+ by, then

Ay Q1 ao a" T A(a)
et
Ay 1 ... Qg A(a)
b, bn_1 bo : o B a™ 1 B(a)
1
I b bn_1 bo - - - B(a)

Corollary: If A(a) = B(a) = 0, then Res (A, B) = 0.

MPRI, C-2-22
Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A’.

E.g. for A = az? + bz +c,

a b c
Disc(A) = Res (A, A") =det | 2a b = —a(b* — 4ac).
I 2 b |
E.g. for A = az® + bz +c,
i a 0 b c]
a 0 b c
Disc(A) = Res(A,A")=det | 3¢ 0 b = a*(4b° + 2Tac?).

Ja. 0 b

3a 0 b

> The discriminant vanishes when A and A’ have a common root, that is

when A has a multiple root.

MPRI, C-2-22
Main properties

e Link with gcd Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

e Elimination property
There exist U,V € K[z] not both zero, with deg(U) < n, deg(V) < m and
such that the following Bézout identity holds in KN (A, B):

Res(A,B) =UA+ VB.

e Poisson formula
fA=alz—ay) - (r—am) and B=blzx— (1) - (x— 0,), then

Res(A,B) = a"b™ | [(es = B;) = o™ || Blaw).

i,j 1<i<m

e Multiplicativity

Res (A-B,(C') = Res(A,C)-Res (B,('), Res(A,B-C)=Res(A, B)-Res(A,C).

MPRI, C-2-22

Proof of Poisson’s formula

> Direct consequence of the key observation:

If A=(rx—a1)---(r—amm)and B=(x— 1) ---(x — B,) then
i 1714—?%—1 5;n—|—n—1 &T+n—1 o a%—i—n—l |
Syl(A, B) x
61 S Bn a1 ce (07
] 1 - 1 1 . 1 |
BTAB) . BTUAB) 0 0
0 0 "' Blay) a™ I B(ayy,)
i 0 ce 0 B(Ozl) B(Oém)

> To conclude, take determinants and use Vandermonde’s formula

MPRI, C-2-22 11
Application: computation with algebraic numbers

Let A=]];(x — ;) and B =]],(z — 5;) be polynomials of K[z]. Then

ADB = H(t — (o —I—ﬂj)) = Res ,(A(z), B(t — x)),

2]

H(t — (8 — 1)) = Res .(A(x), B(t +),

A® B := H — a;3;) = Res ,(A(xz), z® " B(t/x)),

H(t — B(ay)) = Res ,(A(x),t — B(x)).

1

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: H B(t — ;) = H(t —a; —).

@]

MPRI, C-2-22 12

A beautiful identity of Ramanujan’s

T 2T s i ST

S111 = S111 ~ S111 7 \/7
. 9 37 - . 92 2T —|_) - — 2 7.
S111 a S111 a S111 -

> If p = 7/7 then sin(kp) = (o — a=%)/(24), where a = P, with o = —1
> Since a € Q, any rational expression in the sin(kp) is in Q(i)(«) thus in Q

> f:=sin(2*p)/sin(3*p) "2-sin(p)/sin(2*p) "2+sin(3*p)/sin(p) "2:
> expand(convert(f, exp)):

> F:=normal (subs(exp(I*p)=alpha, %));

2i (a'® +5a™ +12a'? +a' +20a'? +3a” +23a® +3a” +20a° +a® +12a* +5a% + 1)
a(a?2 —1) (a2 +1)% (a* + a2 +1)?

> In particular our LHS, F(a) = ggg;, is an algebraic number

> Resultant R(t) := Res, (" + 1,t- D(2)—N(z)) annihilates F(«)

> R:=factor(resultant(x~7+1, t*denom(F)-numer(F), x));

—1274 (£ — 28)°

MPRI, C-2-22

Shanks’ 1974 identities

\/11+2\/®+\/16—2@+2\/55—10\5:\/5+\/22+2¢5

¢m+ﬁ+\/m+m_ﬁ+z¢m(m—m

:\/E+\/2¢m7+n+2\/ﬁ

13

MPRI, C-2-22 14
A first exercise for next Tuesday

(1) The aim of this exercise is to prove algorithmically the following identity:

s/ .1 iﬁ i,,/Z
2—1=4{/=—{/= - E
fva-1- -1+ i ©)
Leta:\?’@andbzi’/g.

(a) Determine P. € Q[x] annihilating ¢ = 1 — a + a?, using a resultant.
(b) Deduce Pgr € Q[z] annihilating the RHS of (E]), by another resultant.
(c) Show that the polynomial computed in (b) also annihilates the LHS

of .

(d) Conclude.

MPRI, C-2-22
Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q|x] correspond to points on a line.

Roots of polynomials A € Q|z,y| correspond to plane curves A = 0.

Let now A and B be in Q|x,y]. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.

15

MPRI, C-2-22 16
Application: Resultants compute projections

Theorem. Let A =a,,y™ + --- and B = b,y + - -- be polynomials in Q[z][y].
The roots of Res (A, B) € Q[z] are either the abscissas of points in the

intersection A = B = 0, or common roots of a,, and b,,.

=

Proof. Elimination property: Res (A, B) =UA+ VB, for U,V € Q[z,y].
Thus A(a,) = B(a,) =0 implies Res, (A4, B)(a) =0

MPRI, C-2-22
Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

CAt(1 —t?)? - 8t (1 —t?)
T Aty T AT e)p

Res ((1+t%)%z —4t(1—t2)2, (14+¢2)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .

17

MPRI, C-2-22
Computation of the resultant
An Euclidean-type algorithm for the resultant bases on:
o If A=QB+ R, and R # 0, then (by Poisson’s formula)
Res (A, B) = (—1)deeAdee B |c(p)dee A—dee B Ras (B R).

o If B is constant, then Res(A, B) = Bdee4,

If (Rog,...,Rny_1,RNn = gcd(A, B),0) is the remainder sequence produced by
the Euclidean algorithm for Ry = A and Ry = B, then

e cither deg Ry is non-constant, and Res (A, B) = 0,

N—2
e or Res (A,B) _ R](\ifegRN—l H (_1)deg R;deg R; 1 |C(R,,;_|_1)degRi_deg Rito
1=0

> This leads to a O(N?) algorithm for Res (A, B), where deg(A), deg(B) < N.

> A divide-and-conquer O(M(N)log V) algorithm requires extra-work.

18

MPRI, C-2-22

Bonus

19

MPRI, C-2-22

1. Fast Manipulation of Algebraic Numbers

Available online at www.sciencedirect.com

g sclsncs@mnsc-n Journal of
&5 Symbolic
Sl Computation
ELSEVIER

Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/jsc

Fast computation of special resultants

Alin Bostan?*, Philippe Flajolet?®, Bruno Salvy?, Eric Schost®

3 Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
b 11X, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005

Abstract

We propose fast algorithms for computing composed products and composed sums, as well as diamond
products of univariate polynomials. These operations correspond to special multivariate resultants, that we

compute using power sums of roots of polynomials, by means of their generating series.
(© 2005 Elsevier Ltd. All rights reserved.

Keywords: Diamond product; Composed product; Composed sum; Complexity; Tellegen’s principle

> Composed sum A ¢ B and composed product A ® B in O(degA - deg B)

MPRI, C-2-22

2. Computing the Truncated Resultant

A Fast Algorithm for Computing the Truncated Resultant

Guillaume Moroz
Inria Nancy Grand Est

guillaume.moroz@inria.fr

ABSTRACT

Let P and @ be two polynomials in K[z, y] with degree at
most d, where K is a field. Denoting by R € K[z] the resul-
tant of P and) with respect to y, we present an algorithm
to compute R mod z* in O (kd) arithmetic operations in K,
where the O™ notation indicates that we omit polylogarith-
mic factors. This is an improvement over state-of-the-art
algorithms that require to compute R in (’)"(d?’) operations
before computing its first k coefficients.

Eric Schost
University of Waterloo

eschost@uwaterloo.ca

pute R take O"(d®) operations in K, either by means of eval-
uation / interpolation techniques, or in a direct manner [26].

In this paper, we are interested in the computation of
the resultant R of such bivariate polynomials truncated at
order k, that is of R mod z* for some given parameter k.
This kind of question appears for instance in the algorithms
of [17, 23], where we want two terms in the expansion, so
that k = 2. A related example, in a slightly more involved
setting, involves the evaluation of the second derivative of
some subresultants, for input polynomials in K[z, y, 2] [19].

[Moroz & Schost, ISSAC 2016]

> Res, (P(z,y), Q(z,y)) mod z* in O(kd), where d = max(deg P, deg Q)

21

MPRI, C-2-22

3. Resultant of Generic Bivariate Polynomials

ABSTRACT

An algorithm is presented for computing the resultant of two
generic bivariate polynomials over a field K. For such p and ¢
in K[x, y] both of degree d in x and n in y, the algorithm computes
the resultant with respect to y using (n1/?d)1+°(1) arithmetic
operations in K, where two n X n matrices are multiplied using
O(n®) operations. Previous algorithms required time (n2d)1+od),
The resultant is the determinant of the Sylvester matrix S(x)
of p and g, which is an n X n Toeplitz-like polynomial matrix of
degree d. We use a blocking technique and exploit the structure of
S(x) for reducing the determinant computation to the computation
of a matrix fraction description R(x)Q(x)~! of an m X m submatrix
of the inverse S(x)~!, where m < n. We rely on fast algorithms for
handling dense polynomial matrices: the fraction description is ob-
tained from an x-adic expansion via matrix fraction reconstruction,
and the resultant as the determinant of the denominator matrix.
We also describe some extensions of the approach to the compu-
tation of generic Grobner bases and of characteristic polynomials
of generic structured matrices and in univariate quotient algebras.

ACM Reference Format:

Gilles Villard. 2018. On Computing the Resultant of Generic Bivariate Poly-
nomials. In ISSAC’18: 2018 ACM International Symposium on Symbolic and
Algebraic Computation, July 16-19, 2018, New York, NY, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3209020

1 INTRODUCTION

details and references. More precisely, on the one hand, the resul-
tant of two univariate polynomials of degree n (taking d = 0 in
above definition) can be computed in O(M(n) log n) arithmetic oper-
ations in K using the Knuth-Schénhage-Moenck algorithm. We use
M(n) for a multiplication time for univariate polynomials of degree
bounded by n over K (see for instance [16, Chap. 8]). On the other
hand, in our case the resultant has degree at most 2nd, hence an ex-
tra factor nd appears for the evaluation-interpolation cost. In total,
it can be shown that the bivariate resultant can be computed us-
ing O(n M(nd) log(nd)) arithmetic operations [16, Chap. 11], which
is (nzd)“"(l) using M(n) = O(nlognloglogn) with Cantor and
Kaltofen’s polynomial multiplication [9].

Before giving an overview of our approach let us mention some
important results that have been obtained since the initial results
cited above. For comprehensive presentations of the resultant and
subresultant problem, and detailed history and complexity analyses,
the reader may refer to [16, 17, 36]. Especially for avoiding modular
methods over Z, recursive subresultant formulas have been given in
[17, 38, 43] that allow half-ged schemes for computing the resultant
of polynomials in D[y] where D is a domain such that the exact
division can be performed.

The complexity bound (nzd)l"'o(l) has not been improved in the
general case. In some special cases much better complexity bounds
are known [5, Sec. 5]. In particular, for univariate f and g of degree
n in K[y], the composed sum (f @ g)(x) = Resy(f(x — y),g(y)) and
the composed product (f ® g)(x) = Resy(y" f(x/y), g(y)) can be
computed using n2to(1) operations in K [5]. (The restrictions in [5]

Villard, ISSAC 2018]

> Res, (P(x,y),Q(x,y)) of generic P, of degree d in O~(d3_1/°")

22

MPRI, C-2-22

3. Resultant of Generic Bivariate Polynomials

Implementations of Efficient Univariate Polynomial Matrix
Algorithms and Application to Bivariate Resultants

Seung Gyu Hyun
University of Waterloo
Waterloo, ON, Canada

Abstract

Complexity bounds for many problems on matrices with univari-
ate polynomial entries have been improved in the last few years.
Still, for most related algorithms, efficient implementations are not
available, which leaves open the question of the practical impact of
these algorithms, e.g. on applications such as decoding some error-
correcting codes and solving polynomial systems or structured
linear systems. In this paper, we discuss implementation aspects
for most fundamental operations: multiplication, truncated inver-
sion, approximants, interpolants, kernels, linear system solving,
determinant, and basis reduction. We focus on prime fields with a
word-size modulus, relying on Shoup’s C++ library NTL. Combin-
ing these new tools to implement variants of Villard’s algorithm for
the resultant of generic bivariate polynomials (ISSAC 2018), we get
better performance than the state of the art for large parameters.

Vincent Neiger
Univ. Limoges, CNRS, XLIM, UMR 7252
F-87000 Limoges, France

Eric Schost
University of Waterloo
Waterloo, ON, Canada

e Coppersmith’s block Wiedemann algorithm and its exten-
sions [7, 26, 48] were used in a variety of contexts, from inte-

ger factorization [44] to polynomial system solving [22, 49].

At the core of these improvements, one also finds techniques such
as high-order lifting [41] and partial linearization [42],[16, Sec. 6].
For many of these operations, no implementation of the latest
algorithms is available and no experimental evidence has been given
regarding their practical behavior. Our goal is to partly remedy this
issue, by providing and discussing implementations for a core of
fundamental algorithms such as multiplication, approximant and
interpolant bases, etc., upon which one may implement higher
level algorithms. As an illustration, we describe the performance
of slightly modified versions of Villard’s recent breakthroughs on
bivariate resultant and characteristic polynomial computation [49].
Our implementation is based on Shoup’s Number Theory Li-
brary (NTL) [40], and is dedicated to polynomial matrix arithmetic

[Hyun, Neiger, Schost, ISSAC 2019]

> efficient implementations of (variants) of Villard’s 2018 algorithm

23

MPRI, C-2-22

Newton Iteration

24

MPRI, C-2-22

Newton's tangent method: real case
[Newton, 1671]

AN L

T~ \ \\K

N(x)

Tl =N(zg) =20 — (22 —2)/(22,), 20 =1

x1 = 1.5000000000000000000000000000000
x2 = 1.4166666666666666666666666666667
xs = 1.4142156862745098039215686274510
x4 = 1.4142135623746899106262955788901
xs = 1.4142135623730950488016896235025

25

MPRI, C-2-22 26
Newton's tangent method: power series case

Ir1 = 1 — =t
11 1 1 1 1 1 1 1
=1 —t— 7= Pt P O T 9.
2 2 8 16 32 64 128 256 512 024" T
1 1 5 7 21 33 107 177
T3 =1- ot étQ — 3 - ¢ 6 t7 8 t? +

16 128 256 1024 2048 8192 16384

MPRI, C-2-22

Newton's tangent method: power series case

In order to solve ¢(x,g) = 0 in K|[z]] (where ¢ € K|[[z,y]], ©(0,0) = 0 and
©,(0,0) # 0), iterate

P(gr)
Py (gﬁ;)

k+1
mod z2

9k+1 = 9k —

©(9) + (9 — 9)py(9) + O((9 — 9x)?) .
0y (9) + O0(g — gr) =O0((9 — gx)7)-

» The number of correct coeflicients doubles after each iteration

9 —9k+1 =9 — gr T
» Jotalcost = 2 Xx (the cost of the last iteration)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]
Division, logarithm and exponential of power series in K||z]] can be computed

at precision N using O(M(NN)) operations in K

27

MPRI, C-2-22

Division and logarithm of power series
[Sieveking-Kung, 1972]

To compute the reciprocal of f € K[[x]]|, choose p(g) =1/g — f:

1 2I£+1
go = 7 and gei1 = 9w+ 9s(1 — fg.) mod x for kK >0
0

Master Theorem: C(N) = C(N/2)+ O(M(N)) — C(N) =0O(M(N))

Corollary: division of power series at precision N in O(M(V))

(- 1)

Corollary: Logarithm log(f) = — Z
(0

i>1

of fel+zK|[[z]] in OM(N)):

e compute the Taylor expansion of h = f'/f modulo 2V} O(M(N))

e take the antiderivative of h O(N)

MPRI, C-2-22
Details on power series inversion

Lemma Given F € K|[z]] with F'(0) # 0, n € N5, and G € K|[z]] s.t.

G — F~1 = 0O(a"), then N(G) = 2G — GFG satisfies N(G) — F~1 = O(2*™).

Proof: Writing 1 — GF = 2" H, then inverting F' = G~1(1 — 2" H) yields

Fl = (142" H + 0(z*))G = N(G) + O(z).

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N € Ny of a series F' € K|[z]] with F'(0) # 0.

Output The truncation S to order N of the inverse series F'~ 1.

If N =1, return T(0)~ 1. Otherwise:
1. Recursively compute the truncation G to order [N/2] of T~1.
2. Return S := G +rem((1 — GT)G, z™).

29

MPRI, C-2-22 30
Details on power series inversion

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N € Ny of a series F' € K|[z]] with F'(0) # 0.

Output The truncation S to order N of the inverse series F'~1.

If N =1, return T(0)~!. Otherwise:
1. Recursively compute the truncation G to order [N/2] of T~ 1.
2. Return S := G +rem((1 — GT)G, z™).

Correctness proof Assume T~! = G 4 O(z!™/21) by induction. By Lemma,
N(G) =Tt =02 = o(zM).
Write F =T+ O(zN) = T(1+O(z")) to observe F~1 = T=1 + O(z"). Then,

Fl-S=F1'-TH+T'-N®QG))+WN(G) - 8S)=0(zN).

MPRI, C-2-22 31
Application: Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G € K|z|<y, compute (Q, R) in Euclidean division F = QG + R
Naive algorithm: O(N?)
ldea: look at F' = QG + R from infinity: Q ~y F/G

Let N = deg(F) and n = deg(G). Then deg(Q)) = N — n, deg(R) < n and

F(1/2)zN = G(1/z)z™ Q(1/x)x™N ™" + R(1/z)zdcs(®) .pN—des(R)

rev(F') rev(QG) re;(rQ) re;(rR)
Algorithm:
e Compute rev(Q) = rev(F)/rev(G) mod z™¥ "1 O(M(N))
e Recover () O(N)

e Deduce R=F — QG O(M(N))

MPRI, C-2-22

Exponentials of power series and 1st order LDE
[Brent, 1975]

To compute the exponential exp(f) = Z %, choose ¢(g) = log(g) — f:
i>0

2I£—|—1

go=1 and gx41 = 9gx — gx (log(ge) — f) mod x for k > 0.

Complexity: C(N) = C(N/2)+ O(M(N)) — C(N) =0O(M(N))
Corollary: Solve first order linear differential equations af’ +bf = ¢ in O(M(N))
e if ¢ =0 then the solution is fy = exp (— [b/a) O(M(N))

e else, variation of constants: f = fyg, where ¢’ = ¢/(afo) O(M(N))

» main difficulty for higher orders: for non-commutativity reasons, the matrix
exponential Y (z) = exp([A(x)) is not a solution of Y’ = A(z)Y.

32

MPRI, C-2-22
Application: conversion coefficients <+ power sums
[Schonhage, 1982]

Any polynomial F' = 2™ + a2 ! + -+ + a,, in K[z] can be represented by its

first n power sums S; = Z o
F(a)=0

Conversions coefficients <> power sums can be performed

e cither in O(n?) using Newton identities (naive way):
wa; +S1a,1+---+95;, =0, 1<:1<n

e orin O(M(n)) using generating series

rev(F)’ : Si
- Z (] F _ . — (2
= g Sit1xt <= rev(F) =exp g T

ev(F) s =

33

MPRI, C-2-22 34
A second exercise for next Tuesday

(2) Assume that F' € K|[z]] with F(0) = 1.
(a) What is the complexity of computing v/ F, by using v F = exp(% log F)?

(b) Describe a Newton iteration that directly computes v/ F, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

