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Si l’on se bornait à demander les intégrales entières,
le problème n’offrirait aucune difficulté.1

Joseph Liouville, 1833.

Abstract
We investigate polynomial solutions of homogeneous linear differential equa-

tions with coefficients that are polynomials with integer coefficients. The problems
we consider are the existence of nonzero polynomial solutions, the determination
of the dimension of the vector space of polynomial solutions, the computation of
a basis of this space. Previous algorithms have a bit complexity that is at least
quadratic in an integer N (that can be computed from the equation), even for
merely detecting the existence of nonzero polynomial solutions. We give a deter-
ministic algorithm that computes a compact representation of a basis of polynomial
solutions in O(N log3 N) bit operations. We also give a probabilistic algorithm that
computes the dimension of the space of polynomial solutions in O(

√
N log2 N) bit

operations. In general, the integer N is not bounded polynomially in the bit size
of the input differential equation. We isolate a class of equations for which detect-
ing nonzero polynomial solutions can be performed in polynomial complexity. We
discuss implementation issues and possible extensions.

Introduction

The computation of polynomial solutions of linear differential equations (LDEs) lies at
the heart of several important algorithms. Indeed, known algorithms for finding rational

1If we limited ourselves to asking for polynomial solutions, the problem would not offer any difficulty.
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solutions of LDEs [25, 28, 2, 1] proceed by computing a common multiple of the polar
part of meromorphic solutions and then compute the numerator as a polynomial solution
of a derived LDE. Detecting the existence of nonzero rational solutions is thus reduced
to detecting the existence of nonzero polynomial solutions. Algorithms for computing
Liouvillian solutions [26, 28, 29, 31] or definite integrals [3, 16] construct intermediate
LDEs and need to check whether nonzero rational solutions exist. In most cases no
rational solution exists and it is therefore important to be able to detect this property
efficiently. Another application is the desingularization of linear differential or difference
equations that has been shown [17] to boil down to polynomial solutions of an adjoint
linear differential equation.

In order to compute polynomial solutions, the algorithms [25, 28, 2, 1, 5] basically
compute a basis of power series solutions at a fixed point (0 or infinity) and search for a
linear combination of those which is a polynomial. The complexity is related to the largest
integer valuation N of Laurent series solutions at infinity, which can be computed from an
indicial polynomial (this is developed in Section 1.2). This integer N can be exponentially
large compared to the bit size of the input. For instance, the polynomial (1 + x + x2)N

is a solution of the first order differential equation

(1 + x + x2)y′(x)− (2xN + N)y(x) = 0.

The bit-size of the input is of order log N , while the bit-size of the output (in its monomial
representation) is of order N . This shows that computing all coefficients of the polynomial
solution has at least exponential bit complexity in the size of the input.

Another example is

(x− 1)2(x + 1)y′(x)− ((x− 1)2N + x + 1)y(x) = 0

with solution (1 + x)N exp(x/(1 − x)). The valuation at infinity is bounded by N , but
there are no nonzero polynomial solutions. For this particular example, it is possible to
detect the absence of nonzero polynomial solutions by an algorithm whose complexity is
only polynomial in the bit-size of the equation [22, Corollary 8.43]. This criterion applies
to equations of order 1. We describe in Section 5 a new criterion for some equations of
arbitrary order.

In general however, we do not know of similar criteria. Our aim is therefore to decrease
the dependency on N of the complexity. By computing all the coefficients of power series
solutions with index between 0 and N , previous algorithms have an arithmetic complex-
ity (number of arithmetic operations) which is at least linear in N and a bit complexity
which is at least quadratic in N because of the size of these coefficients. Our contribution
is to use classical techniques for manipulating recurrences with polynomial coefficients
that allow for the computation of the Nth element or a slice of elements starting at index
N in bit complexity roughly proportional to N or arithmetic complexity roughly propor-
tional to

√
N . From there, we derive a probabilistic algorithm for the computation of the

dimension of polynomial solutions (and in particular the existence of nonzero polynomial
solutions) in complexity O(

√
N log2 N) by performing the computation modulo a suitable

prime. We also derive a deterministic algorithm of bit complexity O(N log3 N) to com-
pute this dimension and a representation of polynomial solutions by a recurrence on the
coefficients and initial conditions. Since these initial conditions have bit size O(N log N),
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this is close to optimal. This compact representation of polynomials is well suited for
applications; for instance, we show that it allows for fast evaluation. If all coefficients
of the polynomials are required, then of course we also obtain a quadratic complexity,
because of the bit size of the output. However, compared to previous algorithms, our
method is faster by a constant factor, since only the coefficients of the polynomials are
computed, instead of all those of power series solutions.

This article is structured as follows. In Section 1, we recall the main facts concerning
the indicial polynomial and the derived recurrence as well as the basic method for finding
polynomial solutions. We also give complexity estimates for all these steps so that com-
parisons can be performed. Section 2 recalls the binary splitting method for recurrences
and applies it to computing the initial conditions of the recurrence giving the coefficients
of polynomial solutions. In Section 3, we use the baby-step/giant-step method for the
case of modular computations. The algorithms given in Sections 2 and 3 work under
the assumption that the origin is an ordinary point of the differential equation. In Sec-
tion 4, this hypothesis is dropped and we treat the general case. In Section 5, we recall
known criteria that make possible an early detection of nonzero polynomial solutions.
We also give a new criterion, for a restricted class of equations. It works in polynomial
time in the bit size of the equation. Extensive experiments together with implementation
issues are described in Section 6. We conclude with comments on possible extensions
to nonhomogeneous or parameterized differential equations, to recurrence equations and
applications.

Some points of history

The naive algorithm for computing polynomial solutions of LDEs is the indeterminate
coefficients method: knowing a bound N on the degree of polynomial solutions, take
an ansatz y =

∑N
i=0 yi x

i where the yi are unknowns and replacing y in the equation,
get a homogeneous linear system for the yi. Since the coefficients yi satisfy a linear
recurrence R with fixed order o, the matrix of this linear system has a particular banded
form of bandwidth o+1. If o � N , then this system can be solved by Gauss’s method in
O(N) arithmetic operations, or O(N2) bit operations, see for instance [23, Section 4.3].
This direct method (without complexity considerations) led Liouville [25, page 154] to
his comment opening our article.

A variant of this algorithm, called hereafter the basic algorithm was suggested (in
slightly different variants) in [2, 1, 5]. Roughly speaking, it computes a basis of Laurent
series solutions at a fixed point (finite or infinite), then searches for a linear combination
P of those series, in which the coefficients of xN+1, . . . , xN+o are all zero (this suffices
to ensure that P is a polynomial solution, since its coefficients satisfy a recurrence of
order o).

Regarding only the dependence in N , the complexity of the algorithms in [2, 1, 5]
is asymptotically the same as that of the naive algorithm. If a solution of degree N
exists, both algorithms are nearly optimal (up to logarithmic factors) for computing the
monomial representation of this solution, since the bit size of the latter is of order O(N2).
In the opposite case, none of them provide a faster way of testing the nonexistence of
nontrivial polynomial solutions.
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Compact Representation of Polynomial Solutions

Classically, a power-series solution y(x) of a LDE L with polynomial coefficients is repre-
sented by its coefficients yi in the monomial basis {xi}. An alternative data structure for
y(x) is the recurrence R together with a set of o suitable initial conditions. Polynomial
solutions of LDEs naturally inherit this compact encoding, which is well suited for basic
operations. For instance, we show in Subsection 2.3 that polynomials represented by
recurrences and initial conditions can be evaluated efficiently.

For the moment, we explain the terminology compact on an example. Consider the
LDE mxy′′(x)− xy′(x) + m2y(x) = 0. The recurrence satisfied by the coefficients yi of a
polynomial solution in Z[x] is (m2 − i)yi + m(i2 + i)yi+1 = 0, with the initial conditions
y0 = 0 and y1 = (−1)m−1(m2)! mm2−1. From that, it follows easily that the equation
admits a one-dimensional Q-vector space of polynomial solutions of degree N = m2; this
space is generated by the polynomial

ym(x) =
N∑

i=1

(−1)i+m (N − 1)!

(
N

i

)
mN−ixi.

Because of the factorials, to write down all the coefficients of ym(x), we need a number
of bits that is linear is N2 log(N). In contrast, the total bit-size of the compact encoding
by recurrence and initial conditions is linear in N log(N).

Complexity Measures and Notations

For our complexity analyzes, the measure we use is the bit (or boolean) complexity. For
this purpose, our complexity model is the multi-tape Turing machine, see for instance [27].
We speak of bit operations to estimate time complexities in this model. We use the
notation I : N → N to denote the bit complexity of integer multiplication, i.e. such
that the product of two integers of bit-size d can be computed within I(d) bit-operations.
Alternately, for any N ∈ N, multiplying two integers bounded by N takes I(log N) bit
operations. For any prime number p, the bit complexities of the operations (+,−,×,÷)
in the finite field Fp := Z/pZ are in O(I(log p)). We denote by M : N → N a function that
represents the arithmetic complexity of polynomial multiplication, i.e. such that over any
ring R, the product of two polynomials of degree at most d can be computed within M(d)
base ring operations (each ring operation is counted at unit cost). For computations in
Fp[x], the bit complexity is bounded by multiplying the arithmetic cost estimates by the
bit complexity of the basic operations in Fp.

We suppose that the multiplication time functions M and I are super-additive, i.e.,
M(d1) + M(d2) ≤ M(d1 + d2) and I(d1) + I(d2) ≤ I(d1 + d2) for all positive integers d1

and d2; in particular, the inequalities 2 M(d) ≤ M(2d) and 2 I(d) ≤ I(2d) hold for all
d ≥ 1. We also assume that M(cd) is in O(M(d)) and that I(cd) is in O(I(d)), for
all c > 0. The basic examples we have in mind are classical multiplication, for which
M(n), I(n) ∈ O(n2), Karatsuba’s multiplication with M(n), I(n) ∈ O(n1.59) and the FFT-
based multiplication which have M(n), I(n) ∈ O(n log(n) log(log(n))). Our references for
matters related to polynomial and integer arithmetic are the books [21, 27].

The constant ω denotes the matrix multiplication exponent as in [21, Ch. 12], so that
two n× n matrices can be multiplied within O(nω) arithmetic operations (2 ≤ ω ≤ 3).
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In what follows, log x will always denote the logarithm of x in base 2; bxc and dxe
respectively denote the largest integer less than or equal to x, and the smallest integer
larger than or equal to x. We will use the term bit-size (or simply size) of an integer a 6= 0
for λ(a) := blog(|a|)c+1. By convention, we assume that λ(0) = 1. If p(x) is a polynomial
with integer coefficients, we let λ(p) denote the maximum bit-size of its coefficients.
Similarly, if M is an integer matrix, we denote by λ(M) the maximum bit-size of its
entries.

We denote by xi the falling factorial polynomial xi = x(x− 1)(x− 2) · · · (x− i + 1).
For a polynomial f(x), the integers val(f) and deg(f) stand respectively for the usual
x-adic valuation and for the degree in x of f .

All along this text, L :=
∑n

i=0 ai(x) ∂i will denote a linear differential operator of
order n, where ai(x) are polynomials in Z[x], whose gcd is 1 and an 6= 0. The integers d
and ` will denote a bound on the degrees of the ai(x), respectively on the bit-size of their
coefficients. In order to give complexity estimates, we restrict ourselves to the case where
the ai have integer coefficients, but the mathematical results presented in Section 1 (the
basic algorithm) are valid over any domain.

1 Differential Equations and Recurrence Relations

We now recall well-known facts concerning the calculation of the polynomial solutions of L
(i.e., of a basis of the Q-vector space of y ∈ Q[x] satisfying L(y) = 0). We add a (possibly
new) complexity analysis. In §1.1 we introduce recurrence and indicial polynomials,
in §1.2 we show how to bound the degree of polynomial solutions in terms of the order of L
and of the degree and bit-size of its coefficients. In §1.3, we describe the basic algorithm
for polynomial solutions and we estimate its bit-complexity. In §1.4, we reformulate
the basic algorithm, so as to pave the way for the algorithmic improvements given in
Sections 2 and 3.

1.1 Recurrence

To L we attach the following nonnegative integers:

α := −min
i

(val(ai)− i) and β := max
i

(deg(ai)− i). (1)

The ai(x) can thus be written ai(x) =
∑β

j=−α ai,j xi+j for some ai,j ∈ Z. For j ∈
{−α, . . . , β}, we introduce the polynomials uj(x) :=

∑n
i=0 ai,j xi.

Remark that, by definition, α ≤ n, with equality if and only if x = 0 is an ordinary
point. Moreover, if x = 0 is ordinary, then u−α(x) = an,−α xn has roots 0, 1, . . . , n− 1.

If y =
∑N

i=v yi x
i is a polynomial solution of L satisfying yv 6= 0 and yN 6= 0, then a

direct calculation shows that

L(y) =

N+β∑
i=v−α

(
u−α(i + α) yi+α + · · ·+ uβ(i− β) yi−β

)
xi,

with yi = 0 as soon as i < v or i > N . Thus, for all i ∈ Z, the coefficients yi satisfy the
linear recurrence

u−α(i + α) yi+α + · · ·+ uβ(i− β) yi−β = 0. (2)
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Definition 1. The polynomials uβ (resp. u−α) are called the indicial polynomial of L at
infinity (resp. at the origin).

In what follows, we use the notation o = α + β for the order of the recurrence (2).
Plugging i = N + β (resp. i = N − α) in recurrence (2), we see that the possible

degrees (resp.valuations) of the polynomial solutions of L lie among the positive integer
roots of the indicial polynomial of L at infinity (resp. at the origin). More generally,
these roots give all the possible valuations at infinity (resp. 0) of power series solutions.
This is why a root of the indicial equation at infinity may not correspond to a polynomial
solution.

The integer N = NL will denote the largest positive integer root of the indicial
polynomial uβ; it is a bound on the possible degrees of polynomial solutions of L.

The soft Big-Oh notation Olog( ) indicates the presence of terms depending polyno-
mially in log(`), log(n), log(d) and log(log(N)).

1.2 Bound on Degree

The following result gathers some useful bounds. We give here exact bounds rather than
O() estimates, they will be necessary when we give precise bounds on probabilities in
Section 3.2.

Lemma 1. Let n, m, ` and N be positive integers. Then:

(i) All the coefficients of the falling factorial polynomial xn have sizes bounded by n log(n).

(ii) If p(x) ∈ Z[x] has degree n and if its coefficients in the falling factorial basis xi have
bit size at most `, then the coefficients of p(x) in the monomial basis have sizes
bounded by ` + 2n log(n).

(iii) If p(x) ∈ Z[x] has degree n and if a ∈ Z, the coefficients of the polynomial p(x + a),
in particular p(a), have bit-size bounded by λ(p) + n + nλ(a).

(iv) Let M be a m×m matrix with entries in Z[x] of degree at most n and with coefficients
of size at most `. Then, the entries of the matrix M(N) · · ·M(1) have bit-sizes
bounded by N(` + n + log(m) + n log(N)).

Lemma 2. Let L be a LDE of order n. We can compute a bound N on the degree of
polynomial solutions of L in Olog(n

2 (` + n)) bit operations. Moreover the bit-size of N
is bounded by ` + 2 n log(n).

Proof. By Lemma 1, the indicial polynomial uβ of L at infinity is a polynomial of degree
bounded by n whose coefficients have size bounded by h = ` + 2 n log(n). From [21,
Theorem 15.21], we can compute all the rational roots of uβ in Olog(n

2 h) bit operations,
so that the first assertion is clear. The second one follows from the fact that the integer
roots of uβ(x) necessarily divide its trailing coefficient.

Note that the complexity estimate given in the previous lemma yields more than the
degree bound N : it follows from [21, Theorem 15.21], that all the roots of the indicial
polynomial of L at infinity can be computed for the same price.
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Lemma 3. Let L be a LDE of order n. The polynomials ui(x) defining recurrence (2)
can all be computed using O(o M(n) log(n) I(` + n log(n))) bit operations.

Proof. By Lemma 1, the bit-size of the coefficients of each ui(x) is bounded by B =
d` + 2n log(n)e. Thus, to compute all the polynomials ui(x), it is sufficient to perform o
conversions between the falling factorial and the monomial basis, in degree n, over the
finite field Fp, where p is a prime number chosen in the interval {2B, . . . , 2B+1}. Each
such conversion can be done using O(M(n) log(n)) operations in Fp, see [11, Theorem 1]
and since one operation in Fp costs O(I(log(p))) bit operations, the result follows.

In conclusion, the recurrence (2) and the bound N can be computed within
Olog (n(n + o)(n + `)) bit operations, provided FFT is used. When n + o ∈ O(o) (e.g., if
x = 0 is an ordinary point, so that o ≥ n), this is optimal with respect to the bit-size of
the recurrence, which is in Olog (on(n + `)).

1.3 Basic Algorithm

The basic algorithm described in [2, 1, 5] uses the linear recurrence (2) to compute a
basis of power series solutions of L at a point (say at x = 0), then search for linear
combinations of these power series which yield polynomial solutions.

To simplify the presentation, we suppose in this section that x = 0 is an ordinary point
for L (we refer to Section 4 for a discussion on the singular case). Since the number of
singularities of L is at most d, this hypothesis is not restrictive: it comes down to finding
an integer z that lies outside the roots of an(x), then to performing a shift by z of all the
coefficients ai. Such a point z can be quickly found (e.g., among the integers 0, 1, . . . , d),
since all the integer roots of an can be determined in Olog(d

2`) bit operations. Then,
the required shifts of the ai(x) can be performed in Olog(nM(d2 + d`)) bit operations [20,
Theorem 2.4].

Since x = 0 is ordinary, Cauchy’s theorem guarantees the existence of a basis of power
series solutions yi(x) of L, of valuations 0, 1, . . . , n− 1.

Taking as input the coefficients of L and an integer N , the basic algorithm outputs a
basis of the polynomial solutions of L of degree at most N . The version of this algorithm
which is presented in [1] proceeds as follows:

(1) For 0 ≤ i ≤ n− 1, use the recurrence (2) to compute one by one the coefficients of
a power series solution yi = xi +

∑N+o
j=i+1 yi,j xj +O(xN+o+1);

(2) Form the n × o matrix M =
[
yij

]N+1≤j≤N+o

0≤i≤n−1
and compute a basis B ⊂ Qn of

solutions of M t · c = 0;

(3) For every c = (c1, . . . , cn) ∈ B, output Pc =
∑n−1

i=0 ciyi.

In the variant [2, 5], the recurrence is used backwards starting from indices N+1, . . . , N+o
and leading to a linear system on the yij for small j. We only analyse precisely the
algorithm presented above, but its main features are shared by this other variant: number
of arithmetic operations linear in N , number of bit operations quadratic in N . Our
improvements described in the next two sections (binary splitting, matrix factorials)
apply equally well to this variant.
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For further reference, let us briefly estimate the bit complexity of the basic algorithm.
A direct analysis shows that each entry of M has bit size of order Olog(`N +

nN log(N)), that the entries of c have bit size in Olog(o `N + o nN log(N)) and that
the total bit size of each output polynomial Pc is in Olog(o `N2 + o nN2 log(N)).

In step (1), to determine each yi, one has to multiply integers of bit-size Olog(j` +
jn log(j)) and Olog(` + n log(j)), for j from 1 to N + o. Thus, the total complexity of
this step is

n

N+o∑
j=1

j I
(
` + n log(j)

)
= Olog

(
n(N + o)2 I

(
` + n log(N)

))
.

In step (2), one has to solve an o × n linear system with integer coefficients of size
Γ = Olog(`N + nN log(N)). Doing linear algebra modulo a prime of size oΓ, this can be
performed in Olog(o

ω I(o`N + onN log(N))) bit operations.
Step (3) consists in computing linear combinations of rational numbers of size

Olog(o `N + o nN log(N)) and polynomials of degree N + o whose coefficients have size
Olog(`N + nN log(N)). For each Pc, this can be done in

Olog(o n (N + o) I(`N + nN log(N))).

Supposing that FFT is used and taking into account only the dependence in N , the
complexities of steps (1), (2), (3) are O

(
N2 log(N)

)
, O

(
N log2(N)

)
and O

(
N2 log2(N)

)
,

respectively, so that the total complexity reads O
(
N2 log2(N)

)
. Note that, if a nonzero

polynomial solution of degree O(N) exists, then this complexity is almost optimal with
respect to the size of the output, in its monomial representation. However, if nonzero
polynomial solutions exist and if they have degrees bounded by a certain d � N , then the
previous algorithm looses its optimal character; in other words, it is not output-sensitive.

Moreover, if only a partial information (such as the existence of nonzero polynomial
solutions or their dimension) is required, the previous algorithm cannot provide it with
computational effort less than O

(
N2 log(N)

)
.

1.4 Towards Improving the Basic Algorithm

It is classical that linear recurrences of arbitrary order rewrite as first order matrix re-
currences. Indeed, if we let Yi := t(yi, yi+1, . . . , yi+o−1), the linear recurrence (2) reads

Yi+1 = R(i) Yi, for all i ≥ 0, (3)

where R(x) = 1
u−α(x+o)

× C(x) and where C(x) is the following o × o companion-type

matrix with entries in Z[x]:

C(x) =


0 u−α(x + o) 0 0
...

...
. . . 0

0 0 · · · u−α(x + o)
−uβ(x) −uβ−1(x + 1) · · · u−α+1(x + o− 1)

 .

Lemma 4. The coefficients of the entries of C(x) have bit sizes bounded by ` + n +
3n log(o) = Olog(` + n).
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Proof. Straightforward from Lemma 1.

Remark that since x = 0 is supposed to be an ordinary point, the indicial polyno-
mial u−α(x) at the origin has roots 0, 1, . . . , n− 1, so that u−α(x + o) 6= 0 for all x ≥ −β.
This ensures that recurrence (3) can be used for i ≥ −β.

The key point in what follows is that the only coefficients of a power series solution
y(x) =

∑
yix

i which are needed in Step (1) of the basic algorithm can be computed by
the equation YN+1 = R(N) · · ·R(k) Yk, for all k ≥ −β. This formula will be exploited so
as to avoid the computation of all the intermediate coefficients y0, . . . , yN−1.

The following result is a simple consequence of these considerations; it contains the
theoretical basis needed in the next sections to improve the complexity of the basic
algorithm. For m, n ≥ 1, we denote by Om,n the zero matrix of sizes m × n and by Idn

the n× n identity matrix.

Proposition 1. Let I be the transpose of the n × o matrix
[
On,o−n

∣∣ Idn

]
. Then, the

matrix M t defined in Step (2) of the basic algorithm equals R(N) · · ·R(−β)I. Moreover,
a vector c ∈ Qn contains the coefficients of 1, x, . . . , xn−1 of a polynomial solution of L if
and only if C(N) · · · C(−β)Ic = 0.

Proof. We have just seen that c =
∑

i≥0 cix
i is a polynomial solution of L if and only

if R(N) · · ·R(−β)Ic = 0. Since the denominator of R does not cancel at any x in
{−β, . . . , N} this concludes the proof.

To put this theoretical result into practice, the basic computational task will be the
following

Matrix factorials: given a ring R, an integer N ≥ 0 and a square matrix C with
coefficients in R[x], compute the product C(N) · · · C(1).

In the next sections, we will give bit complexity estimates for this operation in the
case when R = Z and respectively R = Fp, for a prime p. We will then apply these results
to obtain improved versions of the basic algorithm.

Note that in our applications, we consider slightly more general products
C(N) · · · C(U) with U possibly 6= 1, but there is no loss in treating only the case U = 1.

2 The Binary-Splitting Method

2.1 Matrix factorials over Z
Let N ≥ 0 and let C(x) be an m × m matrix with entries in Z[x] of degree at most n
and whose coefficients have bit-size bounded by `. We wish to compute the matrix with
integer entries A = C(N) · · · C(1).

By Lemma 1, the bit size λ(A) is bounded by N(` + n + log(m) + n log(N)) =
O

(
N

(
` + log(m) + n log(N)

))
.

The simplest particular case C(x) = x corresponds to the computation of factorials.
The naive method (multiply i + 1 by i! for increasing i) has complexity O(N2 log(N)),
that is, quadratic in the bit size of N !. A well-known improvement mentioned in [8,
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Proposition 1] but possibly known before, is to use recursively the formula i(i+1) · · · (i+
j) =

(
i(i + 1) · · · d i+j

2
e
)
·
(
d i+j

2
+ 1e · · · (i + j)

)
.

This technique, commonly called binary-splitting (or divide-and-conquer) becomes use-
ful in conjunction with fast multiplication. For N ! it yields an algorithm of complexity
O(I(N log(N)) log(N)) bit operations, which is almost linear in the bit-size N log(N) of
the output if FFT is used.

These facts are classical, they were rediscovered many times in various particular cases:
base conversion, fast computation of places of π and e [14, 13], computation with linear
recurrences [24],[15, Section 6]. The earlier historic trace we could find is [6, Item 178]),
which suggests (without proof) that fast evaluation of solutions of LDEs can be done by
binary splitting. We refer to [7, Section 12] for a good survey on binary splitting-based
algorithms.

We summarize the complexity analysis for integer matrix factorials in the result below
(compare [15, Theorem 6.1]).

Lemma 5. With the notations above, we can compute the matrix factorial A in
O

(
mω I(λ(A)) log(N)

)
bit operations.

Remark 1. In [8, 27], even faster methods (by a logarithmic factor) are described for com-
puting factorials. They exploit the decomposition into primes of N !. In [15, page 459], it
is suggested without proof that this improvement carries also for computing c(N) · · · c(1),
where c(x) ∈ Z[x] “using the distribution of prime ideals in the Galois group of c(x)”.
However, these methods do not directly adapt to the matrix case; we leave as an open
problem the question whether such an improvement is possible or not for matrix factorials.

2.2 Application to Polynomial Solutions

We now use binary-splitting to give an improved version of the basic algorithm. It com-
putes the polynomial solutions of L given by their compact representation by a recurrence
and initial conditions.

Theorem 1. Let L =
∑n

i=0 ai ∂
i be a LDE of order n. Let d (resp. `) denote a bound

on the degrees of the ai (resp. on the bit size of their coefficients). Let N ≥ d. The
algorithm BinSplitPolySols below computes the polynomial solutions of L of degree at
most N in

Olog(o
ω I(o`N + on N log(N)) log(N))

bit operations.

Lemma 6. The entries of Ainit have bit sizes bounded by d(7n log(o) + n log(d) + `) =
Olog(`d + nd) and the entries of A have bit sizes bounded by N(6n log(o) + n log(N) +
`) + 2d(7n log(o) + n log(d) + `) = Olog(`N + nN log(N) + dn + d`).

Proof. By Lemma 3, the recurrence (2) and the entries of C can be computed in
O(o M(n) log(n) I(` + n log(n))) = Olog(o M(n) I(` + n)) bit operations. By Lemma 6
and since N ≥ d, the coefficients of the entries of A and Ainit have bit sizes bounded by
a certain Γ = Olog(`N + nN log(N)). The matrices Ainit and A are then computed by

10



BinSplitPolySols

Input: L ∈ Z[x][∂] with x = 0 ordinary, N ≥ 1.
Output: the compact representation of a basis of poly-
nomial solutions of L of degree ≤ N .

1. Compute the recurrence (2) and the matrix C;

2. Compute the matrix Ainit = C(−1) · · · C(−β) I;

3. Compute the matrix A = C(N) · · · C(0)Ainit;

4. Compute a basis B ⊂ Qn of solutions of Ac = 0;

5. For every c = (c1, . . . , cn) ∈ B, output Ainit · c.

binary splitting. Using Lemma 5, the complexity of Steps 2 and 3 is in O
(
oω I(Γ) log(N)

)
bit operations.

In step 4, one has to solve a o × n linear system with integer coefficients of size Γ.
Doing linear algebra modulo a prime of size oΓ, this can be performed in Olog

(
oω I(oΓ)

)
bit operations. Now, the entries of c have bit size in Olog(o Γ) and the entries of Ainit

have bit size in Olog(Γ). Thus, in the final step, each product Ainit · c can be done in
Olog

(
n I(o Γ)

)
bit operations and there are at most n ≤ o such products to perform.

Putting these estimates together concludes the proof.

The complexity of our BinSplitPolySols algorithm is thus better than that of the
basic algorithm as soon as the available integer product is better than quadratic. For
instance, using FFT, from Theorem 1, if we neglect the logarithms, we obtain a linear
dependence in N instead of the quadratic one.

2.3 Evaluation in the Compact Representation

When nonzero polynomial solutions exist, the output of our algorithm BinSplitPolySols
from Subsection 2.2 is distinct from that of the basic algorithm (described in Subsec-
tion 1.3): instead of the (dense) monomial representation, it returns an encoding of the
polynomial solutions by a recurrence and by initial conditions for their coefficients.

We show that this data structure is well suited for fast evaluation. Consider a poly-
nomial P of degree N with integer coefficients of bit size h. Let a ∈ Z be an integer of
bit size ` and consider the problem of evaluating P at a; note that the bit size of the
output P (a) is bounded by λ = O(h + ` N). To simplify the exposition, we assume that
h, ` � N and that FFT is used for integer multiplication. Horner’s algorithm allows to
perform the evaluation in O(λ N) = O(N2) bit operations. A better algorithm, of divide-
and-conquer type, was suggested in [19]. It consists in splitting P (x) = P1(x)+xN/2 P2(x),
and evaluating recursively the polynomials P1 and P2, of half degree. Using FFT, the bit
complexity of this algorithm is O

(
λ log2(N)

)
= O

(
N log2(N)

)
. Neglecting log factors,

this complexity is nearly optimal with respect to the bit size of the output. Now suppose
that P =

∑N
i=0 pi x

i is given by a recurrence of order o (with polynomial coefficients)

11



satisfied by the coefficients pi, together with the first o values p0, . . . , po−1. Let us assume
that the total bit size of the recurrence is negligible compared to N . Now, P (a) equals
the Nth term of the sequence vk :=

∑k
i=0 pi a

i, which satisfies a recurrence of order o + 1
with polynomial coefficients. Therefore, by Lemma 5, P (a) can be computed by binary
splitting in O(oω I(λ) log(N)) = O(N log2(N)) bit operations, which is again almost lin-
ear in the bit size of the output. Similar considerations can be made for evaluation at
rationals or algebraic numbers (see also [15, Theorem 5.2]).

3 Baby Steps / Giant Steps

In this section, we devise a probabilistic algorithm which outputs the dimension of the
Q-vector space of polynomial solutions of a linear differential operator L in Z[x][∂]. Our
contribution is to use a classical technique for manipulating linear recurrences with poly-
nomial coefficients that allow for the computation of the Nth element or a slice of el-
ements starting at index N in arithmetic complexity roughly proportional to M(

√
N).

From there, we derive a probabilistic algorithm for the computation of the dimension of
polynomial solutions (and in particular the existence of nonzero polynomial solutions) in
complexity O(M(

√
N) I(log N)) by performing the computation modulo a suitable prime.

3.1 Matrix factorials in positive characteristic

Chudnovsky and Chudnovsky proposed in [15] an algorithm that determines one term
of a linear sequence with polynomial coefficients without computing all intermediate
terms. Using the so called baby steps / giant steps technique, it requires a number of
operations which is roughly linear in

√
N to compute the Nth term in the sequence. The

Chudnovskys rediscovered and generalized Strassen’s algorithm [30, Abschnitt 6] (used
for deterministic integer factorization) which computes N ! mod p for a prime p > N .
This is unsurprising, since the sequence uN = N ! is the prototype for linear sequences
with nonconstant coefficients. Strassen’s idea is to build the polynomial M(x) = (x +
1) · · · (x+

√
N), then to evaluate it at the arithmetic progression 0,

√
N, . . . , N−

√
N using

fast multipoint evaluation techniques and to output N ! = M(N −
√

N) · · ·M(
√

N) M(0)
(these computations are all done over the field Fp). The Chudnovskys’ result proceeds
in a similar way for any recurrence, by rewriting it as a first order matrix recurrence
uN+1 = C(N + 1)uN , where C is a matrix with rational fraction entries. We recall below
the corresponding complexity result (compare [15, Theorem 6.2]).

Lemma 7. Let F be a finite field of characteristic p and let C be a m ×m polynomial
matrix over F with entries of degree at most d. Let N > d. Then, the matrix factorial
A = C(N) · · · C(1) can be computed using

O
(
m2 M(

√
dN) log(dN) + mωM(

√
dN)

)
operations in F .

Improvement of the Chudnovskys’ Algorithm

The algorithm of Lemma 7 spends an important amount of computation in evaluating a
polynomial matrix at points that form an arithmetic progression. Now, this matrix has
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a very particular form, M(x) = C(x +
√

N) · · · C(x + 1), where C is a given polynomial
matrix. This allows us to improve the complexity result in Lemma 7 by a factor of log(N).
Roughly, this speed-up is due to the use of the operation of extrapolation recalled below,
which can be performed faster than multipoint evaluation.

Lemma 8. [10, Prop. 1] Let F be a field, let d ≥ 0 and let P be in F [x] of degree at
most d, such that the sequence P (0), P (1), . . . , P (d) is known. Then:

simple extrapolation: the values P (d + 1), . . . , P (2d + 1) can be computed using
2 M(d) +O(d) operations in F ;

extrapolation of arbitrary difference: if r ∈ F , so that the elements r− d, . . . , r + d
and 1, 2, . . . , d are nonzero in F , then the sequence P (r), P (r +1), . . . , P (r +d) can
be computed using M(d) +O(d) operations in F .

Such an evaluation algorithm based on recursive extrapolation has been presented
in [9] for the case when all the entries are linear forms. We now give a straightforward
extension of [9, Theorem 2]; for completeness, we also give a sketch of the proof. Let us
briefly explain the basic algorithmic idea on the example of the usual factorial. As in
Strassen’s algorithm, we need to evaluate the polynomial M(x) = (x+1) · · · (x+n) at the
arithmetic progression 0, n, . . . , n2 − n, where n =

√
N . Suppose that we have already

evaluated (x + 1) · · · (x + n/2) on half of the points. It then suffices to evaluate this
polynomial on the other half, and also, to evaluate (x + n/2 + 1) · · · (x + n) on all points.
Due to the form of the polynomials, both tasks can be done using only extrapolations,
and without constructing the polynomials to be evaluated. Similarly, in the matrix case,
the advantage of our algorithm is that, contrary to the Chudnovskys’ algorithm, it does
not require polynomial matrix multiplications, but only scalar matrix multiplications.

Theorem 2. Let F be a finite field of characteristic p and let C be a m × m poly-
nomial matrix over F with entries of degree at most d. Let N > d and suppose that
p >

√
dN + 1. Then, the matrix factorial A = C(N) · · · C(1) can be computed using

O
(
m2 M(

√
dN) + mω

√
dN

)
operations in F .

Proof. For the ease of exposition, let us suppose that N and d are perfect powers of 4,
such that k =

√
dN and n =

√
N/d are powers of 2. The general case can be treated

with no extra difficulty (by writing N in base 4). Let M(x) be the polynomial matrix
C(nx + n) · · · C(nx + 1). Since the required scalar matrix A equals M(k − 1) · · ·M(0),
it suffices to evaluate M on 0, 1, . . . , k. For this, we use a recursive algorithm. Suppose
that the values of the matrix M0(x) = C(nx + n

2
) · · · C(nx + 1) at the points 0, 1, . . . , k

2

are already known. Let M1(x) = M0(x+ 1
2
), such that M(x) = M1(x)M0(x). Since the

degree of M0 is at most k/2, the values of M0 at 0, 1, . . . , k +1 can be deduced using m2

simple extrapolations, in complexity O(m2M(k)). The values of M1 at 0, 1, . . . , k +1 can
be deduced by two extrapolations (of difference 1/2, in degree k/2) of the values of M0 at
0, 1, . . . , k+1. Since p > k+1, the elements 1, 2, . . . , k+1 and 1/2−k/2, . . . , 1/2+k/2 are
nonzero in F , so these final two extrapolations can also be done in O(m2M(k)) operations
in F . Finally, the values M(i) are recovered using M(i) = M1(i)M0(i), for 0 ≤ i ≤ k.
The complexity of the algorithm satisfies the equation C(k) ≤ C(k

2
)+O(m2M(k)+kmω),

whence C(k) = O(m2M(k) + mω k), as required.
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3.2 Application to Polynomial Solutions

Let L ∈ Z[x][∂] be a linear differential operator and let N be a bound on the degree
of polynomial solutions of L. By choosing a prime number p of order O(N log N), the
method of the previous section allows us to give a probabilistic algorithm to compute the
dimension of the space of polynomial solutions of L. It uses O(M(

√
N)) operations in

Fp, so its bit complexity is of order O(
√

N log2(N)) if FFT is used.
Before stating the main result of this section, let us recall a fact which will be useful

in the following.

Lemma 9. [21, Theorem 18.9] Let A be nonzero integer of bit-size a. Let B ∈ N. If p is
chosen uniformly at random in the set of prime numbers between B and 2B, then p does
not divide A with probability at least 1− 2a/B.

Corollary 1. Let A be an m× n matrix with integer coefficients of size at most Ω bits.
For a prime p, denote by A[p] the matrix over Fp whose entries are the reductions modulo
p of the entries of A. Let B ∈ N. Then, for a prime p chosen uniformly at random in
the set of prime numbers between B and 2 B, the ranks of A and A[p] are equal with
probability at least 1− (n log(n) + 2nΩ)/B.

Proof. Let r denote the rank of A and let A′ be an r × r nonsingular minor of A.
The condition that p does not divide det(A′) is sufficient to ensure that rank(A) =
rank(A[p]). By Hadamard’s bound (see [21, Theorem 16.6]), the bit-size of det(A′) is
bounded r

2
log(r) + r Ω and the conclusion follows from Lemma 9.

Theorem 3. Let L ∈ Z[x][∂] be a linear differential operator of order n, with coefficients
of degree at most d and bit-size `. Let c ≥ 0 and N ≥ n + d. The algorithm ModBs-
GsPolySols below computes the dimension of the Q-vector space of polynomial solutions
of L of degree at most N using

Olog

((
(n + d)2 M(

√
nN) + (n + d)ω

√
nN

)
I
(
log(N)

))
bit operations. The Olog( ) notation hides terms depending polynomially
in log(`), log(n), log(d) and log(log(N)). The algorithm chooses uniformly at
random a prime number in {B, . . . , 2B}, where B = Olog(n

2`N log1+c(N)) and outputs
the correct result with probability at least 1− 1

2 logc(N)
.

ModBsGsPolySols

Input: L ∈ Z[x][∂] with x = 0 ordinary, N ≥ 1.
Output: the dimension of the Q-vector space of the
polynomial solutions of L of degree at most N .

1. Choose p prime in {B, . . . , 2B} (B defd below);

2. Compute the reduction C[p] of C modulo p;

3. Compute A[p] = C[p](N) · · · C[p](−β) I[p];

4. Return the integer n− rank(A[p]).
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Proof. Let us first study the correctness of the algorithm. Let, as before, o = α + β
denote the order of the recurrence (2). Since x = 0 is ordinary, we have n ≤ o ≤ n + d
and the indicial polynomial u−α(x) has the form ax(x − 1) · · · (x − n + 1), where a has
size bounded by `. On the other hand, since p > d + n + N , none of the elements
−β + o−n+1, . . . , o+N is zero in Fp. This ensures that u−α(i+ o)[p] is invertible in Fp,
for all −β ≤ i ≤ N , provided that p does not divide a. Therefore, if p is not a divisor
of a, the recurrence (3) can be used for −β ≤ i ≤ N and the conclusion of Proposition 1
still holds for L[p] (over Fp). In other words, the algorithm returns the dimension of the
Fp-vector space of the solutions in Fp[x] of L[p].

Let us call p a good prime if p does not divide a and if, simultaneously, the matrices A
and A[p] have the same rank. In short, we have just proved that if the algorithm chooses
a good prime p, then the dimension of polynomial solutions over Q and over Fp coincide,
and thus, the algorithm ModBsGsPolySols returns the correct output. Let us now
estimate the probability of choosing a good prime.

Using Lemma 6, the entries of A have sizes upper bounded by Γ = N(6n log(o) +
n log(N) + `) + 2d(7n log(o) + n log(d) + `), which is, by the assumption N ≥ d, in
Olog(`N +nN log(N)). Let B be the integer B =

⌈
2 logc(N) (`+n log(n)+2nΓ)

⌉
, so that

B = Olog

(
n2`N log1+c(N)

)
.

Let us suppose that the prime p is chosen uniformly at random in the set of prime
numbers between B and 2B. Then, using Corollary 1, it is easy to infer that p is a good
prime with probability at least 1− 1

2 logc(N)
.

Let us finally prove the complexity estimate. Using the algorithm from Lemma 3,
Step 2 can be done using O((d + n) M(n) log(n)) operations in Fp. Step 4 can be done
using O(nω) operations in Fp. Since N ≥ d + n and p > N + 1, Theorem 2 can be used
to perform Step 3 and this concludes the complexity analysis, since every operation in Fp

costs O(I(log(p))) = Olog

(
I(log(N))

)
bit operations.

Remark 2. The algorithm ModBsGsPolySols can be easily modified, so as to re-
turn also the degrees of all the polynomial solutions, within the same complexity bound
Olog(M(

√
N)I(log(N))) and with the same probability.

Remark 3. Combining our two algorithms leads to an algorithm for computing polyno-
mial solutions which is output-sensitive. To see that, suppose that the indicial polynomial
of L has positive integer roots N1 < · · · < Nk = N and that the polynomial solutions
of L have degrees d1 < · · · < dr = d. Using our ModBsGsPolySols algorithm, we com-
pute the degrees di in bit complexity roughly linear in

√
N ; then, using our algorithm

BinSplitPolySols, we return a compact representation of solutions in bit complexity
roughly linear in d. If d � N , this strategy has its benefits; for instance, if d ≈

√
N , we

compute the solutions in bit complexity roughly linear in
√

N instead of N2 by the basic
algorithm.

Remark 4. To our knowledge, the only existing modular test for computing the dimen-
sion of the space of nonzero polynomial solutions was given in [18]. It consists in choosing
a “small prime”p and in returning the dimension of the Fp(x

p)-vector space of solutions
in Fp[x] of L[p]. There are at least two drawbacks of this method. First, it provides only
partial information (an upper bound on the dimension) and second, there exist families
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of examples on which it fails modulo any prime p. In contrast, our algorithm ModBs-
GsPolySols gives the dimension and the exact degrees of the polynomial solutions and
it returns a wrong output with (predictable) arbitrarily small probability.

4 General Case

So far, we have concentrated on the case when the origin is an ordinary point of the
differential equation. As already mentioned, one can always shift the equation to recover
this situation. However, the algorithm we have described at an ordinary point can also
be executed at a singular point, with minor changes that we are now going to describe.
Moreover, it turns out that it can be beneficial to execute the algorithm or parts of it at
a singular point. This is discussed below.

We first recall the properties of regular points that we have used: (i) the indicial
polynomial at 0 is ax(x − 1) · · · (x − n + 1); (ii) there are n linearly independent power
series solutions; (iii) the order o of the recurrence satisfies o ≥ n. In general, none of
these properties holds at a singular point. This has an impact on the basic algorithm as
well as its improved versions using binary splitting or the baby step/giant step technique.
The computation of a bound on the degree of solutions is unaffected, as well as the
computation of the recurrence. The main difference is in the computation of the initial
conditions and in the representation of these initial conditions in the output.

4.1 Valuations

The degree of the indicial polynomial u−α behaves like that of uβ and the computations
of its integer roots can be performed with the complexity described in Section 1.2. These
integer roots contain the possible valuations of power series (and in particular polynomial)
solutions.

4.2 Initial Conditions and Representation of Solutions

We now assume that there are integer roots 0 ≤ i1 < · · · < ik of the indicial polynomial
at 0 that are smaller than the upper bound N on the degree of polynomial solutions. The
compact representation of solutions is composed of the recurrence (2) and a set of vec-
tors (a1, . . . , ak) such that a basis of polynomial solutions is defined by the corresponding
equalities yij = aj. In the ordinary case, k = n and ij = j − 1 for j = 1, . . . , n so that
this representation is the same as before.

The number k is an upper bound on the dimension of power series solutions of valua-
tion smaller than N . We now describe the incremental computation of matrices that play
the same rôle as matrixAinit of Algorithm BinSplitPolySols. A new phenomenon is that
the vanishing of the indicial polynomial u−α at the ij’s in (2) induces linear constraints
on the values of yi1 , . . . , yij−1

.
The algorithm starts with a matrix A1 which is the transpose of the 1 × o matrix

[0o−11]. We denote by J a Jordan block matrix of size o × o with 0 on the diagonal.
Then for j from 2 to k, the algorithm proceeds as follows

1. Compute A := C(ij − o− 1) · · · C(ij−1 − o + 1)Aj−1;
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2. Compute a matrix of maximal rank with linearly independent columns Fj such that
C(ij − o)AFj = 0;

3. Compute the product A := JAj−1Fj;

4. Extend A with a column [0o−11] and assign this to Aj.

At the end of the jth iteration, the columns of the matrix Aj give the coefficients of
indices ij−o+1, . . . , ij of elements of a basis of solutions of the differential equation in the
space of polynomials modulo xij+1. In Step 1, whenever ij = ij−1 + 1, the product of the
C’s has to be interpreted as the identity matrix. In this step, the solutions defined by Aj−1

are extended up to index ij − 1. In Step 2, the columns of Fj form a basis of the kernel
of C(ij − o)Aj−1, this is where the linear constraints imposed by the vanishing of u−α(ij)
are taken into account. The next two steps obtain the new basis up to index ij. Note that
at the end of all iterations, the number of columns of Ak is exactly the dimension s ≤ k
of the space of power series solutions of the equation.

This algorithm also applies in the nonsingular case. Step 1 never changesAj; in Step 2,
Fj is always the identity matrix and the net result of all these steps is the computation
that is performed in Step 2 of BinSplitPolySols.

4.3 Final Steps

The next part of the algorithm is similar to BinSplitPolySols:

1. Compute the matrix A = C(N) · · · C(ik − o + 1)Ak;

2. Compute a matrix of maximal rank with linearly independent columns B such
that AB = 0.

At this stage, we have the dimension of the space of polynomial solutions as the number
of columns of B. The values of the coefficients of indices ik − o + 1, . . . , ik of a basis
of this space are the entries of AkB. The next step is to recover the coefficients of
indices i1, . . . , ik−1 of these elements. These are obtained with no matrix inversion by the
following incremental process for j decreasing from k to 2:

1. Compute the matrix product B := BFj;

2. Output the last line of Aj−1B.

Again, in the ordinary case, this algorithm also applies, and since the Fj are all equal to
identity, we recover Step 5 of BinSplitPolySols.

5 Criteria

An obvious necessary condition for the existence of nonzero polynomial solutions can be
derived from the discussion in the previous section: for all singular points, the indicial
polynomial must have integer roots that are smaller than the bound on the degrees
provided by the indicial polynomial at infinity. This gives a clearly effective criterion [4].

Another criterion can be deduced from the general algorithm above.
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Proposition 2. If the matrix Ak computed by the algorithm has rank at least o, then the
linear differential equation has a nonzero polynomial solution.

The rank of the matrix Ak is the dimension of the space of power series solutions
of the differential equation. In the special case when the point is ordinary, this rank
is n. The difference o − n is exactly β in this case and the hypothesis of Proposition 2
becomes β = 0. In this case, we obtain the following corollary that gives a polynomial
time criterion.

Corollary 2. Let L =
∑n

i=0 ai ∂
i ∈ Z[x][∂] be a linear differential operator such that

deg(ai) ≤ i, for i = 0, . . . , n. Then L has a nonzero polynomial solution if and only if
the indicial polynomial at infinity uβ has a positive integer root. Moreover, if ` denotes a
bound on the bit-size of the coefficients of the ai(x), then we can detect if L has a nonzero
polynomial solution using Olog(n

2 (` + n)) bit operations.

Before giving the proof, let us point out a reformulation with a more analytic flavour
of the hypothesis in Corollary 2: x = ∞ is a regular singular point and a0 ∈ Z.

Proof. We can suppose that x = 0 is an ordinary point, since a translation preserves
the degrees of the coefficients ai(x) and it does not affect the dimension of the space of
polynomial solutions of L. Now, the existence of polynomial solutions is a consequence
of the previous proposition. The complexity estimate follows from Lemma 2.

For singular points, the order o can be smaller than the order of the differential
equation. The rank of the matrix Ak is always at least 1 because of the extra column
that is added at the end. Thus another special case of this proposition is [12, Theorem 2]
on recurrences of order 1.

We do not obtain a generalization of the polynomial complexity estimates in Corol-
lary 2, since the indices ij are not polynomially bounded in the size of the differential
equation. However, in a case when the bound N on the degrees is huge and none of the
other criteria has worked, it might be a good idea to spend some time on the singularities
where the order o is small and the largest ik not too large and compute the corresponding
matrix. Also, the recurrences at irregular singular points have smaller order. This can
be helpful even if the criterion does not apply.

Finally, we recall the useful criterion given by [22, Corollary 8.43]. For differential
equations of order 1, the matter is reduced to checking whether a logarithmic derivative
is that of a polynomial. This is done by partial fraction decomposition.

6 Experiments

We have implemented our algorithms BinSplitPolySols and ModBsGsPolySols in
the computer algebra systems Maple v. 9.5 and respectively Magma v. 2.11-2. Our
choice is motivated by the fact that both Magma and Maple provide implementations
of fast integer and polynomial arithmetic (using Karatsuba and FFT multiplications).
For instance, Maple now uses the GNU Multi Precision Arithmetic Library (GMP).
This is important, since in our experiments over Z, the computations require sometimes
up to millions of bits. Similarly, Magma employs asymptotically fast algorithms for
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performing arithmetic with univariate polynomials over Fp. These include Karatsuba
(for degrees greater then 64) and FFT-based methods (for degrees greater than 128)
for multiplication of polynomials. Again, this is crucial, since in our modular baby-
step / giant-step algorithm, the theoretical gains are valid only in conjunction with fast
polynomial multiplication.

We have implemented the basic algorithm in Maple. Since the performances of our
implementation are very similar to those of Maple’s function PolynomialSolutions
from the LinearFunctionalSystems package, we made the choice to report only timings
obtained with this function for the basic algorithm. We note that Maple provides another
implementation of (a variant of) the basic algorithm for finding polynomial solutions,
namely the function polysols from DEtools package, but LFS clearly outperforms
DEtools on all the set of examples we considered. This is why we have chosen to
display only the timings of LFS for comparisons.

The equations used in these tables are as follows: Example 1 is
√

Nxy′′−xy′+Ny = 0;
Example 2 is (1−x2)y′′−2xy′+N(N+1)y = 0, where N is a perfect square. In both cases,
the dimension of polynomial solutions is 1 and any nonzero solution has degree N . In the
first example, the recurrence is of first order, in the second one it has order o = 2, but only
two terms of the recurrence are nonzero. Example 3 is (x2+2x+1)y′−(Nx+N−1)y = 0
and Example 4 is 2x3y′′ + ((3− 2N)x2 + x)y′ − (Nx + 1)y = 0. The second one is taken
from [12]. The first one has no nonzero polynomial solutions, but its indicial equation
at infinity has N as root; the recurrence has order o = 2. The second one has a 1-
dimensional space of polynomial solutions and the recurrence has order 1. Finally, in
Example 5 we consider a family of LDEs indexed by N of order n = 3; the recurrence (2)
has order o = 7, the indicial equation is (x − d)(x −N) = 0, but there is no solution in
of degree N .

All the tests have been performed on the computers of the MEDICIS resource center2,
using a 2 GB, 2200+ AMD 64 Athlon processor. The timings given in the tables are in
seconds.

The timings shown in these tables prove that the theoretical complexity estimations
can be observed in practice:
– The cost of LFS is multiplied by more than 16 when the degree N is multiplied by 4.
This is in agreement with the fact that the basic algorithm has complexity (at least)
quadratic in N . Moreover, the memory requirements are also roughly proportional to N2,
and this naturally becomes prohibitive (the mention > 4Gb means that the execution
was stopped after 4Gb of memory were exhausted.)
– The cost of BinSplit is multiplied by slightly more than 5 when the degree N is mul-
tiplied by 4. This accurately reflects the behaviour of the GMP’s integer multiplication.
– The cost of BsGs is multiplied by slightly more than 2 when the degree N is multiplied
by 4. Again, this is in line with the complexity estimates and shows that the polynomial
multiplication we are using is quite good.
– When the recurrence has 2 terms (as in Examples 1 and 2) the algorithm BinSplit
essentially computes scalar factorials; moreover, there is no linear algebra step. In the op-
posite case (o > 1), BinSplit multiplies (pairs of) matrices of small size, but containing
potentially huge integer entries. Moreover, the practical cost of the linear algebra step

2http://www.medicis.polytechnique.fr
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Example 1 Example 2
N L.F.S. BinSplit BsGs L.F.S. BinSplit BsGs
24 .38e-1 .13e-1 .1e-1 .13e-1 .9e-1 .0
26 .18e-1 .15e-1 .0e-1 0.03 .11e-1 .0
28 .58e-1 .15e-1 .0e-1 0.05 .25e-1 .0
210 .21 .17e-1 .1e-1 0.21 .3e-1 .1e-1
212 1.39 .45e-1 .1e-1 0.92 .14 .0
214 26.87 .59e-1 .4e-1 6.48 .55 .2e-1
216 > 4Gb .29 .8e-1 174.19 2.75 .5e-1
218 1.47 .1 > 4Gb 14.31 .11
220 7.63 .45 74.52 .25
222 42.07 1.08 398.6 .59
224 215.62 2.57 > 1h 1.35
226 6.13 7.34
228 14.69 17.46
230 37.57 42.07
232 96.21 102.65

becomes far from negligible. An important improvement (not implemented yet) is to use
Strassen’s algorithm for integer matrices and extensions like Waksman’s algorithm; the
gain should be already visible on 2× 2 matrices.
– The timings in Example 5 clearly shows the advantage of using the baby step/giant
step method to first compute the actual largest degrees before computing the solutions.
This way, we get an algorithm that is output-sensitive. Without this information, even
though the polynomial solutions have moderate degrees (up to d = 81), LFS spends a
lot of time in (uselessly) unravelling recurrences up to order N = d2. (The entries ? are
estimated timings.)

7 Extensions

We now list a few direct extensions of this work, where the same algorithmic ideas can
be applied, possibly after some preprocessing.

7.1 Inhomogeneous LDEs

The differential equation L(y) = Q(x) where Q is a polynomial gives rise to the same
recurrence as (2), except that the right-hand side is nonzero for i ≤ deg Q. This leads to
new affine constraints for the coefficients of power series of index up to deg Q + α. The
rest of the computation is governed by (2) and can be dealt with by the methods we have
described.

7.2 Parameterized Case

The problem is that of finding k-tuples (λ1, . . . , λk) such that the differential equation
L(y) = λ1Q1(x)+· · ·+λkQk(x) has polynomial solutions. Here, the Qi’s are given polyno-
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Example 3 Example 4
N L.F.S. BinSplit BsGs L.F.S. BinSplit BsGs
22 .30e-1 .10e-1 .0 .22e-1 .4e-2 .0
24 .12e-1 .12e-1 .0 .22e-1 .2e-2 .0
26 .30e-1 .12e-1 .0 .216 .1e-2 .1e-1
28 .50e-1 .72e-1 .0 .7e-1 .2e-2 .1e-1
210 .2 .87e-1 .0 .54 .6e-2 .1e-1
212 1.10 .271 .1e-1 3.74 .3e-1 .3e-1
214 16.27 1.11 .2e-1 48.80 .9e-1 .6e-1
216 > 4Gb 5.06 .5e-1 > 4Gb .54 .19
218 24.08 .12 3.15 .45
220 115.39 .27 16.72 1.09
222 416.81 .68 93.64 2.57
224 2199.9 1.57 506.81 6.17
226 > 1h 3.77 > 1h 14.84
228 9.25 35.91
230 22.85 88.14

mials. This problem is important in differential versions of Zeilberger’s algorithm [3, 16].
As above, after α+maxi deg Qi steps, the rest of the computation is as before and results
in a system that is linear in the λi’s.

7.3 Linear Recurrence Equations

It is not true in general that the coefficients of polynomial solutions of a linear recurrence
obey a linear recurrence, if the polynomials are expressed in the monomial basis. How-
ever, it has been observed in [1] that the coefficients in a binomial basis do obey such
a recurrence. Then, all the algorithmic techniques we have described here also apply.
This gives fast algorithms for polynomial solutions of linear recurrences with polynomial
coefficients having integer coefficients. As in the differential case, inhomogeneous and
parameterized inhomogeneous equations can also be handled. This has an impact on
various algorithms of computer algebra (Gosper, Zeilberger, Chyzak). We plan to come
back to this application in future work.
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