ON A NICE INTEGRAL EQUALITY (I)

ALIN BOSTAN

ABSTRACT. We give an elementary proof of a nice equality of definite integrals.

The following infinite family of equalities between definite integrals was proven in
https://arxiv.org/abs/1911.01423 by S. B. Ekhad, D. Zeilberger and W. Zudilin,
using the Almkvist-Zeilberger “creative telescoping” algorithm:
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for any reals a > b > 0 and any non-negative integer n.

Here we offer an elementary alternative proof. The starting point is the observation
that after multiplying both sides of (1) by ¢, and then summing on n from 0 to co,
this family of identities is equivalent to the fact that the two integrals I (¢) and I5(t)
between = 0 and x = 1 of the rational functions F (z,t) and Fy(z,t) defined by
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The second observation is that F; and F5 admit the closed form antiderivatives:
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where
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Using the identity
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we deduce that I1(t) = G1(1,t) — G1(0,t) and I(t) = Ga(1,t) — G2(0,t) admit
the following closed forms:
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and, similarly
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Therefore, I) = I5. O
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