
THÈSE

présentée à

l’École polytechnique

Pour obtenir le titre de Docteur en Sciences

Spécialités : Mathématiques et Informatique

Alin Bostan

Algorithmique efficace pour des opérations
de base en Calcul formel

Soutenue le 9 décembre 2003

devant le jury composé de :

Jean-Pierre Ramis, président,

Richard Brent,

Gilles Villard, rapporteurs,

Philippe Flajolet,

Marc Giusti,

François Morain,

Bruno Salvy, examinateurs.



1





Table des matières

I Introduction 5

1 Introduction 7
1.1 Problématique et contributions : vue d’ensemble . . . . . . . . . . . . . . . . 8

1.1.1 Quelques problèmes illustratifs . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Autres contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Paradigmes algorithmiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Diviser pour régner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Pas de bébés / pas de géants . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Conversions entre diverses représentations . . . . . . . . . . . . . . . 16

1.3 Détail des contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Principe de Tellegen . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Sur les complexités de l’évaluation et de l’interpolation . . . . . . . . 23
1.3.3 Algorithmes rapides pour deux nombres algébriques . . . . . . . . . . 27
1.3.4 Algorithmes rapides pour les systèmes polynomiaux . . . . . . . . . . 29
1.3.5 Algorithmes rapides pour les récurrences linéaires à coefficients poly-

nomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.6 Algorithmes rapides pour les opérateurs différentiels linéaires . . . . . 41

II Fundamental algorithms 43

2 Multiplication of polynomials, matrices and differential operators 45
2.1 Multiplication of univariate polynomials and power series . . . . . . . . . . . 46

2.1.1 Karatsuba’s multiplication . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Practicality issues of fast algorithms . . . . . . . . . . . . . . . . . . 48
2.1.4 The function M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 Problems related to matrix multiplication . . . . . . . . . . . . . . . . . . . 52

2.3.1 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3 Characteristic polynomials . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.4 Powers of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.5 Evaluation of polynomials on matrices . . . . . . . . . . . . . . . . . 54

1



2.4 Multiplication of linear differential operators . . . . . . . . . . . . . . . . . . 55

3 Newton iteration 58
3.1 Newton’s algebraic iteration: generic algorithm . . . . . . . . . . . . . . . . 59
3.2 Application to operations on power series . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Inversion and division . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Division of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.3 Logarithm and exponential . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Other operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Rational fractions and linear recurrence sequences with constant coefficients 64
3.3.1 Linear recurrent sequences with constant coefficients . . . . . . . . . 65
3.3.2 Taylor expansion of rational fractions . . . . . . . . . . . . . . . . . . 65
3.3.3 Computing a selected term of a linearly recurrent sequence . . . . . . 66
3.3.4 Computing the minimal polynomial of a recurrent sequence. . . . . . 67

3.4 Newton iteration for polynomial matrices . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Application to rational system solving . . . . . . . . . . . . . . . . . 71
3.4.2 Storjohann’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Tellegen’s Principle Into Practice 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Tellegen’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Polynomial multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Plain multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Karatsuba’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3 The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Polynomial Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Plain division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Sieveking-Kung’s division . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Modular multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Transposed Vandermonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6.1 Going up the subproduct tree . . . . . . . . . . . . . . . . . . . . . . 88
4.6.2 Multipoint evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Conclusion, future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Polynomial evaluation and interpolation on special sets of points 92
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 The subproduct tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Evaluation and interpolation on the monomial basis . . . . . . . . . . 98
5.2.3 Conversions between Newton basis and monomial basis . . . . . . . . 98
5.2.4 Newton evaluation and interpolation . . . . . . . . . . . . . . . . . . 100

5.3 Transposed conversion algorithms . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Special case of an arithmetic progression . . . . . . . . . . . . . . . . . . . . 102

2



5.5 The geometric progression case . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6 Appendix: Fast conversions between monomial and Bernstein basis . . . . . 115

6 Equivalence between polynomial evaluation and interpolation 118
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Computational model, main result . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Program transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 From interpolation to evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5 From evaluation to interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 125

III Fast Algorithms for Algebraic Numbers 127

7 Fast Computation with Two Algebraic Numbers 128
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2 Fast Conversion Algorithms between Polynomials and Power Sums . . . . . . 135

7.2.1 The case of characteristic zero or large enough . . . . . . . . . . . . . 138
7.2.2 The small positive characteristic case – Schönhage-Pan’s algorithm . 140

7.3 Two Useful Resultants that Can Be Computed Fast . . . . . . . . . . . . . . 140
7.3.1 Computing the composed product . . . . . . . . . . . . . . . . . . . . 141
7.3.2 Computing the composed sum in characteristic zero or large enough . 142
7.3.3 Computing the composed sum in small characteristic . . . . . . . . . 143
7.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Computing the Diamond Product . . . . . . . . . . . . . . . . . . . . . . . . 147
7.4.1 Computations in the quotient algebra . . . . . . . . . . . . . . . . . . 149
7.4.2 Power projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4.3 Representing the linear forms . . . . . . . . . . . . . . . . . . . . . . 153
7.4.4 Complexity of the product in Q . . . . . . . . . . . . . . . . . . . . . 153
7.4.5 Complexity of the transposed product . . . . . . . . . . . . . . . . . 155
7.4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Applications and Related Questions . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.2 Related questions and open problems . . . . . . . . . . . . . . . . . . 160

8 Fast Algorithms for Zero-Dimensional Polynomial Systems using Duality163
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2 On the Dual of the Quotient Algebra . . . . . . . . . . . . . . . . . . . . . . 170
8.3 Computing Minimal Polynomials and Rational Parametrizations . . . . . . . 173

8.3.1 Computing a minimal polynomial . . . . . . . . . . . . . . . . . . . . 173
8.3.2 Computing parametrizations . . . . . . . . . . . . . . . . . . . . . . . 175
8.3.3 Complexity estimates for the first approach . . . . . . . . . . . . . . 177

8.4 Speeding up the Power Projection . . . . . . . . . . . . . . . . . . . . . . . . 178
8.4.1 Baby step / giant step techniques . . . . . . . . . . . . . . . . . . . . 178
8.4.2 Complexity estimates for the second approach . . . . . . . . . . . . . 180

8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3



8.6 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.6.1 Minimal polynomials of generic elements and local factors . . . . . . 185
8.6.2 High order derivations, dual spaces and generating series . . . . . . . 189
8.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

IV Fast Algorithms for Linear Recurrences and Linear Differ-
ential Operators 193

9 Linear Recurrences with Polynomial Coefficients 195
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2 Shifting evaluation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.3 Computing one selected term of a linear sequence . . . . . . . . . . . . . . . 202
9.4 The Cartier-Manin operator on hyperelliptic curves . . . . . . . . . . . . . . 206
9.5 Point-counting numerical example . . . . . . . . . . . . . . . . . . . . . . . . 210
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

10 Fast Algorithms for Linear Differential Operators 213
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.2 From differential operators to power series solutions . . . . . . . . . . . . . . 215
10.3 Apparent singularities and bounds on the coefficients . . . . . . . . . . . . . 216
10.4 From power series solution to differential operators . . . . . . . . . . . . . . 219

10.4.1 Pade-Hermite approximation . . . . . . . . . . . . . . . . . . . . . . . 219
10.4.2 Wronskians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10.5 Application to lclm and tensor product . . . . . . . . . . . . . . . . . . . . . 221
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Table des figures 226

Bibliographie 228

4



Première partie

Introduction

5



6



Chapitre 1

Introduction

Contents

1.1 Problématique et contributions : vue d’ensemble . . . . . . . . 8
1.1.1 Quelques problèmes illustratifs . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Autres contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Paradigmes algorithmiques . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Diviser pour régner . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Pas de bébés / pas de géants . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 Conversions entre diverses représentations . . . . . . . . . . . . . . 16

1.3 Détail des contributions . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.1 Principe de Tellegen . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Sur les complexités de l’évaluation et de l’interpolation . . . . . . . 23
1.3.3 Algorithmes rapides pour deux nombres algébriques . . . . . . . . 27
1.3.4 Algorithmes rapides pour les systèmes polynomiaux . . . . . . . . 29
1.3.5 Algorithmes rapides pour les récurrences linéaires à coefficients po-

lynomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.6 Algorithmes rapides pour les opérateurs différentiels linéaires . . . 41

7



1.1 Problématique et contributions : vue d’ensemble

Cette thèse concerne la conception et l’implantation d’algorithmes efficaces pour des
opérations de base en calcul formel, ainsi que leurs applications aux domaines connexes,
comme la cryptographie ou la théorie effective des nombres. Un objectif important est le
défrichage systématique du champ algorithmique des polynômes, en vue d’une extension
vers leurs analogues non-commutatifs – les opérateurs différentiels linéaires – du point de vue
de la complexité. Ce mémoire traite d’abord des questions dans un contexte univarié, en y
développant une bôıte à outils qui sera ensuite importée dans le cadre plus compliqué des
systèmes de polynômes à deux ou plusieurs variables, pour aboutir à des résultats concernant
l’algorithmique des opérateurs différentiels.

Complexité des algorithmes. L’idéal de tout programmeur est de proposer le meilleur
algorithme possible pour le problème à résoudre. Le mot meilleur a bien sûr, de nombreuses
acceptions, mais ici, il s’agit de minimiser la durée des calculs et, lorsque cela est possible,
l’encombrement en mémoire. Pour ce faire, une tâche capitale est de donner une estimation
du temps et de l’espace mémoire que nécessitera l’exécution d’un algorithme avant même
de le programmer. C’est la notion de complexité d’un algorithme qui formalise ce genre de
mesures. Elle aide à comparer les performances de différents algorithmes entre eux, de la
manière la plus intrinsèque possible, c’est-à-dire, idéalement, en dehors de toute dépendance
vis-à-vis de l’ordinateur ou du langage de programmation utilisé.

Complexité arithmétique et complexité binaire. Sans donner une définition précise,
par complexité arithmétique d’un algorithme manipulant des objets appartenant à une cer-
taine structure algébrique R, on entendra le nombre d’opérations qu’il effectue dans R. En
règle générale, le décompte des opérations arithmétiques n’est pas un indicateur fidèle du
temps réel de calcul, car des phénomènes de croissance peuvent se produire à l’intérieur
même de R (des exemples typiques sont R = Z et R = Z[X]) 1. Par contre, si R est un corps
fini, il est légitime de considérer que les opérations arithmétiques ont un coût constant.

Dans cette thèse, sauf mention contraire, on n’estimera systématiquement que la complexité
arithmétique des algorithmes présentés. Lorsqu’il s’agira de tester leur comportement pra-
tique pour confirmer les résultats théoriques de complexité, on choisira systématiquement
un corps fini R.

Les objectifs. De nombreuses formules mathématiques n’ont qu’une valeur théorique et
ne débouchent pas sur des calculs pratiques. Un exemple célèbre est constitué par le calcul du
déterminant d’une matrice ; dans ce cas, la définition mathématique fournit un algorithme
de complexité exponentielle, qui devient vite impraticable et auquel on préférera sans aucun
doute l’algorithme du pivot de Gauss, de complexité cubique.

Bien sûr, cet exemple porte en lui une violence pédagogique. Faire baisser la complexité d’un
algorithme exponentiel dans la classe polynomiale relève d’une petite révolution scientifique

1Une mesure plus réaliste est la complexité binaire, qui représente le nombre d’opérations élémentaires
(bit) que doit réaliser le processeur pour exécuter un algorithme.

8



et, historiquement, cela est un phénomène assez rare. Typiquement, la quasi-totalité des
questions sur lesquelles je me pencherai dans cette thèse admettent des solutions de com-
plexité polynomiale, c’est-à-dire en O(nα), où n est la taille de la sortie et α ≥ 1. L’enjeu
est de trouver des solutions algorithmiques qui diminuent l’exposant α et, lorsque cela est
faisable, les constantes cachées dans les O( ). En effet, il existe des algorithmes de bonne
complexité asymptotique qui, à cause d’énormes constantes cachées derrière le O( ), ne de-
viennent efficaces qu’à partir d’un seuil inintéressant d’un point de vue pratique, pour la
technologie actuelle.

Nous considérons aussi des problèmes pour lesquels on connâıt déjà des algorithmes quasi
optimaux, c’est-à-dire presque linéaires en la taille de la sortie, à des facteurs logarithmiques
près. Dans de telles situations, on s’intéresse à gagner des facteurs logarithmiques et même
constants. À première vue, cela peut parâıtre une préoccupation d’importance mineure, mais
en pratique, pour certaines applications au domaine de la cryptographie, par exemple, les
tailles des objets manipulés peuvent atteindre plusieurs dizaines de milliers et le gain d’un
facteur constant s’avère un progrès d’importance capitale.

Bornes inférieures de complexité. Face à un problème donné, on peut se demander
si l’algorithme qu’on utilise est le meilleur, ou bien si on peut espérer trouver mieux. Ceci
amène à étudier la borne inférieure des complexités de tous les algorithmes susceptibles de
résoudre le problème donné. Ce n’est pas une tâche facile, puisqu’il faut prendre en compte
une infinité d’algorithmes. Les questions liées aux bornes inférieures font l’objet d’un domaine
de recherche très actif – la théorie de la complexité algébrique. À très peu d’exceptions près,
je ne vais pas aborder ce point dans la suite.

? ? ? ? ? ?

1.1.1 Quelques problèmes illustratifs

Voici une brève liste de problèmes qui illustre les progrès algorithmiques réalisés dans cette
thèse. Après avoir donné leur énoncés, j’indique la complexité de la meilleure solution
précédemment connue, ainsi que la complexité de la solution proposée dans cette thèse.

1. Étant donné un polynôme P de degré d à coefficients dans un corps k, ainsi que des
éléments x0, . . . , xd ∈ k, déterminer le nombre d’opérations arithmétiques (additions,
multiplications et inversions dans k) nécessaires pour calculer les valeurs P (xi), pour
i = 0, . . . , d. À exprimer en fonction du coût M(d) de la multiplication de deux po-
lynômes de degré d.

9



Avant :
7
2

M(d) log(d) + O(M(d)).

Cette thèse :
3
2

M(d) log(d) + O(M(d)).

Remarque. Le gain est ici d’un facteur constant et se fait clairement sentir en
pratique pour les tailles des polynômes manipulés en cryptographie (d est de
l’ordre de plusieurs centaines de milliers). Le même type de gain est obtenu pour
le problème inverse – l’interpolation, ainsi que, de manière systématique, pour une
classe très vaste de problèmes connexes, voir les Chapitres 4 et 5.

2. Étant donnés des éléments distincts x0, . . . , xd en progression géométrique dans un
corps k, ainsi que des points quelconques y0, . . . , yd ∈ k, quel est le nombre d’opérations
arithmétiques nécessaires pour déterminer l’unique polynôme P ∈ k[X] de degré au
plus d, tel que P (xi) = yi, pour i = 0, . . . , d.

Avant :
9
2

M(d) log(d) + O(M(d)).

Cette thèse :
2M(d) + O(d).

Remarque. Ce résultat peut être vu comme une généralisation de la transformée de
Fourier inverse. Le résultat analogue étendant la transformée de Fourier directe est
connu depuis les années 1970 [198, 27]. Combinant ces deux résultats, on obtient
des gains logarithmiques dans les approches évaluation-interpolation, lorsque le
choix des points d’évaluation est libre. Un exemple d’application immédiate est
l’amélioration de la complexité du produit des matrices polynomiales. Ces résultats
sont détaillés dans le Chapitre 5.

3. Soit k un corps de caractéristique zéro ou supérieure à n, où n est une puissance de 2.
Soit g un polynôme de k[x], de degré inférieur à n et soit m ≥ 1. Quel est le nombre
d’opérations dans k nécessaires pour déterminer les coefficients de la somme définie∑m

i=0 g(i), en tant que polynôme en m ?

Avant :
O(n2).

Cette thèse :
2M(n) log(n) + O(M(n)).

Remarque. Ce résultat est une conséquence d’algorithmes de conversion rapide
entre la base monomiale et la base des factorielles descendantes. Ces algorithmes
sont décrits dans le Chapitre 5.

10



4. Étant donnés deux polynômes f et g de degré d, à coefficients dans un corps k de ca-
ractéristique nulle ou supérieure à d2, quel est le nombre d’opérations dans k nécessaires
pour déterminer le polynôme de k[X] de degré d2, dont les racines sont les sommes
α+ β d’une racine α de f et β de g ?

Avant :
Olog

(
d2 M(d)

)
,

où la notation Olog indique la présence de facteurs logarithmiques en d.

Cette thèse :
O

(
M(d2)

)
.

Remarque. La solution classique passe par un calcul de résultant bivarié. Le gain
obtenu dans cette thèse est d’un facteur linéaire en d, si la multiplication ra-
pide (par FFT) des polynômes est utilisée. L’algorithme correspondant est quasi-
optimal, car presque linéaire en la taille de la sortie. Le même résultat est valable
si au lieu des sommes α + β, on recherche les produits αβ ou les quotients α/β.
Ces résultats sont présentés au Chapitre 7.

5. Étant donnés deux polynômes f et g de degré d, à coefficients dans un corps k de
caractéristique nulle ou supérieure à d2, ainsi qu’un polynôme H(X,Y ) ∈ k[X, Y ], quel
est le nombre d’opérations dans k nécessaires pour déterminer le polynôme de k[X] de
degré d2, dont les racines sont les fonctions H(α, β) d’une racine α de f et β de g ?

Avant :
Olog

(
d4 M(d)

)
.

Cette thèse :
O

(
d

(
M(d2) + MM(d)

))
,

où MM(d) désigne le nombre d’opérations requises par la multiplication de deux
matrices d× d.

Remarque. La solution classique passe par un calcul de résultant trivarié. Si la
multiplication rapide (par FFT) des polynômes est utilisée, notre alternative
économise (au moins) un facteur linéaire en d. En utilisant l’algorithme sous-
cubique de Strassen [234] pour la multiplication des matrices, notre algorithme
devient sous-quadratique en la taille de la sortie. D’un point de vue théorique,
en utilisant l’estimation plus fine MM(d) = O(d2.376) [69] notre solution fournit
une borne supérieure de O(d1.688), qui n’est pas loin de la borne inférieure O(d1.5)
suggérée par un résultat général de Paterson et Stockmeyer [190]. On renvoie au
Chapitre 7 pour une présentation détaillée de ces résultats.

6. Étant donné un polynôme f ∈ k[X] de degré d et un entier N ≥ 0, quel est le
nombre d’opérations dans k nécessaires pour déterminer le coefficient de XdN/2 du
polynôme fN ?

11



Avant :
O

(
M(dN)

)
.

Cette thèse :
O

(
MM(d)

√
N + d2 M(

√
N) log(N)

)
.

Remarque. La solution classique consiste à calculer tous les coefficients de fdN/2

modulo XdN/2+1 par exponentiation dichotomique. Si le degré d de f est constant
et seul N varie, notre algorithme, présenté au Chapitre 9, gagne un facteur de
l’ordre de

√
N . La solution se généralise au problème du calcul d’un terme d’une

suite récurrente linéaire à coefficients polynomiaux.

7. Étant données les valeurs que prend un polynôme P ∈ k[X] de degré d sur la suite
arithmétique 0, 1, . . . , d, et un élément a ∈ k, quel est le nombre d’opérations dans k
nécessaires pour déterminer les valeurs translatées P (a), . . . , P (a+ d) ?

Avant :
O

(
M(d) log(d)

)
.

Cette thèse :
O

(
M(d)

)
.

Remarque. La solution classique consiste à déterminer les coefficients de P dans
la base monomiale par interpolation aux points 0, 1, . . . , d, et à évaluer ensuite P
sur les points a, . . . , a + d. Notre solution repose sur des manipulations de séries
génératrices bien choisies. Le gain obtenu est d’un facteur logarithmique, voir le
Chapitre 9 pour plus de détails.

8. Étant donné un opérateur différentiel linéaire L d’ordre n à coefficients polynomiaux
de degré n, quel est le nombre d’opérations nécessaires pour déterminer la relation de
récurrence à coefficients polynomiaux satisfaite par une solution série formelle S de
l’équation différentielle LS = 0?

Avant :
O

(
n2 M(n)

)
.

Cette thèse :
O

(
nM(n) log(n)

)
.

Remarque. La solution classique est une adaptation de la méthode des coefficients
indéterminés. Notre méthode, développée au Chapitre 5, exploite les calculs ra-
pides avec les nombres de Stirling et gagne un facteur n.

12



1.1.2 Autres contributions

Voici une liste complémentaire des contributions qu’apporte cette thèse à l’algorithmique
de base en calcul formel. Pour une présentation systématique et détaillée, on consultera la
Section 1.3.

Chapitre 4 La mise en pratique du principe de transposition de Tellegen et des versions
transposées explicites des algorithmes de base pour les opérations linéaires sur les po-
lynômes à une variable.

Chapitre 5 De nouveaux algorithmes pour les conversions rapides entre diverses bases po-
lynomiales (monomiale, de Newton, de Bernstein) et sur certains ensembles distingués
de points (suites arithmétiques ou géométriques). Amélioration de la complexité du pro-
duit des matrices polynomiales. Calcul rapide des nombres de Stirling et application à la
sommation symbolique des polynômes.

Chapitre 6 Équivalence entre l’évaluation multipoint et l’interpolation dans la base mono-
miale.

Chapitre 8 Calcul rapide de polynômes minimaux et caractéristiques dans des algèbres
quotient de dimension zéro. Amélioration du calcul des paramétrisations rationnelles uni-
variées des variétés de dimension zéro.

Chapitre 9 Calcul rapide d’un terme de large indice d’une suite récurrente à coefficients
polynomiaux.

Chapitre 10 Une approche de type évaluation / interpolation pour le calcul des plus petit
commun multiple et produit symétrique d’opérateurs différentiels linéaires.

? ? ? ? ? ?

1.2 Paradigmes algorithmiques

Pour construire des algorithmes, il y a peu de recettes générales. Cependant, quelques prin-
cipes méthodologiques sont à la base de la plupart des algorithmes fondamentaux les plus
efficaces en calcul formel. Il s’agit des techniques de diviser pour régner et des pas de bébés
/ pas de géants, ainsi que des conversions rapides entre différentes structures de données
utilisées. Passons brièvement en revue ces paradigmes algorithmiques, qui sont à la base des
réponses qu’a pu apporter cette thèse aux questions présentées dans la section précédente.

1.2.1 Diviser pour régner

Une stratégie algorithmique bien connue est le diviser pour régner. Informellement, pour
résoudre un problème de taille n, ceci consiste à :

1. diviser les données en b ≥ 1 paquets de taille à peu près égale à n/c, où c ≥ 2 ;

2. exécuter récursivement la manipulation désirée sur chaque paquet ;

3. combiner les solutions de tous les sous-problèmes pour former la solution du problème
initial.

13



Cette démarche se prête bien à une écriture récursive : le diviser pour régner est répété sur
les données morcelées jusqu’à n’avoir à traiter que des données élémentaires, sur lesquelles
le travail est immédiat. La complexité C(n) de la procédure est gouvernée par la récurrence

C(n) ≤ bC(n/c) + S(n), pour tout n ≥ 1,

où S(n) désigne le nombre d’opérations nécessaires pour finir d’accomplir la tâche désirée
sur toutes les données, lorsqu’elle a déjà été effectuée sur chacun des b paquets. Si, de plus,
la fonction de surcoût S est super-linéaire, c’est-à-dire, si elle vérifie les conditions

S(m+ n) ≥ S(m) + S(n) et S(n) ≥ n, pour tout m,n ≥ 1,

alors il est aisé de déduire l’expression

C(n) =





O (S(n)) si b < c,
O (S(n) logc(n)) si b = c,
O

(
S(n)nlogc(b)−1

)
si b > c.

Le cas b = 1 est parfois appelé récursion extrapolative, tandis que le cas b = 2 est appelé
diviser pour régner récursif.

Récursion extrapolative. L’exemple probablement le plus simple de diviser pour régner
est l’exponentiation binaire (ou dichotomique) : pour un élément r d’un anneau R, et pour
un entier n ≥ 2, le calcul de rn par la formule

rn =





(
r

n
2

)2
si n est pair,

r
(
r

n−1
2

)2

si n est impair,

mène à un algorithme utilisant O(log(n)) opérations dans R, au lieu de O(n) opérations
requises par l’approche näıve. Par exemple, f 1000000 coûte 23 multiplications dans R.

Notons aussi que la méthode d’itération de Newton, traitée au Chapitre 3 de cette thèse,
peut être vue comme une version itérative de récursion extrapolative.

Un exemple de diviser pour régner récursif. Considérons le problème suivant : étant
donné un polynôme P de degré d à coefficients dans un anneau R et un élément a ∈ R,
calculer les coefficients du polynôme translaté Q(X) = P (X + a). De manière équivalente, il
s’agit de calculer les valeurs des d premières dérivées de P au point a.

Notons pour commencer que la solution näıve requiert O(d2) opérations dans R. Une solution
de meilleure complexité [253, 25] consiste à diviser P = P0 +Xd/2P1, avec P0 et P1 de degrés
inférieurs à d/2. Ainsi, l’égalité P (X + a) = P0(X + a) + (X + a)d/2P1(X + a) permet de
retrouver P (X + a) par une approche diviser pour régner. Par exponentiation binaire, le
polynôme (X + a)d/2 se calcule en O(M(d)) opérations dans R. Ainsi la complexité C(d)
vérifie la récurrence C(d) = 2C(d/2) +O(M(d)), d’où C(d) = O(M(d) log(d)).

Notons enfin que sous l’hypothèse supplémentaire que les éléments 1, 2, . . . , d sont inversibles
dans R, il existe une solution de nature différente [5], qui économise le facteur logarithmique
en d, voir aussi le Chapitre 5 de cette thèse.

14



1.2.2 Pas de bébés / pas de géants

Un deuxième principe algorithmique souvent utilisé tout au long de cette thèse est la tech-
nique dite des pas de bébés / pas de géants. Illustrons cette méthode sur les deux exemples
suivants, de nature très similaire.

Prenons k un corps, N un entier positif et A une k-algèbre de dimension D (pas forcément
commutative). Par exemple, A peut être une algèbre de polynômes ou de séries formelles,
une algèbre de type quotient, ou bien une algèbre de matrices.

– Évaluation polynomiale dans A. Étant donné un polynôme P ∈ k[X] de degré N − 1 et
un élément u ∈ A, calculer P (u).

– Projection des puissances dans A. Étant donné u ∈ A et une application k-linéaire ` :
A→ k, calculer les éléments

L =
[
`(1), `(u), `(u2), . . . , `(uN−1)

]
.

Ces questions apparâıtront de manière récurrente dans cette thèse. Elles interviennent, par
exemple, dans le calcul efficace de polynômes minimaux ou caractéristiques dans A.

Les deux problèmes admettent une solution näıve, utilisant O(N) multiplications dans A
(des opérations non-scalaires) et O(N) additions et multiplications par des éléments de k
(des opérations scalaires). Notons qu’une opération scalaire coûte D opérations dans k. Par
la suite, la notationM(A) désignera le nombre d’opérations dans k nécessaires pour effectuer
une multiplication dans A. Il est naturel de supposer queM(A) ≥ D.

Dans [190], Paterson et Stockmeyer ont proposé l’algorithme suivant pour l’évaluation po-
lynomiale, qui utilise des pas de bébés / pas de géants et qui fait une économie de O(

√
N)

multiplications dans A par rapport à la méthode directe. Pour simplifier, supposons dans ce
qui suit que N est un carré parfait. L’idée est d’obtenir la valeur de P (u) en écrivant l’égalité

P (u) =
∑

0≤j<
√

N

Pj(u) u
j
√

N , avec deg(Pj) <
√
N, (1.1)

qui suggère la procédure suivante :

Pas de bébés Calculer 1, u, u2, . . . , u
√

N , en utilisant
√
NM(A) opérations dans k.

Pas de géants Calculer u
√

N , u2
√

N , . . . , u(
√

N−1)
√

N et retrouver la valeur P (u) à l’aide de
l’équation (1.1). Cela nécessite

√
NM(A)+O(ND) opérations dans k, car le calcul de

chacune des
√
N valeurs Pj(u) requiert O(

√
N) opérations scalaires.

La complexité de cet algorithme est de O(
√
NM(A) +ND) opérations dans k 2.

Pour le problème de projection des puissances, Shoup [225, 227] a proposé une solution

similaire, qui repose sur l’utilisation de la structure de A-module de l’espace dual Â des
formes k-linéaires sur A : pour a ∈ A et ` ∈ Â, on définit le produit transposé

a ◦ ` : b 7−→ `(ba).

2Qui plus est, il est montré dans [190] que cet algorithme est optimal par rapport aux opérations non-
scalaires, car il existe des polynômes de k[X] de degré N qui ne peuvent pas s’évaluer en moins de

√
N

multiplications dans A.

15



L’idée est alors d’utiliser l’équation

`(ui
√

N+j) =
(
ui
√

N ◦ `)(uj), 0 ≤ i, j ≤
√
N − 1. (1.2)

pour en déduire l’algorithme suivant :

Pas de bébés Calculer les éléments 1, u, . . . , u
√

N−1 et v = u
√

N .

Pas de géants Calculer les formes linéaires `, v ◦ `, . . . , v
√

N−1 ◦ ` et les évaluer sur les
éléments ui, i <

√
N , pour enfin retrouver les valeurs de L par l’équation (1.2).

Comme le produit transposé v◦ : Â → Â par l’élément v est la transposée de l’application
k-linéaire v· : A→ A, un théorème algorithmique – le principe de transposition de Tellegen –
implique qu’une multiplication transposée coûte M(A) opérations dans k. Ceci montre que
l’algorithme précédent est également de complexité

√
N M(A) +O(DN).

Notons que cette estimation est impliquée par un argument théorique (un théorème d’exis-
tence) mais ne fournit pas un algorithme tant que l’opération produit transposé n’est pas
rendue effective. La vraie difficulté consiste donc à exhiber un algorithme qui calcule ce pro-
duit transposé. Un tel algorithme a été obtenu par Shoup [227] dans le cas A = k[X]/(f).
L’une des contributions de cette thèse est de montrer comment, à partir d’un algorithme
pour la multiplication dans A, obtenir de manière automatique un algorithme de même com-
plexité pour le produit transposé. Ceci est possible grâce aux outils de transposition effective
rendus explicites dans un contexte univarié dans le Chapitre 4 et étendus à une situation
multivariée aux Chapitres 7 et 8.

1.2.3 Conversions entre diverses représentations

En calcul formel les objets mathématiques n’existent que par leur représentation finie : les
calculs sont toujours faits dans un espace vectoriel de dimension finie, les manipulations se
faisant sur les coordonnées des éléments dans une base fixée.

Le choix de la base peut s’avérer d’une importance cruciale pour la simplification des calculs.
Par exemple, les polynômes sont usuellement représentés par leurs coefficients dans la base
monomiale, mais il existe d’autres représentations alternatives, par exemple, par les valeurs
prises sur un ensemble fixé de points. Il est important de noter que certaines tâches algorith-
miques, comme la multiplication, sont plus faciles à résoudre dans la seconde représentation,
alors que la première est plus adaptée pour d’autres opérations, comme la division.

Ainsi, pour des besoins d’efficacité des calculs, il est crucial d’examiner dans quelle
représentation un problème donné est plus facile à traiter, et aussi, de trouver des algo-
rithmes rapides pour la conversion d’une représentation à l’autre.

Illustrons notre propos par quelques exemples de telles conversions pour les polynômes et
séries à une variable, ainsi que pour les opérateurs différentiels à coefficients polynomiaux.

1. Une fraction rationnelle p(X)/q(X) peut être représentée par son développement en
série à l’ordre deg(p)+deg(q). Un algorithme de conversion directe exploite l’inversion
rapide des séries, basée sur l’itération de Newton, voir le Chapitre 3. La conversion

16



d’une série rationnelle en fraction rationnelle s’opère de manière efficace par un algo-
rithme d’approximation de Padé rapide, qui revient essentiellement à un algorithme
d’Euclide étendu, voir la Section 3.3.4. Dans le cas particulier très important où p = q′,
on peut avantageusement utiliser l’exponentielle rapide d’une série comme alternative
de meilleure complexité. Ces conversions sont utilisées à maintes reprises dans cette
thèse, notamment aux Chapitres 6 et 7.

2. Un polynôme de degré d peut être représenté par les valeurs qu’il prend sur un ensemble
fixé de d + 1 points a0, . . . , ad, ou, plus généralement, par les restes de sa division
par d + 1 polynômes fixés. Algébriquement, les conversions d’une représentation à
l’autre reviennent à une forme effective du théorème des restes chinois ; dans le cas
des réductions par X − ai, il s’agit de l’évaluation multipoint et de l’interpolation
de Lagrange. Les Chapitres 4, 5 et 6 de cette thèse contiennent des contributions à
l’algorithmique de l’évaluation et l’interpolation.

3. Un polynôme P de degré d peut être représenté par ses d premières sommes de
puissances (de Newton) Ni(P ) =

∑
P (α)=0 α

i. Algébriquement, les conversions d’une

représentation à l’autre traduisent le passage de l’algèbre quotient A = k[X]/(P ) vers

son dual Â. En effet, les Ni(P ) représentent les coordonnées de la forme linéaire Trace

∈ Â sur la base duale de la base canonique 1, x, . . . , xd−1. Algorithmiquement, ces
conversions sont réalisées de manière efficace en exploitant le fait que la série génératrice∑

i≥0Ni(P )X i est rationnelle, égale à réc(P )′/réc(P ), et en utilisant le point 1. Ce type
de conversion est utilisé intensivement au Chapitre 7.

4. Un opérateur différentiel en d/dx à coefficients dans k(x) peut être représenté en tant
qu’opérateur différentiel en la dérivation d’Euler δ = x d

dx
. Les conversions entre ces

deux représentations s’avèrent équivalentes aux conversions d’un polynôme de k[x]
entre la base monomiale 1, x, x2, . . . et la base des factorielles descendantes 1, x, x(x−
1), x(x−1)(x−2), . . . Un algorithme rapide pour ces questions est donné au Chapitre 5
de cette thèse.

5. Un opérateur différentiel d’ordre D en d/dx à coefficients polynomiaux de degré au plus
N peut être représenté par (une base) des solutions séries tronquées à l’ordre O(ND),
au voisinage d’un point ordinaire. La conversion directe revient à la résolution d’une
récurrence linéaire à coefficients polynomiaux. La conversion réciproque peut se faire
par un calcul d’approximants de Padé-Hermite, ou bien par une approche liée aux
Wronskiens. L’efficacité de ces conversions est analysée au Chapitre 10.

? ? ? ? ? ?

Voici maintenant un résumé détaillé du contenu de ce mémoire. Les résultats de complexité ne
sont pas toujours donnés dans leur forme la plus précise, qui nécessite davantage de notations ;
on consultera notamment les introductions de chaque chapitre pour plus de détails.

17



1.3 Détail des contributions

1.3.1 Principe de Tellegen

Le Chapitre 4 traite de la mise en pratique du principe de transposition de Tellegen,
ensemble de règles de transformation pour les algorithmes linéaires. Y sont décrites
des versions transposées explicites des algorithmes de base sur les polynômes, ainsi
que de nouveaux algorithmes pour l’évaluation multipoint et l’interpolation, qui
améliorent les complexités précédemment connues. Les résultats donnés dans cette
partie seront systématiquement utilisés tout au long de ce mémoire. Ce chapitre fait
l’objet de l’article [35] co-écrit avec G. Lecerf et É. Schost.

Vue d’ensemble

Le principe de transposition de Tellegen affirme que, étant donnée une matrice M, l’exis-
tence d’un algorithme qui calcule le produit matrice-vecteur Mv entrâıne l’existence d’un
algorithme qui calcule le produit Mtw de la matrice transposée par un vecteur, en utilisant
essentiellement le même nombre d’opérations arithmétiques.

Considérons l’exemple suivant, qui illustre ce principe en utilisant la représentation par
graphes des programmes linéaires. L’algorithme direct prend les valeurs x1 et x2 en entrée et
renvoie y1 = ax1 +bx2 et y2 = cx1 +dx2 en sortie. Les arêtes représentent des multiplications
par les valeurs constantes a, b, c, d.

+

+a

d

b
c

x2

x1

y2

y1

Transposer cet algorithme revient à inverser le flot du calcul, c’est-à-dire, inverser le sens
des flèches, échanger les + par les • et échanger les entrées et les sorties. L’algorithme
ainsi obtenu prend y1, y2 en entrée et renvoie x1 = ay1 + cy2 et x2 = by1 + dy2. Il calcule
donc bien l’application transposée de l’application initiale. De plus, le nombre d’opérations
arithmétiques utilisées par les deux algorithmes est le même : 4 multiplications et 2 additions.

a

d

b
c

x2

x1

y2

y1

+

+

Historiquement, cette technique de transformation des programmes linéaires est issue du do-
maine des circuits électroniques [239, 29, 192, 8] et le principe même remonte aux années 50 ;
on en trouve les traces dans un article de Tellegen [239] sur les réseaux électriques. Le
théorème de Tellegen a été redémontré dans les années 80, par Kaminski, Kirkpatrick et
Bshouty [128], dans le cadre de la théorie de la complexité algébrique. En calcul formel, il a

18



été introduit par Fiduccia, Hopcroft et Musinski [80, 81, 119] et popularisé dans les travaux
de Ben-Or, Tiwari [19], Kaltofen, Canny, Lakshman [49, 124], Shoup [223, 225, 227], Lecerf,
Schost [152], Hanrot, Quercia, Zimmermann [115], Zippel [267], . . .

Canny et al. [49] remarquent que le principe de transposition est un cas particulier du mode
inverse en différentiation automatique pour le calcul du gradient d’une fonction. En effet,
les entrées de Mtv sont les dérivées partielles de uMtv par rapport aux coordonnées de u.
Ce produit n’est autre que vMu, et le théorème de Baur-Strassen [14] montre que l’on peut
calculer ces dérivées partielles au prix d’un surcoût linéaire.

Dans la littérature du calcul formel, à peu d’exceptions près [115, 225], l’usage classique
du principe de Tellegen se résume au schéma suivant : connaissant un algorithme pour une
certaine opération, on en déduit l’existence d’un algorithme pour l’opération duale, de même
complexité. Cependant, lorsqu’il s’agit d’exhiber un tel algorithme, le principe n’est guère
utilisé ; à la place, on préfère développer des algorithmes spécifiques pour chaque problème.

Le but principal de ce chapitre, qui est, en même temps, l’un des fils conducteurs de toute
cette thèse, est de démontrer que la mise en pratique du principe de Tellegen est bien possible
et peut se faire de manière systématique et (quasi-)automatique.

Informellement parlant, on pourrait dire que les programmes sont directement transposés,
d’une manière similaire à celle utilisée en différentiation automatique [96], mais en tirant
profit des spécificités linéaires. Par ailleurs, lorsqu’un problème linéaire doit être résolu, la
démarche adoptée consiste à comprendre son problème dual, pour lequel on peut espérer
trouver un algorithme rapide. Si tel est le cas, en re-transposant ce dernier, une solution
rapide pour le problème de départ est également obtenue.

Illustrons notre propos par un exemple. Considérons le problème de l’évaluation d’un po-
lynôme P de degré n en une valeur a. Ceci est une opération linéaire sur les coefficients de P ,
de matrice M = [1, a, . . . , an] dans les bases canoniques. En regardant la transposée de M,
on déduit aisément que le problème transposé est le suivant : pour une valeur donnée x0,
calculer les produits aix0, pour 0 ≤ i ≤ n. Pour ce problème, un algorithme naturel consiste
à multiplier x0 par a, ensuite multiplier le résultat par a, et ainsi de suite.

Comment obtenir le transposé de cet algorithme ? En simplifiant, la réponse est que l’on
n’a qu’à parcourir l’algorithme direct en sens inverse, échanger les entrées et les sorties,
puis remplacer chaque instruction par sa transposée, obtenue en appliquant un nombre très
restreint de règles syntaxiques. Dans ce processus, les boucles for montantes deviennent des
boucles for descendantes.

De cette manière, on obtient automatiquement un algorithme pour le problème de départ, à
savoir, l’évaluation de P sur a. Dans notre cas, il s’avère que l’algorithme transposé cöıncide
avec la fameuse méthode de Horner, voir la Figure 1.1.

Enfin, on peut se demander pourquoi l’algorithme transposé utilise n opérations de plus que
l’algorithme direct. Cette perte s’explique par le théorème de Tellegen : il s’agit tout simple-
ment de la différence entre le nombre de colonnes et le nombre de lignes de la matrice M.

19



M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , a
nx0] [p0, . . . , pn] 7→∑n

i=0 pia
i

Input x0. Input p = [p0, . . . pn].
p0 ← x0; for j from n downto 1 do
for j from 1 to n do pj ← apj;
pj ← pj−1; pj−1 ← pj + pj−1;
pj ← apj; x0 ← p0;

Output p = [p0, . . . , pn]. Output x0.

Fig. 1.1 – Le schéma de Horner (à droite) obtenu en transposant l’algorithme qui résout le
problème dual.

problème direct problème transposé
multiplication produit médian

•
0 xd

× •
0 xd

= • •
0 xd x2d

•
0 xd

× • •
0 xd x2d

= •
0 xd x2d x3d

division euclidienne extension de récurrences
évaluation multipoint sommes de Newton pondérées

interpolation décomposition en éléments simples
(systèmes de Vandermonde) (systèmes de Vandermonde transposés)

composition modulaire projection des puissances
. . . . . .

Fig. 1.2 – Dictionnaire de Tellegen pour les polynômes univariés.

Notre principale contribution est de démontrer l’utilité pratique du principe de Tellegen.
Dans cette optique, nous avons utilisé les mêmes techniques de transformation de pro-
grammes linéaires que dans l’exemple précédent afin de transposer de manière systématique
les algorithmes concernant les opérations linéaires de base sur les polynômes à une variable :
multiplication, division euclidienne, évaluation et interpolation multipoint.

Par conséquent, et contrairement à un préjugé longuement entretenu, il en ressort qu’il est
utile de transposer des algorithmes, cela permettant parfois de trouver des solutions algo-
rithmiques de meilleure complexité ou de clarifier le statut de certains algorithmes existant
dans la littérature, qui se trouvent être, en fait, les transposés d’algorithmes bien connus.

Détail des contributions Nous avons établi une liste d’opérations linéaires de base sur
les polynômes à une variable (voir la Figure 1.2) et transposé les algorithmes connus pour
les opérations directes.

20



Produit médian

Nous avons commencé par transposer la multiplication des polynômes de degré au plus n
par un polynôme fixé de degré m. La transposée de cette opération consiste à extraire les
coefficients de xm, xm+1, . . . , xm+n du produit d’un polynôme de degré au plus m+n par un
polynôme fixé de degré m. Näıvement, le produit transposé peut être calculé en multipliant
deux polynômes de degré m et m + n, avant d’extraire les coefficients désirés. Le principe
de Tellegen implique que pour tout algorithme de multiplication de polynômes de degrés m
et n, il existe un algorithme qui calcule le produit transposé en le même nombre d’opérations
arithmétiques, à des facteurs linéaires en m et n près. Si m = n, un facteur 2 est ainsi gagné.

Dans le cas m = n = d, cette opération est appelée produit médian (voir la Figure 1.2) et
a été indépendamment étudiée par Hanrot, Quercia et Zimmermann [115] dans le contexte
de l’accélération des calculs de base sur les séries formelles (inversion, extraction de racine
carrée, . . .), à l’aide de l’opérateur de Newton.

Je signale que cette opération est centrale dans toute la suite de ma thèse. Elle constitue une
brique de base, sur laquelle se fonde une bonne partie des algorithmes présentés. Calculer
vite des produits transposés est donc un problème important à résoudre avant de passer à
la transposition d’autres algorithmes plus compliqués.

Il y a plusieurs algorithmes pour multiplier des polynômes, à chacun correspond donc un
algorithme pour calculer le produit transposé. Il s’agit d’expliciter chacun de ces algorithmes,
ce que nous avons fait pour l’algorithme de multiplication classique, pour l’algorithme de
Karatsuba et pour la transformée de Fourier rapide (FFT).

Division avec reste et extension des récurrences à coefficients constants

Nous avons ensuite traité la division avec reste d’un polynôme par un polynôme fixé ; nous
avons montré que son dual est l’extension des récurrences linéaires à coefficients constants :
étant donnés les n premiers termes d’une suite qui vérifie une récurrence linéaire à coefficients
constants, il s’agit de calculer la tranche des n termes suivants. Ceci permet de clarifier le
statut de l’algorithme de Shoup [223, 227] pour l’extension de récurrences, originellement
conçu pour éviter le principe de transposition : il est en fait la transposée de l’algorithme de
Strassen [235] pour la division avec reste des polynômes.

Évaluation multipoint et interpolation

En calcul formel, une opération importante est l’évaluation multipoint : étant donné un
polynôme P =

∑m
i=0 piT

i de degré m, il s’agit de calculer les valeurs que prend P sur un
ensemble de points a0, . . . , am. C’est un problème algorithmique intéressant en soi, mais
qui trouve une application notoire, en conjonction avec l’interpolation, dans les approches
modulaires. C’est aussi un outil de base pour un certain nombre de questions algorithmiques
concernant la multiplication (dense ou creuse) des polynômes et des séries multivariés [49,
127, 152].

En termes matriciels, l’évaluation multipoint se traduit par un produit matrice-vecteur
entre la matrice de Vandermonde associée aux points ai et le vecteur des coefficients du

21



polynôme P , voir la Figure 1.3. Ainsi, le problème transposé est la multiplication d’une
matrice de Vandermonde transposée par un vecteur, c’est-à-dire, le calcul de sommes de
Newton pondérées (on les appelle ainsi car si tous les pi valent 1, on retrouve les sommes
des puissances des ai).




1 a0 · · · am
0

1 a1 · · · am
1

..

.
..
.

..

.
1 am · · · am

m


 ·




p0

p1

..

.
pm


 =




P (a0)
P (a1)

..

.
P (am)


 et




1 1 · · · 1
a0 a1 · · · am

..

.
..
.

..

.
am
0 am

1 · · · am
m


 ·




p0

p1

..

.
pm


 =




P
piP

aipi

..

.P
am

i pi


 .

Fig. 1.3 – L’évaluation multipoint et sa transposée, les sommes de Newton pondérées.

Nous proposons un algorithme rapide pour le calcul de ces sommes de Newton. Par transpo-
sition, nous en déduisons un algorithme pour l’évaluation multipoint de même complexité,

3

2
M(m) log(m) +O

(
M(m)

)
,

où M(m) représente le nombre d’opérations dans le corps de base nécessaires pour multiplier
deux polynômes de degré au plus m.

Ceci améliore (d’un facteur constant) les algorithmes classiques d’évaluation, dus à Borodin
et Moenck [30, 169] et revisités par Strassen [235] et Montgomery [171], voir aussi [255,
Section 10.1]. Comme les algorithmes classiques, notre nouvel algorithme repose sur une
stratégie diviser pour régner, mais remplace, à chaque niveau de récursion, les divisions avec
reste par des produits médians, moins coûteux.

Comme conséquence, nous obtenons également des accélérations (par des facteurs constants)
de l’interpolation (c’est-à-dire, la résolution des systèmes de Vandermonde) et de son
problème dual (la résolution de systèmes de Vandermonde transposés). De plus, nos méthodes
s’étendent au cas plus général du Théorème des restes chinois.

Enfin, nous avons implanté dans la librairie NTL [226] de Shoup tous les algorithmes traités
précédemment. Ces implantations fournissent une validation pratique convaincante du prin-
cipe de Tellegen. En effet, le rapport de 1 entre les temps d’exécution des algorithmes directs
et leurs transposés, est bien respecté en pratique. La Figure 1.4 en donne une illustration,
dans le cas de l’évaluation multipoint. L’axe des abscisses représente le degré des polynômes,
l’axe des ordonnées donne le rapport de temps d’exécution entre l’algorithme direct et l’algo-
rithme transposé. En bas, j’indique l’algorithme utilisé pour la multiplication des polynômes.
Naturellement, les versions transposées des multiplications sont utilisées dans l’algorithme
transposé de l’évaluation multipoint.

22



0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100 120 140 160 180 200

evaluation multipoint

| näıve | Karatsuba | Fast Fourier Transform |

Fig. 1.4 – Rapports de temps de calcul – algorithme direct et transposé.

1.3.2 Sur les complexités de l’évaluation et de l’interpolation

Nous donnons des estimations de complexité pour les problèmes d’évaluation et
interpolation multipoint dans diverses bases polynomiales. Nous étudions en par-
ticulier des cas où les points d’évaluation forment une progression arithmétique
ou géométrique. Pour ces deux questions, nous donnons des algorithmes améliorant
(d’un facteur constant ou logarithmique) les résultats précédemment connus. Comme
applications, nous obtenons des algorithmes rapides pour des questions liées aux
calculs avec les opérateurs différentiels, pour la sommation symbolique polynomiale,
ainsi que pour la multiplication des matrices polynomiales. Dans un deuxième temps,
nous montrons que, sur des corps de caractéristique nulle, l’évaluation et l’interpo-
lation multipoint ont des complexités équivalentes, à un nombre constant de multi-
plications de polynômes près. Les résultats de ces chapitres sont contenus dans deux
prépublications en collaboration avec É. Schost [38, 37].

Nous avons décrit dans le chapitre précédent des algorithmes rapides pour l’évaluation et
l’interpolation dans la base monomiale, sur un ensemble arbitraire de points. Ces algorithmes
ont une complexité de O(M(n) log(n)) opérations, où M(n) représente la complexité de l’al-
gorithme utilisé pour la multiplication des polynômes de degré n. Si la FFT est employée,
M(n) est de l’ordre de O(n log(n) log(log(n))), donc ces algorithmes sont presque optimaux,
à des facteurs logarithmiques près.

Dans ce chapitre, nous nous penchons sur des questions connexes à l’évaluation et à l’interpo-
lation. Plus précisément, d’une part nous étudions des algorithmes rapides d’évaluation / in-
terpolation dans d’autres bases polynomiales, d’autre part nous cherchons de possibles
améliorations, pour des ensembles distingués de points d’évaluation.

Un exemple de base alternative associée aux points x0, . . . , xn−1 est la base de Newton, formée
par les polynômes

1, (x− x0), (x− x0)(x− x1), . . . , (x− x0) · · · (x− xn−2).

23



Un cas particulier important est constitué par la base des factorielles descendantes

1, x1 = x, x2 = x(x− 1), x3 = x(x− 1)(x− 2), . . . ,

utilisée en algorithmique des opérateurs différentiels et en sommation symbolique [3, 193,
191, 255, 92].

L’évaluation et l’interpolation de Newton sont alors définies comme les problèmes
d’évaluation-interpolation dans la base de Newton :
– Étant donnés x0, . . . , xn−1 et v0, . . . , vn−1, l’interpolation de Newton consiste à déterminer

les coefficients f0, . . . , fn−1 tels que le polynôme

F = f0 + f1(x− x0) + f2(x− x0)(x− x1) + · · ·+ fn−1(x− x0) · · · (x− xn−2) (1.3)

satisfasse F (xi) = vi, pour i = 0, . . . , n− 1.
– Étant donnés x0, . . . , xn−1 et f0, . . . , fn−1, l’évaluation de Newton consiste à calculer les

valeurs v0 = F (x0), . . . , vn−1 = F (xn−1), où F est le polynôme donné dans la formule (1.3).

Problématique et détail des contributions

Nous considérons les trois problèmes suivants :

1. les conversions entre les bases monomiale et celle de Newton,

2. l’évaluation et l’interpolation dans la base monomiale,

3. l’évaluation et l’interpolation de Newton.

Pour toutes ces questions, des algorithmes de complexité O(M(n) log(n)) existent déjà [25].
Un premier objectif est d’expliciter les constantes cachées derrière le O( ) dans ces estimations
de complexité.

Notre but principal est alors d’obtenir des algorithmes de meilleure complexité pour ces trois
questions dans des cas où la suite des points d’évaluation (xi) a des propriétés spéciales.

En effet, il est bien connu que les formules de différences divisées qui sont à la base des
algorithmes quadratiques pour ces trois questions [133, 208] se simplifient considérablement
lorsque les points xi forment une progression arithmétique ou géométrique. Nous montrons
comment obtenir des algorithmes rapides exploitant de telles simplifications.

Le cas d’une progression arithmétique. Dans le cas arithmétique, Gerhard [92] a
montré que l’évaluation et l’interpolation de Newton peuvent se réaliser en M(n) + O(n)
opérations 3. À partir de ce résultat, nous obtenons des améliorations (par des facteurs
constants) des deux autres questions. Ainsi, utilisant la base de Newton pour les calculs
intermédiaires, nous obtenons un nouvel algorithme pour l’interpolation monomiale sur une
suite arithmétique. En faisant rentrer en jeu le principe de Tellegen, nous en déduisons
également comme conséquence une amélioration de la complexité de l’évaluation monomiale.

3Nous montrons au passage que ces algorithmes sont les transposés des algorithmes de [5] pour le décalage
rapide des polynômes.

24



Ceci permet d’obtenir des conversions rapides entre la base monomiale et celle de Newton,
en utilisant à nouveau la base de Newton comme étape intermédiaire.

Notre interêt initial pour l’amélioration de l’évaluation et de l’interpolation sur une suite
arithmétique a été motivé par l’étude des récurrences linéaires à coefficients polynomiaux
présentée dans le Chapitre 9 de cette thèse. Le record cryptographique obtenu dans [34]
demande de travailler avec des polynômes de degré de dizaines (voire centaines) de milliers,
si bien que le gain d’un facteur constant devient intéressant dans ces ordres de grandeur.

D’autres applications sont également présentées ; elles concernent principalement les conver-
sions entre la base monomiale et celle des factorielles descendantes et mènent à des
améliorations des calculs des nombres de Stirling. Ceux-ci sont à la base des algorithmes
rapides pour la sommation symbolique des polynômes, ou encore pour la traduction entre
équations différentielles linéaires et récurrences linéaires. Cette traduction est une brique de
base pour les algorithmes décrits dans le dernier chapitre de la thèse.

Le cas d’une progression géométrique. Dans le cas géométrique, nous obtenons
également des algorithmes de complexité M(n)+O(n) pour l’évaluation et l’interpolation de
Newton. Ils reposent sur la traduction judicieuse en termes d’égalités de séries génératrices
des formules de q-différences divisées, similaires à celles utilisées dans le cas arithmétique
dans [92].

En considérant les problèmes transposés, nous déduisons que les conversions entre la base
monomiale et celle de Newton peuvent se faire en M(n) +O(n) opérations. Ces résultats ont
des conséquences intéressantes pour l’évaluation et l’interpolation dans la base monomiale.
Il est connu [198, 27, 5] que l’évaluation d’un polynôme de degré inférieur à n sur n points en
progression géométrique coûte 2M(n)+O(n) 4. Le résultat analogue pour le problème inverse
— l’interpolation dans la base monomiale sur des points en progression géométrique — était,
à notre connaissance, ouvert. En utilisant la base de Newton pour les calculs intermédiaires,
nous aboutissons à un algorithme de complexité 2M(n) +O(n) pour cette question.

En résumé, ceci permet d’exhiber des ensembles distingués de points dans l’anneau de base,
pour lesquels l’évaluation et l’interpolation sont moins chères que dans le cas général, à savoir
d’un facteur logarithmique.

Ce résultat a des conséquences importantes, car bon nombre d’algorithmes fondés sur une
approche modulaire peuvent bénéficier du gain du facteur logarithmique induit par notre
méthode. Comme exemple, nous améliorons la complexité de la multiplication des matrices
polynomiales. Cette dernière est en elle-même un problème algorithmique important, qui est
à la base, par exemple, des algorithmes d’approximation de Padé-Hermite (LLL-polynomial)
et des traitements rapides d’opérateurs différentiels et de récurrences à coefficients polyno-
miaux.

Équivalence entre évaluation et interpolation Il est bien connu que les complexités
de l’évaluation et de l’interpolation sont intimement liées. Par exemple, les algorithmes clas-

4En réalité, l’algorithme de [5] a une complexité de 4M(n) + O(n), mais l’emploi adéquat du produit
médian décrit dans le chapitre précédent fournit la borne annoncée.

25



siques d’interpolation rapide [156, 80, 169, 30, 235, 35] reposent tous sur l’évaluation multi-
point comme brique de base. Dans ce chapitre nous montrons que les questions d’évaluation
et d’interpolation sont équivalentes. Au lieu de donner des algorithmes particuliers, nous
comparons les complexités des deux questions, en étudiant des réductions d’une question à
l’autre.

De telles réductions ont déjà été proposées dans la littérature [127, 49, 184, 83, 104, 105,
25, 189]. Cependant, aucun théorème d’équivalence n’a encore été établi pour ces ques-
tions. Plus précisément, tous les résultats connus font entrer en jeu l’opération addition-
nelle suivante : étant donnés x0, . . . , xn, calculer les coefficients de

∏n
i=0(T − xi), c’est-à-dire

les fonctions symétriques élémentaires en les x0, . . . , xn. Si on note E(n), I(n) et S(n) les
complexités de l’évaluation multipoint, de l’interpolation et respectivement, du calcul des
fonctions symétriques élémentaires, les références citées donnent :

I(n) ∈ O(E(n) + S(n)) et E(n) ∈ O(I(n) + S(n)). (1.4)

Notons que les meilleurs résultats connus [255, Ch. 10] fournissent S(n) ∈ O(M(n) log(n)),
où M(n) est le coût de la multiplication des polynômes de degré n.

L’objectif de ce chapitre est de montrer qu’on peut remplacer les termes S(n) par M(n) dans
les estimations (1.4). Techniquement, notre contribution est de montrer que le calcul des
fonctions symétriques se réduit à celui d’une interpolation ou d’une évaluation, à un nombre
constant de multiplications de polynômes près.

De fait, nous démontrons un résultat plus précis, qui prend en compte la possible spécificité
des points d’évaluation, pour lesquels les problèmes d’évaluation / interpolation se simplifient
(cf. Chapitre précédent). Plus exactement, nous montrons que :

– étant donné un algorithme qui exécute l’évaluation sur une famille distinguée de points,
on peut en déduire un algorithme qui exécute l’interpolation sur la même famille de points
avec la même complexité, à un nombre constant de multiplications polynomiales près ;

– étant donné un algorithme qui exécute l’interpolation sur une famille distinguée de points,
on peut en déduire un algorithme qui exécute l’interpolation sur la même famille de points
avec la même complexité, à un nombre constant de multiplications polynomiales près.

Nous renvoyons au Chapitre 6 pour une formulation précise de ces résultats. Comme corol-
laires, nous déduisons en première instance les estimations annoncées :

I(n) ∈ O(E(n) + M(n)) et E(n) ∈ O(I(n) + M(n)).

Une deuxième conséquence concerne des résultats de [5]. Dans cet article sont étudiées des
familles de n points de C sur lesquelles tout polynôme de degré n s’évalue en O(M(n))
opérations. Nos résultats montrent que ces familles sont précisément celles sur lesquelles tout
polynôme de degré n peut être interpolé en O(M(n)) opérations. Par exemple, [5] montre
que si a, b, c, z ∈ C4, tout polynôme de degré n s’évalue sur les points de la suite a+bzi +cz2i

en temps O(M(n)). On en déduit alors que si ces points sont tous distincts, l’interpolation
d’un polynôme de degré n sur ces points s’effectue aussi en temps O(M(n)).

26



1.3.3 Algorithmes rapides pour deux nombres algébriques

Nous étudions certaines opérations élémentaires sur les nombres algébriques : les
produits et sommes composés et leur généralisation, le produit diamant de Brawley
et Carlitz. Pour ces questions, nous donnons des algorithmes améliorant sensiblement
la quasi-totalité des résultats connus. Ils reposent sur l’utilisation judicieuse de séries
génératrices et de la dualité algébrique, qui se traduit algorithmiquement par l’emploi
des méthodes de type pas de bébés / pas de géants. Les résultats de cette partie
sont contenus dans un article écrit en collaboration avec Ph. Flajolet, B. Salvy et
É. Schost [33].

Vue d’ensemble

Considérons deux polynômes f et g en une variable à coefficients dans un corps k. On définit
leur produit composé f ⊗g comme le polynôme unitaire de degré D = deg(f)deg(g) dont les
racines sont les produits αβ, où α et β parcourent l’ensemble des racines de f et g, comptées
avec leurs multiplicités. La définition de la somme composée est d’inspiration analogue. Plus
généralement, étant donné un polynôme H ∈ k[X,Y ], on définit le produit diamant de f et g
par la formule

f ¦H g =
∏

f(α)=0
g(β)=0

(
T −H(α, β)

)
.

L’opération ¦H a été introduite par Brawley et Carlitz [39], qui ont indiqué son utilité pour
la construction de polynômes irréductibles de grand degré sur un corps fini [39, 40, 222, 224].
Classiquement, le calcul des polynômes f ⊕ g et f ⊗ g se fait via les formules suivantes qui
les expriment en termes de résultants de polynômes bivariés [159] :

(f ⊕ g)(x) = Resy(f(x− y), g(y)),
(f ⊗ g)(x) = Resy(y

mf(x/y), g(y)).

Une formule similaire exprime le produit diamant f ¦H g comme un résultant trivarié :

(f ¦H g)(x) = Resy

(
Resz

(
x−H(z, y), f(z)

)
, g(y)

)
.

Si f et g ont des degrés de l’ordre de
√
D, l’exploitation directe de ces formules, par le

biais des meilleures méthodes de calcul des résultants multivariés [218, 154, 199, 255, 155],
mène à des algorithmes de complexité Olog

(
D3/2

)
pour le produit et la somme composés et

de complexité Olog

(
D5/2

)
pour le produit diamant (la notation Olog indique la présence des

termes logarithmiques en D cachés).

Contributions

Nous proposons comme alternative à ces méthodes classiques des algorithmes fondés sur
l’utilisation de la représentation de Newton des polynômes à une variable par les sommes

27



des puissances de leurs racines. Cette idée de changement de représentation a été suggérée
par Dvornicich et Traverso dans [74].

Les clés de notre approche sont, d’une part, l’utilisation d’algorithmes rapides [212, 188] pour
la conversion entre cette représentation alternative et la représentation monomiale et, d’autre
part, la reformulation en termes de séries génératrices des formules dans [74] exprimant f⊗g
et f ⊕ g dans leur représentation de Newton.

Ceci nous permet d’obtenir des algorithmes de complexité Olog(D), donc quasi-optimaux
(c’est-à-dire, linéaires, à des facteurs logarithmiques près, en la taille de la sortie) pour le
produit et la somme composés, dans le cas où la caractéristique du corps de base est nulle
ou suffisamment grande.

Si l’algorithme pour le produit composé est facile à adapter au cas de la caractéristique
quelconque, la situation est différente pour la somme composée. La difficulté provient du fait
que la formule pour f ⊕ g fait intervenir la série exponentielle, qui n’est pas définie en petite
caractéristique.

En introduisant une nouvelle idée de nature combinatoire, le calcul des sommes composées
en petite caractéristique p est ramené à une multiplication de deux séries multivariées
tronquées en degré p en chaque variable. L’algorithme qui en résulte est de complexité
Olog(D

1+1/ log(p)), donc meilleur que la méthode des résultants, au moins pour p ≥ 5. Qui
plus est, sa non-optimalité provient uniquement du fait qu’à l’heure actuelle on ne connâıt
pas d’algorithme optimal pour la multiplication de séries multivariées ; toute amélioration
de ce dernier problème aurait un impact positif sur notre algorithme.

Nous proposons aussi un algorithme rapide pour le calcul des produits diamants. Le point clé
de notre méthode consiste à relier la représentation de Newton de f ¦H g aux traces de la mul-
tiplication par les puissances successives de H dans l’algèbre quotient k[X, Y ]/(f(X), g(Y )).
Par ce biais, le calcul de f ¦H g est ramené à la résolution d’une instance particulière du
problème de projection des puissances dans l’algèbre quotient Q = k[X, Y ]/(f(X), g(Y )).

Pour ce dernier, nous proposons un algorithme explicite, de complexité

O
(√

D
(
M(D) +Dω/2

))
,

où la fonction M représente le nombre d’opérations dans k requises pour multiplier deux
polynômes de k[T ], tandis que ω est l’exposant de l’algèbre linéaire sur le corps k, c’est-à-
dire l’infimum des réels Ω tels que deux matrices n × n sur k peuvent être multipliées en
O(nΩ) opérations dans k.

Notons que le même résultat de complexité pour la projection des puissances a déjà été
obtenu par Shoup [224], voir aussi [124]. Cependant, son résultat est un théorème d’existence
(obtenu en appliquant le théorème de Tellegen) et aucun algorithme de cette complexité n’y
est exhibé. Par contre, notre algorithme est complètement explicite, voir la Section 7.4 du
Chapitre 7 pour plus de détails historiques à ce sujet.

Combinant cet algorithme avec les techniques de conversion rapide entre la représentation
de Newton et la représentation monomiale, nous obtenons un algorithme pour le produit

28



diamant de complexité O
(√

D
(
M(D) +Dω/2

))
. En prenant la meilleure borne connue ac-

tuellement ω < 2.376 [69], et en utilisant la FFT pour la multiplication des séries, pour
laquelle M(D) = Olog(D), la complexité théorique de notre algorithme est sous-quadratique,
en O(D1.688). Je précise que même en utilisant de l’algèbre linéaire näıve (ω = 3), nos
résultats améliorent la complexité de la méthode basée sur le calcul de résultants par un
facteur de

√
D.

Les résultats de complexité principaux de ce chapitre sont résumés dans le théorème ci-
dessous.

Théorème 1 Soit k un corps de caractéristique p, soient f et g deux polynômes unitaires
dans k[T ], de degrés m et n et soit D = mn.

1. Si p = 0 ou p > D, alors f ⊗ g et f ⊕ g peuvent être calculés en O(M(D)) opérations
dans k.

2. Si le produit composé f ⊗ g n’a aucune racine de multiplicité supérieure à p, alors il

peut être calculé en O
(
p M

(
D
p

)
log

(
D
p

)
+ M(D)

)
opérations dans k.

3. Si la somme composée f ⊕g n’a aucune racine de multiplicité supérieure à p, alors elle

peut être calculée en O
(
p M

(
D
p

)
log

(
D
p

)
+ M

(
D1+ 1

log(p)
))

opérations dans k.

Supposons que H ∈ k[X, Y ] est de degré au plus m− 1 en X et au plus n− 1 en Y .

4. Si le produit diamant f ¦H g n’a aucune racine de multiplicité supérieure à p, alors il

peut être calculé en O
(√

D
(
M(D) +Dω/2

))
opérations en k.

1.3.4 Algorithmes rapides pour les systèmes polynomiaux

Nous généralisons les méthodes de type pas de bébés / pas de géants au cadre des
systèmes de polynômes. Nous mettons au point un algorithme accéléré de calcul
de polynômes minimaux dans des algèbres quotient et nous donnons de nouvelles
formules de calcul d’une paramétrisation rationnelle fournissant une représentation
commode des solutions d’un système polynomial de dimension zéro. Ces formules
étendent des résultats de F. Rouillier [204]. Les algorithmes sous-jacents sont im-
plantés en Magma [32]. Ce travail a été mené en collaboration avec B. Salvy et É.
Schost [36].

Cadre général. Cette partie concerne la résolution des systèmes polynomiaux admettant
un nombre fini de solutions. Pour fixer les notations, soit k un corps et I un idéal de dimension
zéro de k[X1, . . . , Xn] engendré par des polynômes F1, . . . , Fs. Soit V(I) l’ensemble fini des
solutions (dans k

n
) du système F1 = 0, . . ., Fs = 0. La problématique de ce chapitre est

le calcul d’une description de la variété de dimension zéro V(I), à partir de la donnée des
polynômes F1, . . . , Fs.

Plus précisément, on cherche à déterminer une représentation des points de V(I) à l’aide
de polynômes à une variable uniquement. Le calcul de ce type de représentation relève des

29



questions d’élimination algébrique, dont le pendant géométrique est l’idée de projection :
on cherche à éliminer le plus possible de variables du système d’entrée, le but étant de se
ramener à ne manipuler que des polynômes à une variable, pour lesquels il est plus aisé de
compter, approcher ou isoler les solutions.

L’exemple suivant, emprunté à [98, 217], va guider notre intuition tout au long de cette
section. Considérons les deux courbes planes définies par les polynômes F1 = X2

1 − 1 et
F2 = X2

1 + 2X2
2 − 2 de Q[X1, X2] ; leur intersection est la variété de dimension zéro

V(I) =

{(
− 1,− 1√

2

)
,
(
− 1,

1√
2

)
,
(
1,− 1√

2

)
,
(
1,

1√
2

)}
.

Regardons pour commencer les projections de V(I) sur les axes de coordonnées ; il s’agit
respectivement des ensembles {−1, 1} et {−1/

√
2, 1/
√

2}. Dans les deux cas, ces projections
ne sont pas injectives ; on ne saura donc pas les inverser pour retrouver les points de la variété
à partir des points projections, voir la Figure 1.5.

x1

x2

Fig. 1.5 – Projection de V(I) sur l’axe X1.

La situation est différente si l’on considère la projection sur la droite oblique (D) d’équation
X1 − X2 = 0 (voir la Figure 1.6). Vu que la projection se fait parallèlement aux droites
d’équations X1 +X2 = constante, l’espace d’arrivée (D) est muni de la coordonnée

U =
1√
2

(X1 +X2)
5.

Les valeurs prises par la forme linéaire u sur V(I) sont

−1− 1√
2
, −1 +

1√
2
, 1− 1√

2
, 1 +

1√
2

5C’est un fait de géométrie affine élémentaire : pour toute forme linéaire u =
∑

i aixi la distance du
point α à l’hyperplan d’équation u = 0 est égale à u(α)√P

i a2
i

.

30



x1

x2

Fig. 1.6 – Projection de V(I) sur la droite (D) : X1 −X2 = 0.

et constituent les coordonnées des projections sur la droite (D). Ces valeurs cöıncident avec
les racines du polynôme mu = U4 − 3U2 + 1

4
, qui n’est autre que le polynôme minimal de u

dans l’algèbre quotient A = Q[X1, X2]/(F1, F2).

La variété projection étant gouvernée par le polynôme univarié mu, le calcul de ce dernier
est une opération d’élimination.

Il reste à élucider si (et comment) les points de V(I) peuvent être retrouvés à partir de leurs
projections. Ce n’est rien d’autre qu’un problème d’interpolation. En effet, étant injective
sur V(I), la fonction de projection est inversible au-dessus de son image.

Prenons par exemple la coordonnée X1 : il existe un unique polynôme G1 de degré 3, tel que

G1

(
−1− 1√

2

)
= −1, G1

(
−1 +

1√
2

)
= −1, G1

(
1− 1√

2

)
= 1, G1

(
1 +

1√
2

)
= 1.

En résumé, on obtient donc l’existence de deux polynômes G1, G2 de degré 3 fournissant une
description des points de V(I), de la forme :

V(I) =

{(
G1(a), G2(a)

) ∣∣∣ a4 − 3 a2 +
1

4
= 0

}
.

La situation décrite dans cet exemple se généralise facilement au cas des systèmes sans racines
multiples. En effet, prenons I un idéal radical et A l’algèbre quotient k[X1, . . . , Xn]/I, de
dimension D sur k. Si u ∈ A prend des valeurs distinctes sur les points de V(I) (on dira que
u est un élément séparant), alors la famille 1, . . . , uD−1 est une base de A comme k-espace
vectoriel ; en particulier les coordonnées xi s’écrivent comme des polynômes en u.

Revenons maintenant au cas général. On supposera que l’on travaille sur un corps de ca-
ractéristique zéro (ou sur un corps fini, ou plus généralement sur un corps parfait6) et que

6Le corps k est parfait si tout polynôme irréductible de k[X] a toutes ses racines simples, dans
une clôture algébrique k de k.

31



u ∈ A est séparant. Sous ces hypothèses on démontre que les coordonnées des points de V(I)
peuvent encore être exprimées comme des fractions rationnelles en les racines de mu.

Géométriquement, si u est une forme linéaire en les xi, son polynôme minimal mu détermine
la projection de V(I) sur l’axe orthogonal à l’hyperplan u = 0. (Le pendant algébrique est le
théorème de Stickelberger, qui affirme que les racines de mu sont exactement les valeurs que
prend u sur les points de V(I)). L’injectivité de cette projection (équivalant algébriquement
à la séparabilité de u) assure alors l’existence des formules d’interpolation rationnelle.

Notre effort se concentrera sur le calcul du polynôme minimal de u et d’une paramétrisation

rationnelle de V(I), c’est-à-dire une famille de polynômes à une variable
(
{Gi}1≤i≤n , G

)

telle que

V(I) =
{ (

G1(a)
G(a)

, . . . , Gn(a)
G(a)

) ∣∣∣ mu(a) = 0
}
.

Dans le cas radical, ce problème est habituellement réduit à des manipulations d’algèbre
linéaire dans A. Des méthodes plus efficaces traitant le cas général ont été proposées par
Rouillier [203, 204]. Notre but est d’améliorer l’efficacité de ces méthodes.

Pour ce faire, nous proposons des solutions algorithmiques nouvelles, qui étendent notamment
des idées introduites par Shoup [224, 227]. Dans la suite, on suppose connue la structure
de k-espace vectoriel de A. De plus, nos algorithmes exigent le précalcul soit de matrices de
multiplication dans A, soit de toute la table de multiplication de A. Ces objets peuvent être
obtenus, par exemple, par le calcul d’une base de Gröbner de l’idéal I [45, 79, 77].

Le calcul du polynôme minimal. Soit u dans A et soit mu son polynôme minimal,
à calculer. On suppose connue une borne δ sur le degré de mu. Naturellement, le choix
δ = D convient, mais il y a des situations où l’on connâıt a priori une borne plus fine,
voir [55, 86, 90, 216].

L’algorithme classique pour le calcul de mu consiste à exprimer les δ premières puissances
de u sur une base de A, puis à rechercher une dépendance linéaire entre elles. Notons que si
l’entrée de cet algorithme est la matrice de multiplication de u, sa complexité est de O(δD2)
pour le calcul des puissances de u et de O(Dω) pour la partie algèbre linéaire.

Dans notre exemple, une base monomiale de A = Q[X1, X2]/(F1, F2) comme espace
vectoriel est 1, x2, x1, x1x2 et la matrice des δ = 4 premières puissances de u = x1+x2

dans cette base est 


1 0 3/2 0 17/4
0 1 0 7/2 0
0 1 0 5/2 0
0 0 2 0 6


 .

Une base de son noyau est formée par le seul élément [1 0 −12 0 4]. Ceci
montre que le polynôme minimal de u est mu = T 4 − 3T 2 + 1/4.

Une première amélioration est de considérer les valeurs prises par une forme linéaire ` sur les
puissances de u : la suite

(
`(ui)

)
i≥0

admet une relation de récurrence minimale, qui cöıncide
génériquement avec mu et qui peut être calculée efficacement à l’aide de l’algorithme de

32



Berlekamp-Massey. Ceci suggère une première méthode : calculer les 2δ premières puissances
de u, y évaluer `, puis en déduire un candidat pour le polynôme minimal recherché. Ceci
exige la possibilité de multiplier par u ; c’est pourquoi, l’entrée de ce premier algorithme sera
la matrice de multiplication par u dans A.

Choisissons la forme linéaire ` dont les coordonnées dans la base duale 1̂, x̂2, x̂1, x̂1x2

sont 2,−1,−3, 1. Alors les valeurs de ` sur 1, u, . . . , u7 sont
[

2 −4 5 −11 29/2 −32 169/4 −373/4
]
.

La récurrence minimale satisfaite par cette suite peut être déterminée par l’algo-
rithme de Berlekamp-Massey, ou bien en calculant un approximant de Padé de type
(3, 4) à l’ordre 8 pour sa série génératrice

2− 4T + 5T 2 − 11T 3 + 29/2T 4 − 32T 5 + 169/4T 6 − 373/4T 7 + O(T 8).

Ainsi, on obtient mu = T 4 − 3T 2 + 1/4.

Notons que le goulot d’étranglement de cet algorithme est le calcul de toutes les δ premières
puissances de u. Ainsi, dans le cas générique δ = D, sa complexité asymptotique n’est pas
meilleure que celle de l’algorithme classique.

Dans le contexte de la factorisation des polynômes sur des corps finis, Shoup [224, 227]
a montré comment accélérer ces calculs dans le cas des polynômes à une variable, quand
A = k[X]/(f). Son idée est d’adapter la méthode des pas de bébés / pas de géants pour
l’évaluation rapide des polynômes, due à Paterson et Stockmeyer [190], en faisant appel à la

structure de A-module du dual Â ; l’utilisation astucieuse de cette structure permet d’éviter
le calcul de toutes les 2δ puissances de l’élément u.

Nous démontrons que l’idée s’étend aux cas des polynômes à plusieurs variables. Ceci fournit
une deuxième méthode pour le calcul du polynôme minimal. La difficulté principale de cette
approche consiste à obtenir une implantation efficace des opérations dans Â. Notre solution
exige pour le moment une entrée plus forte que ci-dessus : la table de multiplication de A ;
cette entrée est également utilisée par exemple dans les algorithmes de [6, 204]. Nos résultats
sont précisés dans le théorème suivant.

Théorème 2 Soit D la dimension de A comme k-espace vectoriel, soit u dans A et mu son
polynôme minimal. On suppose que δ est une borne sur le degré de mu.

1. Si la matrice de la multiplication par u est connue, alors mu peut être calculé par un
algorithme probabiliste en O(δD2) opérations dans k.

2. Si la table de multiplication de A est connue, alors mu peut être calculé par un algo-
rithme probabiliste en O(2nδ1/2D2) opérations dans k.

Dans les deux cas, l’algorithme choisit D valeurs dans k ; si ces valeurs sont choisies dans
un sous-ensemble fini Γ de k, tous les choix, excepté au plus δ|Γ|D−1, assurent le succès.

La complexité est O(D3) dans le premier cas et O(2nD5/2) dans le deuxième. Pour n fixé,
le gain est d’ordre

√
D, ce qui est typique pour les techniques du type pas de bébé / pas de

géant, qui sont à la base de notre deuxième approche.

33



L’aspect probabiliste provient du choix d’une forme linéaire sur A. Pour les mauvais choix,
la sortie de nos algorithmes est un diviseur strict du polynôme minimal recherché. Si le
degré de la sortie cöıncide avec la borne supérieure δ, alors cette sortie est nécessairement
correcte. Nous pouvons également estimer la probabilité d’un choix malheureux, ou évaluer
le polynôme minimal candidat sur u.

Le calcul d’une paramétrisation rationnelle. Étant donné l’élément u et une forme
linéaire ` sur A, nous introduisons la série génératrice de k[[U−1]]

R(u, `) :=
∑
i≥0

`(ui)

U i+1
.

Un premier résultat concerne la rationalité de cette série. Nous montrons que R(u, `) est de
la forme

Gu,`

mu

,

où Gu,` est un polynôme de degré < deg(mu). Qui plus est, cette fraction est irréductible
pour ` générique. Supposons dans ce qui suit que tel est le cas.

Si de plus u est séparant, nous montrons que de telles séries permettent de calculer
des paramétrisations des points de V(I) ; ceci donne des formules qui étendent celles de
Rouillier [204]. Nos formules sont valides sous certaines hypothèses de généricité, précisées
dans le théorème ci-dessous. Notons que ces hypothèses sont automatiquement remplies si I
est un idéal radical.

Proposition 1 Si

R(u, `) =
Gu,`

mu

et R(u, xi ◦ `) =
Gu,xi◦`
mu

alors la famille
({Gu,xi◦`}1≤i≤n , Gu,`)

est une paramétrisation rationnelle de V(I).

Plus généralement, nous démontrons que, pour tout v ∈ A, l’égalité suivante a lieu :

Gu,v◦`(u(α))

Gu,`(u(α))
= v(α). (1.5)

C’est le résultat central de ce chapitre et sa démonstration dans le cas général est assez
technique. Pour en donner l’idée, j’indique maintenant brièvement les ingrédients de sa preuve
dans le cas simple où I est radical :

• mu =
∏

α∈V(I)(U − u(α)). C’est une conséquence du théorème de Stickelberger, dont
l’interprétation géométrique a été donnée dans les sections précédentes.

34



• Â est engendré (comme k-espace vectoriel) par les évaluations {evα}. C’est une
généralisation des formules d’interpolation de Lagrange : pour toute racine α, il existe
un élément pα de A qui prend la valeur 1 en α et qui s’annule sur les autres racines. Ceci
implique l’indépendance linéaire des {evα} : si la combinaison linéaire Λ =

∑
α cαevα

est nulle, alors Λ(pα) = cα sont tous nuls.

Supposons que ` =
∑

α cαevα. Alors, on a la suite d’égalités de séries génératrices

R(u, v ◦ `) =
∑
i≥0

`(vui)

U i+1
=

∑
i≥0

∑
α cαv(α)u(α)i

U i+1
=

∑
α

cαv(α)
∑
i≥0

u(α)i

U i+1
=

∑
α

cαv(α)

U − u(α)
,

qui fournit une description explicite des numérateurs Gu,v◦` comme polynômes interpolant

Gu,v◦` =
∑

α

cαv(α)
∏

β 6=α

(
U − u(β)

)
,

description de laquelle la formule (1.5) découle immédiatement.

Dans notre exemple, le calcul des 8 premiers termes de chacune des séries R(u, `),
R(x1 ◦ u, `) et R(x2 ◦ u, `) permet de retrouver leur forme rationnelle. Ainsi

R(u, `) =
2U3 − 4U2 − U + 1

U4 − 3U2 + 1
4

R(x1 ◦ u, `) =
−3U3 + 3U2 + 5

2U − 1
2

U4 − 3U2 + 1
4

et R(x2 ◦ u, `) =
−U3 + 2U2 − 3

2U

U4 − 3U2 + 1
4

.

Ceux-ci fournissent la paramétrisation voulue
(
−3U3 + 3U2 + 5

2U − 1
2

2U3 − 4U2 − U + 1
,
−U3 + 2U2 − 3

2U

2U3 − 4U2 − U + 1

)
=

(
−U3 +

7
2
U,U3 − 5

2
U

)
.

Ce résultat est une généralisation des formules de Rouillier [203, 204] ; il ne requiert pas
l’utilisation d’une forme linéaire spécifique. Dans [203, 204], cette forme spécifique, la trace,
est calculée à partir de la table de multiplication de A. Les formules précédentes permettent
d’éviter ce précalcul, car presque toute forme peut être utilisée. Une conséquence importante
de ce fait est que les algorithmes correspondant à la première approche n’exigent en entrée
que la matrice de multiplication de u.

Pour utiliser ces formules en pratique, la tâche calculatoire est tout à fait semblable à
celle exigée pour calculer un polynôme minimal : évaluer des formes linéaires sur des puis-
sances de u. Ainsi, comme précédemment, deux méthodes coexistent : l’approche directe,
qui nécessite seulement des matrices de multiplication, et son amélioration basée sur l’idée
de Shoup, qui exige toute la table de multiplication de A.

La première approche donne un algorithme dont la complexité est du même ordre que celle
de l’algorithme de Rouillier [204], mais notre entrée est plus faible. La deuxième approche
fournit un algorithme qui prend la même entrée que celui de [204] ; sa complexité est de
l’ordre O(n2nD5/2). Ceci s’avère meilleur quand le nombre de variables est fixé, le gain
étant, comme précédemment, de l’ordre de

√
D.

35



Théorème 3 Soient k un corps parfait, u un élément séparant dans A et mu son polynôme
minimal. Soit D la dimension de A comme k-espace vectoriel et soit δ une borne sur le degré
de mu. On suppose que :
– la caractéristique du corps k est soit égale à zéro, soit au moins égale à min{s, √I s ⊂ I}
– le degré de mu est le degré du polynôme minimal d’un élément générique dans A.

1. Si les matrices de multiplication par u et x1, . . . , xn sont connues, alors une pa-
ramétrisation de V(I) peut être calculée par un algorithme probabiliste en O(δD2+nD2)
opérations dans k.

2. Si la table de multiplication de A est connue, une telle paramétrisation peut être calculée
par un algorithme probabiliste en O(n2nδ1/2D2) opérations dans k.

Dans les deux cas, l’algorithme choisit D valeurs dans k ; si ces valeurs sont choisies dans
un sous-ensemble fini Γ de k, tous les choix, excepté au plus δ|Γ|D−1, assurent le succès.

L’aspect probabiliste est de même nature que dans le Théorème 2, et provient du choix
d’une forme linéaire sur A. Si I est un idéal radical, il est facile de vérifier l’exactitude de la
sortie. La dernière affirmation du Théorème 3 permet d’estimer la probabilité de choisir une
mauvaise forme linéaire.

Nous avons implanté les algorithmes mentionnés dans les Théorèmes 2 et 3 dans le système
de calcul formel Magma [32]. Nos expériences ont montré leur bon comportement par rapport
à une implantation näıve de l’algorithme de Rouillier [204].

1.3.5 Algorithmes rapides pour les récurrences linéaires à coeffi-
cients polynomiaux

Nous étudions la question du calcul rapide d’un terme d’une suite récurrente linéaire
à coefficients polynomiaux. Nous améliorons un algorithme dû à Chudnovsky et
Chudnovsky [59] qui permet de calculer un terme quelconque d’une telle suite en
évitant le calcul de tous les termes intermédiaires. Cet algorithme repose sur une
technique de type pas de bébés / pas de géants et requiert un nombre d’opérations
essentiellement linéaire en

√
n pour le calcul du n-ième terme. Comme application,

nous obtenons des améliorations théoriques et pratiques de méthodes de comptage
de points utilisées en cryptographie. Ce travail a été mené en collaboration avec
P. Gaudry et É. Schost [34].

Dans ce chapitre, nous étudions des questions de complexité liées aux suites récurrentes
linéaires à coefficients polynomiaux. Pour fixer les notations, soit R un anneau commutatif
unitaire et soit A une matrice m×m dont les entrées sont des polynômes linéaires de R[X].
Supposons que (Ui)i≥0 est une suite de vecteurs de Rm définie par la récurrence linéaire

Ui+1 = A(i+ 1)Ui, pour tout i ≥ 0.

Notre objectif principal est de calculer rapidement un terme arbitraire Un d’une telle suite.

36



Un cas particulier bien connu est celui des récurrences à coefficients constants : le n-ième
terme peut être calculé en complexité linéaire en log(n), par exponentiation binaire de la
matrice constante A.

Dans le cas général, les choses se compliquent : à ce jour, on ne connâıt pas d’algorithme
polynomial en log(n). Nous illustrons les idées de cette section par l’exemple simple suivant.
Prenons a ∈ Q. On se propose de calculer le n-ième terme de la suite

ui = (a+ 1)(a+ 2) · · · (a+ i).

Cette suite vérifie la récurrence à coefficients polynomiaux

ui+1 − (a+ i+ 1)ui = 0, i ≥ 0.

Notons pour commencer que l’approche directe exige O(n) opérations dans Q pour le calcul
de un. La meilleure solution précédemment connue a été proposée par Chudnovsky et Chud-
novsky [59] ; il s’agit d’une généralisation d’un algorithme de Pollard [195] et Strassen [237]
pour la factorisation déterministe des entiers. Cet algorithme utilise des pas de bébés / pas
de géants et requiert un nombre d’opérations arithmétiques presque linéaire (à des facteurs
logarithmiques près) en

√
n pour le calcul du n-ième terme d’une suite.

J’explique maintenant l’algorithme de [195, 237, 59] sur ce même exemple et je présente
ensuite nos améliorations. Pour simplifier, supposons que n est un carré parfait. L’idée com-
mune aux algorithmes [195, 237, 59] est de poser

C(X) = (X + a+ 1)(X + a+ 2) · · · (X + a+
√
n),

afin d’obtenir la valeur de un à l’aide de l’équation

un =

√
n−1∏

j=0

C
(
j
√
n
)
. (1.6)

Cette égalité suggère la procédure suivante :

Pas de bébés Calculer les coefficients de C. Ceci peut être fait en O(M(
√
n) log(n))

opérations dans k, de manière récursive (en construisant l’arbre binaire de feuilles
X + a+ i).

Pas de géants Évaluer C sur les points
{
0,
√
n, 2
√
n, . . . , (

√
n − 1)

√
n
}

et retrouver la
valeur de un à l’aide de l’équation (1.6). En utilisant un algorithme d’évaluation mul-
tipoint rapide, ceci peut se faire en O(M(

√
n) log(n)) opérations dans k.

Le coût total de cet algorithme est de O
(
M

(√
n
)
log(n)

)
opérations dans k pour le calcul du

terme un. Si la FFT est utilisée pour la multiplication des polynômes, le gain par rapport
à la méthode directe est de l’ordre de

√
n, à des facteurs logarithmiques près, ce qui est

typique des approches pas de bébés / pas de géants.

37



Lorsque n est très grand (c’est le cas des algorithmes de factorisation d’entiers), supprimer
des facteurs logarithmiques peut induire un gain sensible en pratique. Chudnovsky et Chud-
novsky [59] indiquent comment diminuer la complexité des pas de bébés à O

(
M

(√
n)

)
en

temps et linéaire en
√
n en mémoire. L’idée est de diviser pour régner, en exploitant le fait

que les points 1, 2, . . . , n sont en progression arithmétique. Dans le cas matriciel, elle requiert
des produits de matrices polynomiales m×m de degré O(

√
n), ce qui explique la complexité

en O(mω M(
√
n)) obtenue dans [59] 7.

Par contre, pour les pas de géants, aucun algorithme d’évaluation sur une progression
arithmétique économisant le facteur log n’est actuellement connu (la situation est différente
pour une progression géométrique, voir le Chapitre 5 pour plus de détails sur ces ques-
tions). C’est pourquoi, dans [59] le facteur log n’est pas gagné sur l’ensemble de l’algorithme
précédent.

Un premier objectif de ce chapitre est de faire disparâıtre la dépendence logarithmique en n
dans la complexité en espace mémoire. Une deuxième contribution concerne le cas matriciel :
nous améliorons la complexité en temps des pas de bébés de [59], et arrivons à remplacer
O(mω M(

√
n)) par O(mω

√
n). En pratique, pour de grandes valeurs de n, cela se traduit par

des gains importants ; dans notre application, n est de l’ordre de 232.

La clé de notre approche concerne un point d’algorithmique de base : étant données les valeurs
prises par un polynôme P (X) sur un ensemble de points, calculer rapidement les valeurs que
prend le même polynôme P sur une translation de l’ensemble de points. La meilleure solution
précédemment connue consiste à utiliser les techniques d’évaluation et interpolation rapides.
Nous proposons un algorithme de meilleure complexité (tant en temps qu’en espace mémoire)
dans le cas particulier où la suite des points est en progression arithmétique.

Proposition 2 Soit R un anneau commutatif unitaire et d ∈ N tel que 1, . . . , d sont inver-
sibles dans R. Soit P dans R[X] de degré d et supposons connues les valeurs

P (0), . . . , P (d).

Si a ∈ R, tel que a− d, . . . , a+ d sont inversibles dans R, alors les valeurs translatées

P (a), . . . , P (a+ d)

peuvent être calculées en utilisant O(M(d)) opérations dans R et espace mémoire O(d).

Ce résultat nous permet d’utiliser une idée de changement de représentation dans l’algorithme
précédent : au lieu de travailler avec les coefficients du polynôme C, on va plutôt manipuler
ses valeurs. En effet, pour exploiter l’équation (1.6), il suffit de connâıtre les valeurs de C sur
les points 0,

√
n, . . . , (

√
n − 1)

√
n. Pour ce faire, on commence par montrer que les valeurs

C(0), C(1), . . . , C(
√
n) peuvent être calculées en complexité O(

√
n) en temps et en mémoire.

L’idée est d’utiliser la récurrence

C(i+ 1) = C(i) · i+ a+
√
n+ 1

i+ a+ 1
,

7Notons que nos résultats du Chapitre 5 concernant la multiplication des matrices polynomiales améliorent
déjà cette complexité à O(mω

√
n + m2 M(

√
n)).

38



dont le terme initial C(0) = (a+ 1) · · · (a+
√
n) se calcule en O(

√
n) opérations.

Par la Proposition 2, les valeurs translatées C(
√
n), C(

√
n+1), . . . , C(2

√
n) peuvent être alors

obtenues en complexité O(M(
√
n)) en temps et O(

√
n) en mémoire. À ce stade, on connâıt

les
√
n valeurs de C(0), C(2), . . . , C(2

√
n), donc une nouvelle application de la Proposition 2

permet d’obtenir les valeurs de C(2
√
n), . . . , C(4

√
n) pour le même coût. En appliquant ce

schéma log(n) fois, on arrive à récupérer les valeurs C(0), C(
√
n), . . . , C((

√
n− 1)

√
n), pour

un coût global de O(M(
√
n) log(n)) en temps et seulement O(

√
n) en mémoire 8.

En étendant ces idées au cas non-scalaire, nous obtenons le résultat principal de ce chapitre.

Théorème 4 Soit A une matrice m × m dont les entrées sont des polynômes linéaires
de R[X] et soit U0 un vecteur de Rm. Supposons que (Ui)i≥0 est une suite d’éléments de Rm

définie par la récurrence linéaire

Ui+1 = A(i+ 1)Ui, pour tout i ≥ 0.

Soit n > 0 un entier tel que les éléments 1, . . . , 2d√ne+1 soient inversibles dans R. Alors le
vecteur Un peut être calculé en O

(
mω
√
n + m2 M

(√
n
)
log(n)

)
opérations dans R et espace

mémoire O(m2
√
n).

Application au calcul rapide de l’opérateur de Cartier-Manin

Je conclus ce chapitre avec un exemple d’application de nos résultats sur les récurrences
au domaine de la cryptographie. Plus exactement, on s’intéresse au comptage de points des
Jacobiennes de courbes hyperelliptiques sur des corps finis. Ce type de calcul est une étape
nécessaire pour mettre en œuvre des cryptosystèmes fondés sur le problème du logarithme
discret. Notons que pour des raisons de sécurité cryptographique, le but est d’obtenir une
courbe dont la Jacobienne soit un groupe de cardinal ayant un facteur entier de taille au
moins 2130.

Soit donc C une courbe de genre g sur un corps fini K de caractéristique p ≥ 5. On suppose
que C est définie par l’équation y2 = f(x), où f ∈ K[X] est un polynôme de degré 2g + 1.
La matrice de Hasse-Witt de C [116] est la matrice g× g à coefficients dans K, dont l’entrée
(i, j) est le coefficient de X ip−j dans f (p−1)/2.

Par un résultat classique de Cartier [52] et Manin [163], la connaissance explicite de cette
matrice fournit une méthode de calcul du cardinal de la Jacobienne de C modulo la ca-
ractéristique p du corps de base. Si le genre g de C, ainsi que le degré d de l’extension
Fp → K sont petits par rapport à la caractéristique p, le goulot d’étranglement de cette
méthode est le calcul de la matrice de Hasse-Witt. Dans l’approche classique [88, 166], la
construction de cette matrice est faite en élevant directement f(X) à la puissance (p− 1)/2,
ce qui entrâıne un coût essentiellement linéaire en p, à des facteurs logarithmiques près. En
pratique, ceci impose dans [166] une barrière des calculs à p de l’ordre 223.

8En fait, cela est valable si
√

n est une puissance de 2, mais le cas général se traite sans difficulté.

39



Notre accélération est basée sur la remarque clé suivante, empruntée à [85] : les entrées
de la matrice de Hasse-Witt étant des coefficients d’une puissance du polynôme f , elles
vérifient une récurrence d’ordre 2g + 1, à coefficients polynomiaux de degré 1. En utilisant
notre résultat sur ce type de récurrence, nous en déduisons un algorithme de complexité
linéaire en

√
p, à des facteurs logarithmiques près, pour le calcul de la matrice de Hasse-

Witt. L’énoncé exact est donné dans le Théorème 5. Le gain est de l’ordre de
√
p et se

traduit en pratique par la possibilité de traiter un exemple où p est de l’ordre 232.

Théorème 5 Soit p ≥ 5 un nombre premier, d ≥ 0 et C une courbe hyperelliptique définie
sur Fpd par l’équation y2 = f(x), avec f ∈ Fpd [X] unitaire, sans carrés et de degré 2g + 1.
Alors, sous l’hypothèse que g < p, on peut calculer la matrice de Hasse-Witt de C en

O
((
gω+1√p+ g3 M(

√
p) log(p)

)
M

(
dg log(p)

))

opérations binaires et O
(
dg3√p log(p)

)
espace mémoire.

De manière pratique, nous démontrons l’intérêt de nos techniques par un exemple de comp-
tage de points pour une courbe de genre 2 aléatoirement choisie sur Fp3 , où p est un nombre
premier de taille 32 bits. Nous avons implanté notre algorithme dans la librairie NTL [226].
Le cardinal modulo p de la Jacobienne de notre courbe est obtenu en moins de 4 heures,
pour 1 Go de mémoire, sur un Athlon AMD, MP 2200+. Le cardinal de la Jacobienne est de
l’ordre 2192 et a été obtenu dans un deuxième temps, en utilisant une variante de l’algorithme
de Schoof [88, 90], ainsi que l’algorithme de [166]. Puisque ce cardinal a un facteur premier
de taille de l’ordre 2158, la courbe est considérée cryptographiquement sûre. Le traitement
d’un exemple de cette taille constitue un nouveau record sur un corps de caractéristique
supérieure à 5.

Améliorations récentes

Pendant la rédaction de cette introduction, nous avons trouvé une nouvelle idée algorith-
mique, qui permet de faire disparâıtre complètement la dépendance logarithmique en n dans
la complexité de notre algorithme.

Illustrons cette idée sur l’exemple de la suite un. Pour simplifier, on pose N =
√
n, qu’on

suppose être une puissance de 2. Le problème du calcul des valeurs C(j
√
n) intervenant dans

l’équation (1.6) se reformule ainsi : calculer les N produits des éléments sur chaque ligne de
la matrice




a + 1 + 0 · · · a + N
2 + 0 a + N

2 + 1 + 0 · · · a + N + 0
...

...
...

...
a + 1 + N(N−1)

2 · · · a + N
2 + N(N−1)

2 a + N
2 + 1 + N(N−1)

2 · · · a + N + N(N−1)
2

a + 1 + N(N+1)
2 · · · a + N

2 + N(N+1)
2 a + N

2 + 1 + N(N+1)
2 · · · a + N + N(N+1)

2
...

...
...

...
a + 1 + N(N − 1) · · · a + N

2 + N(N − 1) a + N
2 + 1 + N(N − 1) · · · a + N + N(N − 1)




40



La structure spéciale des entrées de cette matrice permet d’utiliser une approche récursive.
En effet, en divisant la matrice en quatre, notre problème définit un sous-problème (gauche,
en haut) de taille la moitié. Supposons ce dernier résolu ; alors chacun des produits cor-
respondant aux trois autres sous-matrices s’en déduit en M(N/2) + O(N), en appliquant
notre Proposition 2 pour les valeurs translatées. Le coût C(N) de l’algorithme vérifie donc
la récurrence C(N) = C(N/2) +O(M(N/2)) +O(N), ce qui implique C(N) = O(M(N)). Par
conséquent, la valeur de un est obtenue en temps O(M(

√
n)) et espace mémoire O(

√
n).

La même technique s’étend au cas non-scalaire et résout le problème de réduire le coût
du Théorème 4 à O

(
mω
√
n + m2 M

(√
n
))

opérations, en se débarrassant ainsi de tous les
facteurs logarithmiques, tant en temps qu’en mémoire. La vérification en détail, ainsi que
l’implantation du nouvel algorithme font l’objet d’un travail en cours. Je mentionne aussi
que l’impact de cette nouvelle idée sur l’algorithme de factorisation de Pollard-Strassen fait
également l’objet d’un travail en cours avec P. Gaudry et É. Schost.

1.3.6 Algorithmes rapides pour les opérateurs différentiels
linéaires

Le dernier chapitre de cette thèse est dédié au cadre différentiel. Nous y proposons
une méthode de type évaluation / interpolation pour le calcul sur les opérateurs
différentiels linéaires à coefficients polynomiaux, permettant d’aborder le ppcm en
même temps que le produit tensoriel. Le rôle des points d’évaluation est joué par des
séries formelles, sur lesquelles on évalue des opérateurs différentiels. L’interpolation
est fournie par des approximants de Padé-Hermite différentiels. Pour chacun des
problèmes, l’étude des singularités apparentes permet d’exhiber des bornes sur la
taille des sorties.

Soient L1 et L2 deux opérateurs différentiels linéaires à coefficients polynomiaux. Supposons
que l’on veut calculer l’opérateur L = L1 ? L2, où ? est une construction d’algèbre linéaire,
définie en termes d’espaces des solutions de L1 et de L2. Des exemples classiques de telles
opérations sont fournies par le plus petit commun multiple à gauche de L1 et de L2 , ou
encore, par leur produit tensoriel L1 ⊗ L2.

Le but de ce chapitre est de proposer une stratégie commune de calcul de ce type d’opérations
par une méthode évaluation / interpolation. Dans cette optique, le rôle des points d’évaluation
est joué par des séries formelles. L’algorithme générique consiste alors en les étapes suivantes :

1. calculer des solutions séries tronquées S1 et S2 de chaque opérateur L1 et L2 ;

2. combiner S1 et S2 à l’aide de l’opération ? pour en déduire une solution tronquée S de
l’opérateur L ;

3. retrouver L à partir de sa solution série S.

Les étapes (1) et (3) constituent des conversions entre deux types de représentations des
opérateurs différentiels. En utilisant les résultats des Chapitres 4 et 5, le passage opérateur-
solution admet une solution de complexité quasi-optimale. Par contre, l’étape de reconstruc-
tion de l’opérateur est plus délicate. Nous proposons et analysons deux méthodes pour cette

41



dernière : l’une utilise des approximants de Padé-Hermite, l’autre ramène les calculs à la
résolution d’un système linéaire à coefficients fractions rationnelles.

Dans les deux cas, bien que bénéficiant de bornes fines sur les tailles des sorties, les algo-
rithmes génériques utilisés n’ont pas un comportement optimal. Ainsi, les algorithmes rapides
d’approximation de Padé-Hermite [18, 148, 97] calculent plus d’information que nécessaire,
à savoir une base d’approximants, ce qui induit une perte d’efficacité dans notre situation
structurée. De même, l’algorithme de Storjohann [233] que nous utilisons pour la résolution
de systèmes n’arrive pas à tirer profit de la structure particulière des matrices polynomiales
considérées.

Cependant, les algorithmes obtenus sont de complexité sous-quadratique en la taille de la
sortie. Le théorème suivant résume les principaux résultats auxquels on aboutit.

Théorème 6 Soient L1 et L2 deux opérateurs d’ordre n, dont les coefficients sont polyno-
miaux de degré borné par n.

1. Le produit tensoriel L = L1 ⊗ L2 est un opérateur d’ordre au plus n2, ses coefficients
ont des degrés bornés par 2n4. De plus, L peut être calculé à partir de L1 et de L2 en
Olog(n

2ω+3) opérations.

2. Le ppcm à gauche de L1 et de L2 est un opérateur d’ordre au plus 2n, ses coefficients
ont des degrés bornés par 3n2. De plus, il peut être calculé à partir de L1 et de L2 en
Olog(n

ω+2) opérations.

Organisation du document

La suite de ce mémoire est organisée en trois parties. La Partie II traite des algorithmes fon-
damentaux du calcul formel. Elle contient une introduction aux algorithmes rapides utilisés
dans la suite, ainsi que trois chapitres contenant des contributions à l’algorithmique de base
des polynômes et des séries à une variable. La Partie III comporte deux chapitres traitant des
algorithmes d’élimination commutative en deux et respectivement plusieurs variables. Enfin,
la Partie IV contient des résultats concernant l’algorithmique des opérateurs différentiels et
aux différences.

42



Part II

Fundamental algorithms

43



44



Chapter 2

Multiplication of polynomials,
matrices and differential operators

This chapter gives a quick introductory overview of the basic algorithms that will be con-
stantly used and referred to in the rest of this thesis. The adopted style is a narrative one;
precise statements are sometimes replaced by intuitive arguments, illustrative examples and
bibliographical references.

In Section 2.1, we briefly discuss various algorithms polynomial multiplication. Then, we
focus in Section 2.2 on algorithms for matrix multiplication and on their impact in the
solution of other problems related to linear algebra. We end this chapter by describing a
recent algorithm for multiplying linear differential operators. Our contribution is to complete
a result of [247], concerning the computational equivalence between the problem of operator
multiplication and that of matrix multiplication.

Contents

2.1 Multiplication of univariate polynomials and power series . . . 46

2.1.1 Karatsuba’s multiplication . . . . . . . . . . . . . . . . . . . . . . . 46

2.1.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.3 Practicality issues of fast algorithms . . . . . . . . . . . . . . . . . 48

2.1.4 The function M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Problems related to matrix multiplication . . . . . . . . . . . . 52

2.3.1 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.3 Characteristic polynomials . . . . . . . . . . . . . . . . . . . . . . 53

2.3.4 Powers of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.5 Evaluation of polynomials on matrices . . . . . . . . . . . . . . . . 54

2.4 Multiplication of linear differential operators . . . . . . . . . . . 55

45



2.1 Multiplication of univariate polynomials and

power series

2.1.1 Karatsuba’s multiplication

Suppose that P andQ are two polynomials of degree n, to be multiplied. Karatsuba [129] pro-
posed the following divide-and-conquer algorithm, computing the product PQ in O(nlog(3))
base ring operations. It consists in splitting each of the two polynomials into two polynomials
of degree k ≈ n/2:

P (T ) = P0(T ) + T kP1(T ), Q(T ) = Q0(T ) + T kQ1(T ).

Then, the product PQ is obtained using only 3 products of polynomials of degree k, due to
the identities:

P (T )Q(T ) = P0(T )Q0(T ) + T kR(T ) + T 2kP1(T )Q1(T )
R = (P0 + P1)(Q0 +Q1)− P0Q0 − P1Q1.

Applying recursively this method, the running time K(n) satisfies the recurrence

K(n) = 3K(n/2) +O(n), K(1) = 0,

so that K(n) = O(nlog(3)).

Additional comments

We remark that this algorithm uses more additions than the classical one and this explains why, for
small degrees, the latter is faster. Actually, the crossover between the two methods depends a lot
on the implementation. Let us mention that Karatsuba’s idea may be generalized, if one chooses
to cut the input polynomials into r parts of equal degree. In that case, the running time Tr(n) is
shown to verify the recurrence Tr(rn) = (2r − 1)Tr(n) + O(n), so that

Tr(n) = O
(
nlogr(2r−1)

)
.

Thus, for increasing r, the resulting algorithm is asymptotically faster (with respect to n), but
a serious problem lies in the growing of the constant hidden behind O, which depends on r and
cannot be uniformly bounded. From a theoretical point of view, this difficulty can be overcome
by allowing r to vary with n, meaning that in the cutting process one should do recursive calls to
several Karatsuba-like algorithms (for various r). Still, for practical purposes, this idea seems quite
unrealistic.

46



2.1.2 Fast Fourier Transform

A faster algorithm for polynomial multiplication is the Fast Fourier Transform, which is
based on the important idea of change of representation: instead of the list of its coefficients,
one may alternatively represent a polynomial of degree less than n by its values on n distinct
points. We call the latter the point-value representation. The key feature is that in this
representation, multiplication is linear in the size of the output. To put this idea at work, it
suffices to exhibit a set of points with the property that the change of representation (mono-
mial to point-value, this is multipoint evaluation, and its reciprocal, that is interpolation) is
not too costly.
Suppose for a moment that the coefficient ring is R = C and that n is a power of 2. We let
the set of evaluation points to be the set Ωn of the nth roots of unity; this choice is motivated
by the following fact.

Lemma 1 If n ≥ 2 is even, then the squares of the n roots of unity in Ωn are exactly the n
2

elements of Ωn
2
.

Based on this lemma, one can design a fast multipoint evaluation algorithm of a polynomial
A(x) of degree less than n on the points of Ωn using a divide-and-conquer strategy. Suppose
for simplicity that n is a power of 2.

We divide A(x) = A1(x
2) + xA2(x

2), where A1 and A2 are polynomials of degree less than
n
2
, so that evaluating A on the points in Ωn amounts to solving two subproblems of the

same form but of half size, plus some additional operations whose number is linear in n.
If DFT(n) denotes the number of operations in R to solve the problem, this yields the
recurrence DFT(n) = 2DFT(n

2
) + 3

2
n, so

DFT(n) =
3

2
n log(n).

The inverse problem, interpolating a polynomial at the points of Ωn can be solved using
the same number of operations in R, since it amounts to a multipoint evaluation. This
can be seen using the following matrix interpretation. Writing ω for e2πi/n, then Ωn =
{1, ω, . . . , ωn−1} and the values A(ωi) are simply the entries of the matrix-vector product
between the Vandermonde matrix

Vω =




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2




and the column vector whose entries are the coefficients of A. Therefore, interpolation
interprets as multiplying the inverse matrix V −1

ω by a vector; moreover, it is easy to verify
that V −1

ω is the matrix 1
n
Vω−1 , so interpolation amounts indeed to a multipoint evaluation.

Thus, the total time to transform two polynomials in coefficient form into point-value form,
multiply them in this representation, and finally interpolate the result back into coefficient
form gives an algorithm for multiplying them in time O(n log(n)), where n is the degree of
the product polynomial.

47



Additional comments

The Fast Fourier Transform has a long history and is one of the most celebrated algorithmic
breakthroughs of the 20th century. J. Dongarra and F. Sullivan [72] placed it among the 10
algorithms with the greatest influence on the development and practice of software and engineering
in the 20th century 1. Its underlying idea goes back to Gauss (circa 1805), who needed fast ways
to calculate orbits of asteroids. Since then, it was rediscovered several times, see [66, 67, 21] for
more details. Schönhage & Strassen [214] showed that the restriction on the existence of roots
of unity in the base ring R can be dropped by introducing some virtual roots of unity, for an
overhead time cost of log log(n). Cantor and Kaltofen [50] generalized this result and derived an
algorithm for multiplying degree n polynomials with coefficients from an arbitrary (possibly non
commutative) algebra using O(n log(n)) algebra multiplications and O(n log(n) log log(n)) algebra
additions/subtractions. This method may be used for multiplying polynomial matrices.

2.1.3 Practicality issues of fast algorithms

Until recently, general-purpose computer algebra systems only implemented the classical
method, and sometimes Karatsuba’s. This is quite sufficient as long as one deals with poly-
nomials of fairly small degree, say of order of 100, but for real-life purposes, fast algorithms
become crucial.
Asymptotically fast algorithms are standard tools in many areas of computer science, for
instance sorting algorithms like quicksort and mergesort are widely used in practice and offer
satisfaction over classical naive algorithms for small sizes already. In contrast, fast algorithms
for polynomial multiplication have received little attention in the computer algebra domain
since their invention in the 70s. The main reason is the unfortunate belief concerning the
unrealistic crossover points starting from which these methods would become practically
faster in practice. Nowadays, general purpose computer algebra systems like Magma [32]
offer convincing implementations of these fast algorithms.

2.1.4 The function M

Throughout this thesis, we present algorithms for various problems based on (fast) polyno-
mial multiplication. In order to abstract from the underlying multiplication algorithm in our
cost analyzes, we introduce the following classical notation, see for instance [255, Section 8.3].

Definition 1 Let R be a ring. We call a function M : N → R a multiplication time
for R[T ] if polynomials in R[T ] of degree less than n can be multiplied using at most M(n)
operations in R. We assume that M(1) = 1.

The classical (naive) method gives M(n) = O(n2), but methods which are faster for large n
are known. Asymptotically, the fastest method is that of Schönhage & Strassen [214], which

1The other nine are: the Metropolis Algorithm, the Simplex Method, the Krylov Subspace Iteration
Methods, the Decompositional Approach to Matrix Computations, Fortran Optimizing Compiler, the QR
Algorithm, the Quicksort Algorithm, the Integer Relation Detection Algorithm and the Fast Multipole
Method.

48



gives
M(n) = O(n log(n) log log(n)).

In order to ensure that our complexity results do not depend on the algorithm used for
multiplication, we assume that the function M satisfies the following inequality:

M(n)

n
≥ M(m)

m
, for all n ≥ m ≥ 1. (2.1)

Lemma 2 The multiplication time function M enjoys the following properties:

1. M is super-linear, i.e.,

M(mn) ≥ nM(m), M(m+ n) ≥ M(m) + M(n) and M(n) ≥ n,

for all positive integers m and n.

2. If n is a power of 2, then

M(n/2) + M(n/4) + · · ·+ M(1) < M(n), and

2 M(n/2) + 4 M(n/4) + · · ·+ nM(1) < M(n) log(n).

We summarize in the table below various polynomial multiplication algorithms and their
running times

Algorithm M(n)

classical 2n2

Karatsuba O(nlog(3)) ⊂ O(n1.585)

FFT O(n log(n) log log(n))

Table 2.1: Polynomial multiplication algorithms

2.2 Matrix multiplication

Consider the problem of multiplying two n × n matrices. The standard algorithm requires
n3 multiplications and n3−n2 additions. At first, it may seem hopeless to attempt to reduce

49



dramatically the number of arithmetic operations involved. Strassen [234] was the first to
infirm this belief; he observed that a pair of 2 by 2 matrices can be multiplied in 7 (rather
than 8) multiplications by the following surprising identities (see [41] for a nice pictorial
interpretation). If the matrices to be multiplied are

M =

[
a b
c d

]
, N =

[
p q
r s

]
.

then computing
z1 = (a+ d)(p+ s)
z2 = (c+ d)p
z3 = a(q − s)
z4 = d(−p+ r)
z5 = (a+ b)s
z6 = (−a+ c)(p+ q)
z7 = (b− d)(r + s)

yields their product as

MN =

[
z1 + z4 − z5 + z7 z3 + z5

z2 + z4 z1 − z2 + z3 + z4

]
.

The key point is that the algorithm does not make use of the commutativity of multiplication.
This implies that the elements a, b, c, d, p, q, r, s can themselves be matrices, and this yields
a divide-and-conquer algorithm for matrix multiplication, which multiplies matrices of size
2k+1 in 7 multiplication of 2k× 2k matrices and a constant number (18) of matrix additions.
The number MM(n) of multiplications used to multiply two n× n matrices thus verifies the
recursion

MM(2k) = 7MM(2k−1) + 18 · 22k−2.

By padding with zeros (which at most doubles the sizes), this yields

MM(n) = O(nlog(7)) = O(n2.807).

Remarks

Prior to Strassen, Winograd [261] showed that for even n, any two n×n matrices can be multiplied
using (n− 2)n2/2 multiplications; his method is based on the identity:

bn/2c∑

j=1

mijnjk =
bn/2c∑

j=1

(mi,2j−1 + n2j,k)(mi,2j + n2j−1,k)−
bn/2c∑

j=1

mi,2j−1mi,2j −
bn/2c∑

j=1

n2j−1,kn2j,k.

If this algorithm could be used recursively, then φ(n) = logn(n3/2 + n2 − n/2) would be such that
MM(n) = O(φ(n)); the minimum of φ being reached for n = 5, this would lead to a O(n2.76) matrix
multiplication algorithm. However, Winograd’s scheme requires the commutativity of the entries
of the multiplicand matrices, so straightforward recursion is not possible. After Strassen’s discov-
ery, Winograd suggested the following improved algorithm, which also uses 7 non-commutative

50



multiplications, but only 15 ± operations. It gives the product MN as

MN =


 ap + br (w + v) +

(
b− (

(c + d)− a
))

s

(w + u)− d
((

s− (q − p)
)− r

)
(w + u) + v


 ,

where
u = (c− a)(q − s)
v = (c + d)(q − p)
w =

(
(c + d)− a

)(
s− (q − p)

)
+ ap.

By judiciously performing padding with zeros, Strassen [234] showed that with his method MM(n) ≤
4.7nlog(7). The same analysis yields MM(n) ≤ 4.54nlog(7) for Winograd’s method [31]. Fischer [84]
showed that a careful application of Winograd’s form produces a 3.92nlog(7) algorithm.

Hopcroft and Kerr [120] showed that 7 multiplications are necessary to multiply 2 × 2 matrices
over a non-commutative ring and Winograd [262] showed that this number is minimal even when
the commutative law is used. Probert [197] has shown that 15 additions are also necessary for any
7 multiplications algorithm (so the result of Winograd is optimal) and deduced that faster matrix
multiplication must come from studying larger systems.

Indeed, from the analysis of Strassen’s algorithm it is clear that given an algorithm that multiplies
k × k matrices over a non-commutative ring using m multiplications, then we have a O(nlogk(m))
algorithm for multiplying n×n matrices. For instance, Pan [182] showed that 68×68 matrices can
be multiplied using 132464 multiplications, instead of 683 = 314432, whence an O(nlog68(132464)) =
O(n2.795) algorithm for matrix multiplication.

Matrix multiplication exponent. For a field k, a real number Ω is called a feasible
matrix multiplication exponent if any two matrices over k can be multiplied within O(nΩ)
operations in k. The infimum of all these ω (for fixed k) is called the matrix multiplication
exponent over k. Obviously, 2 ≤ ω ≤ 3. Strassen’s algorithm shows that ω < log(7). This
result motivated the development of the theory of bilinear complexity, a subfield of algebraic
complexity theory and produced an avalanche of results concerning upper estimates for ω
by Pan, Bini, Capovani, Lotti, Romani, Schönhage, Coppersmith, Winograd,. . . , see [47,
Chapter 15] for a comprehensive treatment and detailed historical notes.

On the theoretical side, Strassen [211] showed that ω is invariant under field extensions,
thus the same for all fields of a fixed characteristic. From a practical point of view, all the
exponents discovered so far work for all fields. The world record is ω < 2.376 and it comes
from Coppersmith and Winograd [69]. For the time being, their result is only of theoretical
interest. It was conjectured that ω = 2, but this is a difficult problem. A first step in this
direction was done by Coppersmith [68], who proved some meta-theorems showing (roughly)
that if one has an algorithm that runs in O(nα), then one can find an algorithm that runs in
O(nα−ε). Note that here ε is a function, not a constant, so it does not yield the conjecture
that an O(n2) algorithm exists for matrix multiplication.

51



2.3 Problems related to matrix multiplication

Further computational problems in linear algebra include matrix inversion [234, 209, 46], de-
terminants [234, 46], minimal and characteristic polynomials [132], LUP -decompositions [46],
transformation to echelon form [132], solving linear systems [234], reductions to various
canonical forms [95, 232], . . . It turns out that most of these problems can be solved us-
ing a constant number of matrix multiplications. Moreover, some of them are known to be
computationally equivalent, see [47, Chapter 16]. An important open question is to know
whether linear solving is as hard as matrix multiplication.

In what follows, we briefly discuss some of these problems.

2.3.1 Matrix inversion

Strassen [234] suggested a way to reduce inversion to (fast) matrix multiplication. Bunch
and Hopcroft [46] described the method as a block factorization. Indeed, the 2 by 2 matrix
A = (aij) factorizes

[
a11 a12

a21 a22

]
=

[
1 0

a21a
−1
11 1

] [
a11 0
0 a22 − a21a

−1
11 a12

] [
1 a−1

11 a12

0 1

]
,

so its inverse is given by

A−1 =

[
1 −a−1

11 a12

0 1

] [
a−1

11 0

0
(
a22 − a21a

−1
11 a12

)−1

] [
1 0

−a21a
−1
11 1

]
.

This method uses two inversions, six multiplications and two additions. Since it does not
use the commutativity of multiplication, it can be applied recursively. Assuming that only
invertible submatrices a11 and a22−a21a

−1
11 a12 are encountered, its running time I(n) satisfies

I(n) = 2 I(n/2) + 6 MM(n/2) +O(n2).

Supposing MM(n) = O(nω) (for an ω > 2), this yields I(n) = O(MM(n)).

Remarks

Bunch and Hopcroft [46] showed how to treat the case where some intermediate submatrices are
singular, by performing an appropriate permutation on the input matrix. Munro [177] remarked
that matrix multiplication can be reduced to matrix inversion, using




I A 0
0 I B
0 0 I



−1

=




I −A AB
0 I −B
0 0 I


 .

This shows that the both problems are computationally equivalent.

2.3.2 Determinants

Based on the identity det(A) = det(a11) det(a22 − a21a
−1
11 a12), the determinant computation

also has running time proportional to that of matrix multiplication.

52



2.3.3 Characteristic polynomials

The previous method has no straightforward fast application for computing the characteristic
polynomial det(xI − A) of A. A possible solution comes from another direction: there
is a class of matrices for which computing characteristic polynomials is immediate: given
a0, a1, . . . , an−1 ∈ k, the matrix




0 −a0

1
. . .

...
. . . 0 −an−2

1 −an−1




has characteristic polynomial

P (x) = xn +
n−1∑
j=0

ajx
j.

Such a matrix is called of Frobenius or companion type.

Keller-Gehrig’s algorithm [132] combines this with the following simple observation. If we
find an invertible matrix T such that F = T−1AT has Frobenius form, then the charac-
teristic polynomial of A and of F coincide and can be computed for one inversion and two
multiplications of n×n matrices. The same argument can be adapted if F is only Frobenius
by diagonal blocks.

Assume for simplicity that n is a power of 2 and that the matrix A is generic enough (the
general case can also be handled by essentially the same method). In that case, the key
point is that for any non-zero column vector v ∈ kn the matrix

T =
[
v | Av | . . . | An−1v

]

is invertible. This way, efficient computation of characteristic polynomials is reduced to the
problem of computing T . The obvious solution requires n matrix-vectors products, thus
has complexity O(n3). The following divide-and-conquer solution has been designed in [132]:
we first compute A2, A4, · · · , An/2 for log(n) multiplications of matrices, then perform the
following log(n) matrix products

[
Av

]
=

[
Av

]
[
A3v | A2v

]
= A2

[
Av | v]

...[
An−1 v| · · · | An

2 v
]

= A
n
2

[
A

n
2
−1v | · · · | v].

The total number of operations used by this algorithm is thus O
(
MM(n) log(n)

)
. We refer

to Subsection 3.4.2 for the description of a different algorithm of similar complexity.

53



2.3.4 Powers of matrices

Powers of matrices are important, for instance, in computing with linear (systems of) recur-
rent sequences with constant coefficients, see Section 3.3.3 of this thesis. Computing the Nth
power of a n×n matrix A can be done by binary powering in O(log(N) MM(n)) operations.
For large N a further improvement is possible [95]. The idea is that if A writes as T−1FT ,
then AN = T−1FNT . Computing as above such a decomposition with F of Frobenius type
reduces the problem to fast powering of Frobenius matrices.

Powers of Frobenius matrices. Since the k-linear map k[x]/(P )
·x→ k[x]/(P ) has matrix

F in the canonical basis {1, x, . . . , xn−1} of k[x]/(P ), we have that for all column vector
v = [v0, · · · , vn−1], the coordinates of the vector FN · v are the coefficients of the polynomial
FN · (v0 + · · ·+ vn−1x

n−1) mod P . As a consequence

FN =
[
xN mod P

∣∣ xN+1 mod P
∣∣ · · · ∣∣ xN+n−1 mod P

]

can be computed for log(N) + n multiplications of polynomials modulo P , thus using

O
((
n+ log(N)

)
M(n)

)

operations.

2.3.5 Evaluation of polynomials on matrices

A more general operation is the evaluation of a (monic) polynomial of degree N on a n× n
matrix A. The obvious Horner-like method requires N multiplications of matrices, thus has
complexity O(N MM(n)).

The baby step / giant step algorithm of Paterson and Stockmeyer [190] solves the same
problem with complexity O(

√
N MM(n)), see the Introduction of this thesis.

If N is large compared to n, this method can be improved by first computing the charac-
teristic polynomial χA of A as shown before, then to perform an Euclidean division of P by
χA using O(N M(n)/n) operations. Since, by Hamilton-Cayley’s theorem χA(A) = 0, this
reduces the problem to the evaluation of a polynomial of degree at most n at A, which can
be solved using O(

√
nMM(n)) by Paterson and Stockmeyer’s algorithm. The total cost is

thus

O
(√

n MM(n) +
N

n
M(n)

)
.

Remark

Giesbrecht [95] also showed that evaluating a non-linear polynomial on a matrix is actually as hard
as matrix multiplication.

54



2.4 Multiplication of linear differential operators

Consider the problem of computing the product of two linear differential operators of order n
in δ = x d

dx
with polynomial coefficients in x of degree n.

The näıve algorithm has time complexity O(n2 M(n)). In [248], van der Hoeven proposed a
faster algorithm; more exactly, he showed that this problem can be reduced to the problem
of multiplying a fixed number of n× n matrices.

In this paragraph, we show that the two problems are actually equivalent. This was already
asserted in the final remarks of van der Hoeven’s article, but not proved. We begin by
briefly recalling the algorithm in [248]. Its basic idea is to adapt the polynomial FFT’s
evaluation-interpolation strategy to the non-commutative case.

More precisely, let P =
∑n

i=0 pi(x)δ
i be a linear differential operator of order n in δ, with

polynomial coefficients pi(x) =
∑n

j=0 pijx
j. As in the polynomial case, there is an alternative

way to represent the operator P : instead of giving its list of coefficients pi(x), one may give
the list of the evaluations of P at the polynomials xj, for j = 0, . . . , n. Let us first see that
conversions from one representation to another can be done fast.

For any integer s ≥ 0, we have the formula:

P · xs =
(
p00 + p10s+ · · ·+ pn0s

n
)
xs + · · ·+ (

p0n + p1ns+ · · ·+ pnns
n
)
xn+s. (2.2)

Thus computing the polynomial P · xs amounts to evaluating the polynomials

p̃j(x) =
n∑

i=0

pijx
i

at the points s = 0, 1, . . . , n. Using fast evaluation algorithms, this can be done using
O

(
M(n) log(n)

)
base field operations for each polynomial, see Section 1.3.1.

Formula (2.2) also shows that given n+1 polynomials qi ∈ K[x] of degree n, one can compute
within the same running time bound the unique linear differential operator P of order n in δ,
with polynomial coefficients of degree at most n, such that

P · xi

xi
= qi(x), for all 0 ≤ i ≤ n.

This suggests the following algorithm for multiplying two operators P and Q in K[x][δ]:
evaluate Q on the powers xj, for 0 ≤ j ≤ 2n, then evaluate P on the polynomials Aj := Q·xj

and finally interpolate the product operator P ◦ Q.

By the discussion above, the first and the third steps have cost O(nM(n) log(n)), thus nearly
optimal in the size n2 of the output. We now look at the second step.

55



If A(x) =
∑m

k=0 akx
k is a polynomial in K[x], then one can check that the coefficients of the

polynomial P · A are the entries of the following matrix-vector product




p̃0(0) 0 . . . 0 . . . 0
p̃1(0) p̃0(1) 0 . . . 0

...
...

. . .
...

...

p̃n(0) . . . . . . p̃0(n)
...

0 p̃n(1) . . . p̃1(n)
. . . 0

... 0
. . . . . . p̃0(m)

...
...

. . . p̃n(n) . . . p̃1(m)
...

... 0
. . .

...
0 0 . . . 0 0 p̃n(m)




·




a0

a1
...
...
...
am




. (2.3)

This observation generalizes the well-known fact in the polynomial case that multiplication
by a polynomial translates into a Toeplitz matrix-vector product. For convenience, we will
denote the (m+ n+ 1)× (m+ 1) left-hand matrix in Equation (2.3) byMP,m.

The key remark in [248] is that one can incorporate the evaluation of P on several polynomials
Aj into a single matrix multiplication betweenMP and the matrix whose jth column contains
the coefficients of Aj. Indeed, the equalityMP◦Q =MPMQ is easy to infer. This way, the
second step of the previous algorithm uses O(MM(n)) operations and dominates its whole
cost.

Thus, we have shown that multiplying two linear differential operators of degree n in δ with
polynomial coefficients of degree n can be done using a finite number of products of n × n
matrices with entries in K. We now show that the converse is also true, that is that the two
problems are computationally equivalent.

Suppose that we have to multiply two matrices A and B. Write B = U + V +D, where U
is upper triangular, V is lower triangular and D is diagonal. Then computing the product
AB can be reduced to the products AU,AV and AD. Since AD is done for O(n2) base field
operations, it is enough to prove that computing products of type AU and AV amounts to a
(fixed) finite number of products of linear differential operators of order n and degree n. Since
(AV )t = V tAt and V t is upper triangular, it is sufficient to check the following assertion: if
A and U are [n/2] × [n/2] matrices such that U is upper triangular, than the computation
of their products AU and UA amounts to the product of two differential operators of order
and degree at most n.

We can compute the (unique) differential operator P such that its associated (2n+1)×(n+1)
matrixMP has the form

0 0
A 0
0 0
0 0

using O(nM(n) log(n)) base field operations.

56



Similarly, the (unique) differential operator Q whose associated (n+ 1)× bn/2c matrix is

MQ =
U
0

can be computed for O(nM(n) log(n)) base field operations. Then, the matrix MP◦Q as-
sociated to the product P ◦ Q can be also computed within O(nM(n) log(n)) base field
operations. By Equation (2.3), it equals

MP◦Q =

0
AU
0
0

This proves our claim concerning the product AU . The proof for UA is entirely similar.

For completeness, we summarize the result in the following theorem

Theorem 1 Let k be a field and let n be a positive integer. Then:

1. the multiplication of two n×n matrices with entries in k reduces to a fixed finite number
of products of linear differential operators of order n in δ and polynomial coefficients
in k[x] of degree at most n.

2. the product of two linear differential operators of order n in δ and polynomial coeffi-
cients in k[x] of degree at most n reduces to a fixed finite number of multiplications of
n× n matrices with entries in k.

57



Chapter 3

Newton iteration

In numerical analysis, Newton’s tangent method is used to approximate roots of differen-
tiable functions. Adapted to an exact framework, it provides a major tool of computer
algebra. In this chapter, we outline the method and exemplify its use in the derivation of
fast algorithms for univariate power series and rational fractions. These basic algorithms are
used all along this thesis. We conclude the chapter by describing Storjohann’s application
of Newton’s iteration to rational system solving, which is used in the last part of the thesis.
The algorithms discussed in this chapter are not new, our contribution is to give a unified
presentation.

Contents

3.1 Newton’s algebraic iteration: generic algorithm . . . . . . . . . 59

3.2 Application to operations on power series . . . . . . . . . . . . . 59

3.2.1 Inversion and division . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Division of polynomials . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Logarithm and exponential . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Other operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Rational fractions and linear recurrence sequences with con-
stant coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Linear recurrent sequences with constant coefficients . . . . . . . . 65

3.3.2 Taylor expansion of rational fractions . . . . . . . . . . . . . . . . 65

3.3.3 Computing a selected term of a linearly recurrent sequence . . . . 66

3.3.4 Computing the minimal polynomial of a recurrent sequence. . . . . 67

3.4 Newton iteration for polynomial matrices . . . . . . . . . . . . . 69

3.4.1 Application to rational system solving . . . . . . . . . . . . . . . . 71

3.4.2 Storjohann’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

58



3.1 Newton’s algebraic iteration: generic algorithm

Given a power series at precision n, the computation of the first n coefficients of its inverse,
logarithm, exponential and powers, and more generally, the power series solutions of large
families of differential equations, can be computed for O(M(n)) ring operations. (Recall that
M(n) denotes the computing cost in terms of coefficient arithmetic operations for multiplying
two polynomials of degree n).

The efficiency of these computations is based on a symbolic variant of Newton’s tangent
method [179]. Let F be a power series in x, whose coefficients are power series in t over a
field k. To compute a power series solution x = x(t) of an equation F (t, x) = 0, Newton’s
iteration writes

xk+1(t) = xk(t)− F (t, xk(t))
∂F
∂x

(t, xk(t))
mod t2

k+1

.

Here the notation mod tN means that terms of order higher than N are not computed.

The iteration starts with x0 = α, where α is required to be a simple root of F (0, x) in
the base field k. The number of correct coefficients doubles with each successive iteration,
see [47, Th. 2.31] for a proof. One says that Newton’s iteration method has a quadratic rate
of convergence. From the efficiency point of view, an important feature is that the arithmetic
cost of Newton’s method is usually dominated by that of the last iteration. For instance, if
the iterations involve multiplications of polynomials or power series, this is explained by the
equality

M(n/2) + M(n/4) + · · · = O(M(n)).

3.2 Application to operations on power series

3.2.1 Inversion and division

The näıve method for inverting or dividing power series at precision n is the undetermined
coefficients method, which has cost O(n2). We show that using Newtons’s iteration, this
cost drops to O(M(n)). This result was obtained by Brent in [42].

Indeed, let A(t) be a power series with non-zero constant coefficient. To compute the first
n = 2r coefficients of its inverse, we apply Newton’s iteration to the function F (t, x) =
A(t)− 1/x. This yields the following recurrence:

xk+1 = xk − A− 1/xk

1/x2
k

= xk + xk(1− Axk) mod t2
k+1

,

with initial condition x0 = 1/A(0).

The cost of the kth iteration is M(2k) + M(2k+1) + 2k. Summing up, this entails a total
number of operations of at most

r−1∑

k=0

(3

2
M(2k+1) + 2k

)
≤ 3 M(2r) + 2r = 3 M(n) + n.

59



In n is not a power of two, one can apply the previous algorithm to the first power of 2
larger than n; the complexity is still in O(M(n)). However, in unbalanced cases, too many
useless coefficients may be computed by this method; using a slight modification of Newton’s
iteration, a better algorithm can be written down [255] and has the same complexity

I(n) ≤ 3 M(n) +O(n).

Further remarks

Recently, Hanrot, Quercia and Zimmermann [115] have been able to reduce the cost of power series
inversion by Newton’s iteration. Their improvement is based on the remark that while performing
the iteration xk+1 = xk + xk(1 − Axk), only the middle part of the product between A and xk

is needed, since the lower part of this product is known in advance to reduce to 1. This is the
prototypical example of the middle product operation, which consists in extracting the coefficients
of degree n up to 2n of a product of polynomials of degree n and 2n. The cost of this operation
is shown to be M(n) + O(n) instead of 2 M(n) and in the case of power series inversion, this
reduces the upper bound to I(n) ≤ 2 M(n) + O(n). In [35], we showed that the middle product is
the transposed operation of the usual polynomial product; this fact, in conjunction with Tellegen’s
transposition principle explains the result in [115] and places it in a more general context, see
Chapter 4 of this thesis. Note finally that depending on the multiplication model, the constant
factor of 2 can be further improved: in Karatsuba’s model [115], one inversion has roughly the same
cost as one multiplication, while in the FFT case, Bernstein [22] does an inversion for the price of
3/2 multiplications.

Since division of power series can be reduced to one inversion and one multiplication, it has
cost O(M(n)) too, but it is legitimate to think that in terms of constant factors, one can do
it better. A natural idea, due to Karp and Markstein [130] is to incorporate the dividend
into the last Newton iteration; using this idea, division has complexity

D(n) ≤ 5

2
M(n) +O(n),

see [115]. The constant is reached in the FFT model, while for the Karatsuba multiplication
model, it drops to 4/3. Using a different approach, Bernstein showed that in the FFT model,
the constant can even be dropped down to 13/6, see [22].

Historical remarks

The first speed-up of the division problem was due to Cook [65, pages 81–86], who applied New-
ton’s method to compute arbitrarily high precision reciprocal for integers, which in turn serves to
reduce the time for performing integer division to a constant number of integer multiplications.
Fast algorithms for polynomial and power series division came some six years later. In their pio-
neering paper on multipoint evaluation, Borodin and Moenck [169] proposed a divide-and-conquer
algorithm for polynomial division with complexity O(M(n) log(n)). Independently, Sieveking [228]
devised a O(M(n)) algorithm for power series inversion. Strassen [235, Section 3.5] pointed out
that polynomial division reduces to power series inversion and produced an improved O(M(n))
polynomial division algorithm, which was rapidly integrated in the second version [30] of Borodin

60



and Moenck’s paper. An important conceptual simplification was made by Kung [138], who showed
that Sieveking’s algorithm for inverting power series is a particular instance of Newton’s method
applied over a power series domain. Moenck and Allen [168] gave a unified framework for division
over abstract Euclidean domains. Lipson [157] emphasizes the large applicability of this powerful
method to exact computations with power series: “In a symbolic mathematics system setting, we
feel that Newton’s method offers a unified and easily implemented algorithm for solving a wide vari-
ety of power series manipulation problems that can be cast into a root-finding mold. Our experience
attests to the practicality of Newton’s method. We feel that it is a great algebraic algorithm.”

3.2.2 Division of polynomials

Strassen [235] showed that division of polynomials can be reduced to the division of two
formal power series.

Let a and b two polynomials and let a = bq+r be the division with remainder of a by b. The
idea is to view this equality not at x = 0, but at infinity, that is, make the change of variable
x 7→ x−1. Suppose that deg(a) = 2n and deg(b) = n, so that deg(q) = n and deg(r) < n.
Denoting by rev(f, d) the reverse polynomial f(1/x)xd one gets the new identity

rev(a, 2n) = rev(b, n)rev(q, n) + xn+1rev(r, n− 1)

which implies that rev(q, n) can be obtained by computing the quotient of power series
rev(a, 2n)/rev(b, n) at precision n+ 1. This can be done in O(M(n)), so the quotient q and
the remainder r = a− bq are also recovered within this complexity.

3.2.3 Logarithm and exponential

In [42, Section 13], Brent gave an algorithm for computing logarithms and exponentials of
power series using Newton’s method. We now recall these algorithms, which will be used in
Chapters 6 and 7.

Suppose that f is a power series with constant coefficient 1, given at precision n, over a ring
of characteristic zero. Its logarithm is defined as the power series

log(f) = −
∑
i≥1

(1− f)i

i
.

Brent’s solution for computing the logarithm of f is based on the fact that the formal deriva-
tive of log(f) equals f ′/f ; consequently, the problem reduces to the term-wise integration of
the quotient of two power series. Since integration has cost linear in n and in view of the
results of the preceding section, this can be done using at most

L(n) ≤ 5

2
M(n) +O(n)

operations, which is in O(M(n)).

61



Let now f be a power series with zero constant coefficient over a field of characteristic zero.
The exponential of f is defined as the power series

exp(f) =
∑
i≥0

f i

i!
.

One can easily check that log(exp(f)) = f . This is the basis of Brent’s algorithm, which
applies Newton’s method to the function F (t, x) = log(x)− t, leading to the iteration x0 = 1
and

xk+1 = xk + xk

(
f − log(xk)

)
mod x2k+1

.

Let us study the cost of the kth iteration; it requires a log computation at precision 2k+1

and a multiplication of series at precision 2k (since the first terms of f and log(xk) coincide
up to 2k), thus using at most M(2k) + 5

2
M(2k+1) ≤ 3 M(2k+1) operations. Summing up for

0 ≤ k ≤ blog(n)c − 1, the total cost is

E(n) ≤ 6 M(n) +O(n).

Remark In specific multiplication models this constant may be further improved. For
instance, Bernstein [22] shows that in the FFT model, one can compute the exponential for
17/6 multiplications of power series at precision n.

Powers of power series As a nice application of fast logarithms and exponentials, we
mention the problem of computing the mth power of a power series at precision n. By
repeated squaring (binary powering), this can be done in O

(
M(n) log(m)

)
operations. Quite

surprisingly, this upper bound can be improved to O
(
M(n)+ log(m)

)
, see [42], by exploiting

the fact that if f(0) = 1, then
fm = exp

(
m log(f)

)
.

Power series solutions of linear differential equations Another interesting applica-
tion [43] concerns linear differential equations. Consider the equation

y′ − A(x)y = B(x),

where A and B are power series. Its solutions are obtained by the method of variation of
parameters [122, Section 2.13] and are given symbolically by

y = e
R

A ·
∫
B e−

R
A.

As a consequence, computing a power series solution up to order n requires primitives, of
complexity linear in n and exponentials, of complexity O(M(n)). This method extends to
linear differential equation of arbitrary degree, leading to a complexity (with respect to n)
of O(M(n)) operations, see [43].

62



Further remark An improvement in efficiency is obtained if we restrict our attention to the
special class of linear differential equations with polynomial coefficients. In this case, the coefficients
of a power series solution satisfy a recurrence relation with polynomial coefficients (in n) and can
be computed by an on-line algorithm using a number of arithmetic operations which is linear in n.
We point out that the so called holonomic functions, which verify such differential equations with
polynomial coefficients are ubiquitous, including large spectra of special functions [4, 7, 167]. Thus,
for all these functions, the Taylor expansion around ordinary points and more generally, around
regular singularities [57, 58, 59, 60, 246, 167] can be computed fast, see also Chapter 9 of this thesis,
for the case when one is interested in computing only one coefficient of large index.

3.2.4 Other operations

In the remaining of this section, we briefly mention a few other operations on power series,
that will be not used in the rest of this thesis.

Composition of power series Suppose that A =
∑

i≥0 aix
i and B =

∑
i≥0 bix

i are two
power series such that b0 = 0. Their composition C = A ◦B is defined as the power series

∑
i≥0

cix
i =

∑
j≥0

aj

(∑
i≥1

bix
i

)j

.

We have c0 = a0 and for n ≥ 1, cn is clearly a polynomial expression in a1, . . . , an, b1, . . . , bn.
The composition problem is to compute the first n terms of the series A ◦B from the first n

terms of the series A and B. As special cases, we have already studied the cases exp(f) = E◦f
and log(f) = Log ◦ f, where

E =
∑
i≥0

xi

i!
and Log = −

∑
i≥1

(1− x)i

i
.

The straightforward approach solves the composition problem using O
(
nM(n)

)
operations.

The technique of baby steps / giant steps due to Paterson & Stockmeyer [190] reduces this
cost to O

(√
n M(n) + n2

)
.

The fast composition scheme of Paterson and Stockmeyer [190] also works if we replace the
algebra of power series truncated at xn by any algebra of dimension n. For instance, it
applies to quotient algebras k[x]/(f(x)), thus solving the problem of modular compositions
of polynomials g(h) mod f , where deg(g), deg(h) < deg(f) = n, within O

(√
n M(n) + n2

)
operations [256, 224].

Brent and Kung [43] pointed out that the exponent 2 can be dropped to ω+1
2

, where ω is
the exponent of matrix multiplication. They also proposed an asymptotically faster method,
using time

C(n) = O
(
M(n)

√
n log(n)

)
.

We mention that this method does not extend directly to the modular composition of poly-
nomials, so that the question of speeding-up the generic solution of Paterson and Stockmeyer
in this case is an open problem.

63



Further remark

An interesting improvement was obtained by Bernstein [23], who proposed a faster composition
algorithm in positive characteristic p > 0, of total complexity O(p M(n) log(n)), which is nearly
optimal for fixed p.

Reversion of power series

Given a power series A(x) =
∑

i≥1 aix
i, one can show that there exists a unique power series

B(x) =
∑

i≥1 bix
i, such that

A ◦B = B ◦ A = x.

The series B is called the reverse or the functional inverse of A. Given a1, . . . , an, the
reversion problem is to compute the coefficients b1, . . . , bn of its reverse. It is easy to show
that they depend polynomially on a1, . . . , an.

In [43], Newton’s iteration is applied to F (t, x) = A(x)− t and helps reducing the reversion
problem to the composition problem. The iteration is x0 = 0 and

xk+1 = xk − A(xk)− t
A′(xk)

mod t2
k+1

.

Using the fact that A′ ◦ xk = (A ◦ xk)
′/x′k, the cost R of reversion satisfies the relation

R(2k+1) ≤ R(2k)+C(2k+1)+O(M(2k+1)). Under some natural regularity assumptions on the
functions C and R, this implies that R(n) = O(C(n)). Moreover, Brent and Kung [43]
proved that composition and reversion are in fact computationally equivalent, that is

R(n) = O(C(n)) and C(n) = O(R(n)).

3.3 Rational fractions and linear recurrence sequences

with constant coefficients

Linearly recurrent sequences with constant coefficients and rational functions are incarna-
tions of identical mathematical objects. Their main common specificity is that they can be
specified by a finite amount of information: recurrence and initial conditions, respectively
numerator and denominator. Algorithmically, this distiguishes rational power series among
general power series.

We refer to the two recent surveys [54] and [249] on arithmetic and analytic aspects of
recurrent sequences with constant coefficients and to [112, 51, 71, 113, 194, 221, 238, 260,
82, 111, 188] for algorithmic issues related to the computation with such sequences.

The aim of this section is to show that, due to their compact representation, the class of
generating power series of linear recurrent sequences is better suited to fast manipulation
than general power series.

64



3.3.1 Linear recurrent sequences with constant coefficients

Let k be a field and let p0, . . . , pd−1 be elements of k. The sequence (an)n≥0 is called linearly
recurrent if it satisfies a recurrence relation with constant coefficients of the type

an+d = pd−1an+d−1 + · · ·+ p0an, for all n ≥ 0.

The polynomial P = xd− pd−1x
d−1−· · ·− p1x− p0 is then called a characteristic polynomial

of the sequence (an). An important property of linearly recurrent sequences is that their
generating power series are rational. Indeed, one has the formulas

N0

rev(P )
=

∑
n≥0

anx
n and

N∞
P

=
∑
n≥0

an

xn+1
.

The numerators N0 and N∞ have degree less than d and encode the initial conditions of
the sequence. A simple, but crucial remark is that the sequence (an)n≥D verifies the same
recurrence as (an)n≥0. Thus the generating series

∑
n≥D anx

n−D is also rational, has the same
denominator rev(P ) and its numerator ND encodes the new initial values aD, . . . , aD+d−1.

Example The archetypal example of a linearly recurrent sequence with constant coeffi-
cients is the celebrated Fibonacci sequence (Fn)n≥0 defined by

Fn+2 = Fn+1 + Fn, for all n ≥ 0, with F0 = F1 = 1.

Its generating power series at zero and at infinity are

1

1− x− x2
=

∑
n≥0

Fnx
n and

x

x2 − x− 1
=

∑
n≥0

Fn

xn+1
.

3.3.2 Taylor expansion of rational fractions

Consider the following question: given two polynomials b and A of degree d, compute the
Taylor expansion at order N ≥ 0 of the rational fraction b/A.

The fast solution suggested by the preceding paragraphs consists in applying Newton itera-
tion. If N ≥ d, the complexity of this method is O

(
M(N)

)
operations.

Surprisingly, one can do better, by iterating a procedure which allows to pass from a slice of d
coefficients to the next one in only O

(
M(d)

)
operations. The number of needed iterations is

N/d, so the total cost of this method is

O

(
N

M(d)

d

)
.

If fast multiplication is used, this is nearly optimal, since the dependence is linear in the
number of computed terms and (poly-)logarithmic in the order of the recurrence. This should
be compared with the näıve method, which has complexity O(dD).

65



We describe this algorithm in more detail. In the next sections, we show that it extends to
the case where A is a polynomial matrix and b is a polynomial vector. This extension is
the basis of a recent algorithm of Storjohann [233] for solving linear systems with rational
function coefficients, which will be described in Section 3.4.2.

Let P = xd and
b

A
= c0 + c1P + . . .

the Taylor expansion we want to compute. Here ci are polynomials of degree less than d.

Let C0 denote the first d coefficients of the inverse of A; they can be computed using Newton’s
iteration in O(M(d)) operations. Then, it is enough to show that the following formula holds:

cm = −dC0 bA cm−1cded . (3.1)

Here, the notation d.eh, b.cl and [.]hl represent truncation operations defined on a polynomial

P =
∑

i piT
i as follows: dP eh =

∑h−1
i=0 piT

i, bP cl =
∑
pi+lT

i and [P ]hl =
∑h−l−1

i=0 pi+lT
i. In

what follows, this notation will also be used for polynomial matrices.

To justify Equation (3.1), we use the equalities

b

A
= c0 + · · ·+ cm−1P

m−1 +
(
cm + cm+1P + . . .

)
Pm = c0 + · · ·+ cm−1P

m−1 +
rm

A
Pm

which translate the fact that the sequences (ci)i≥0 and (ci)i≥m verify the same recurrence, but
have different initial conditions, encoded by b = r0 and rm. Multiplying by A and comparing
the coefficients of Pm, this equality gives rm = −bAcm−1cd and cm = drm/Aed = dC0rmed ,
which together imply Equation (3.1).

3.3.3 Computing a selected term of a linearly recurrent sequence

We now consider the following problem: given a recurrence of order d and the first d terms
of one solution, how fast can we compute one selected term of that solution? In terms of
rational fractions, how fast can we determine the Dth term in the Taylor expansion of a
rational function of numerator and denominator of degree d?

Our interest in studying this question is motivated by the fact that its extension to the
non-scalar case is one of the main ideas of Storjohann’s algorithm presented in Section 3.4.2.
A fast algorithm for the case of linear recurrences with non-constant coefficients is presented
in Chapter 9.4.

Notice that for a quotient of general power series, this is as hard as computing all the first
D terms. Again, for quotients of polynomials we can solve this problem nearly optimally,
that is with complexity O(M(d) log(D)). The solution relies on the equality




aD

aD+1
...

aD+d−1


 =




0 1
. . . . . .

0 1
p0 · · · pd−2 pd−1




D

·




a0

a1
...

ad−1


 . (3.2)

66



A direct application of Equation (3.2) yields an algorithm of complexity O(log(D)dω). This
is almost optimal in D, but not in d. A faster solution translates Equation (3.2) into a
polynomial identity: the polynomial aD + aD+1x + · · · + aD+d−1 is the middle part of the
product (

xD mod P
)(
a0 + a1x+ · · ·+ a2d−2x

2d−2
)
.

Since computations modulo P can be done within O(M(d)) the complexity of the resulting
algorithm is O(log(D) M(d)), thus nearly optimal in both d and D. A similar complexity
result is obtained in [82].

3.3.4 Computing the minimal polynomial of a recurrent sequence.

In the preceding sections we considered fast algorithms for converting rational fractions to
power series. We now treat the inverse problem: given the first 2N terms of a linearly
recurrent sequence (bk)k≥0, recover the coefficients uk of the recurrence of minimal order,
supposed upper bounded by N , of the type

d∑

k=0

bk+iuk = 0 for all i ≥ 0. (3.3)

This problem is equivalent to the resolution of the linear (Hankel) system defined by the
first N equations given by Equation (3.3). In terms of generating series, it can be viewed as
a special case of Padé approximation. Indeed, Equation (3.3) can be restated as

( ∑

k≥0

bkX
k
)
·
( d∑

i=0

uiX
d−i

)
is a polynomial of degree less than d.

In other words, solving the recurrence (3.3) amounts to finding two polynomials u, v ∈ K[X],
such that deg(u) ≤ N , deg(u) < N which satisfy the equality

B(X)u(X)− v(X) = O(X2N).

Such a pair (u, v) will be called a N-approximant for B.

We now present two variants of Berlekamp-Massey’s algorithm [20, 165, 73]. The first one
contains the basic idea, but has a quadratic behaviour, while the second one has an almost
linear complexity.

A Quadratic Algorithm A natural idea is to construct approximants incrementally, that
is, to lift a (k − 1)-approximant into a k-approximant, for increasing k. To do this, the key

idea is to maintain, at step t, two couples of candidates u
(t)
1 , u

(t)
2 for u and v

(t)
1 , v

(t)
2 for v and

to introduce error series e
(t)
1 , e

(t)
2 which measure how far we are from the desired precision

t = 2N . A well-chosen linear combination of these error series will produce a new one with

67



valuation increased by 1; we will then define a candidate at step t + 1 as the same linear
combination of the two candidates at step t. The second candidate at step t+1 will be just a
shift by X of one of the candidates at step t. Formalizing this procedure in matrix notation,
at step t, we have the equation:

[
B −1

] ·
[
u

(t)
1 u

(t)
2

v
(t)
1 v

(t)
2

]
= X t ·

[
e
(t)
1 e

(t)
2

]
. (3.4)

As indicated above, passing from stage t to stage t+ 1 is done by setting:
[
u

(t+1)
1 u

(t+1)
2

v
(t+1)
1 v

(t+1)
2

]
:=

[
u

(t)
1 u

(t)
2

v
(t)
1 v

(t)
2

]
· P (t),

where P (t) is one of the following unimodular matrices, of degree at most 1:
[

e
(t)
2 (0) 0

−e(t)
1 (0) X

]
(
if e

(t)
2 (0) 6= 0

)
, or

[
X −e(t)2 (0)

0 e
(t)
1 (0)

]
(
if e

(t)
1 (0) 6= 0

)
.

(if e
(t)
1 (0) = e

(t)
2 (0) = 0, one simply sets P (t) = Id2.)

With this choice, equation (3.4) is obviously satisfied at step t+1; moreover, at each iteration,
the degree of the matrix containing candidates for (u, v) increases by 1/2 on average, so that
after 2N iterations, a N -approximant will be given by one of its columns. Since the matrices
P (t) are unimodular, this approximant will not be the trivial one.

To estimate the cost, we notice that at each iteration, only the constant terms of the ei’s
are necessary; their computation requires O(t) operations. The computation of the new
candidates by multiplication by P (t) has the same cost. Thus, the complexity of the entire

algorithm is O
( ∑N

t=1 t
)

= O
(
N2

)
.

An Almost Linear Algorithm In the previous algorithm, the quadratic cost came from
the computation of the tth coefficient of the product Bf , and also from the multiplication
of f by a degree 1 matrix, where f is a polynomial of degree t/2.

We will now describe a divide-and-conquer approach that replaces these numerous very
unbalanced multiplications by a few big polynomial multiplications.

In order to achieve this, we begin by remarking that in the previous algorithm, the matrix
P (t) is simply a 1-approximant matrix for the error series [e

(t)
1 , e

(t)
2 ], that is

[
e
(t)
1 e

(t)
2

]
· P (t) = O

(
X

)
(3.5)

This suggests the following divide-and-conquer strategy for computing an (m + n)-
approximant matrix for B: first compute a m-approximant matrix R for B, then compute
an n-approximant matrix Q for the error series; then the product of these two matrices
represents an (m+ n)-approximate matrix for B. Indeed, if

[
B −1

] ·R = Xm · [ e1 e2

]
and

[
e1 e2

] ·Q = O
(
Xn

)
,

68



then P = RQ has degree deg(R) + deg(Q) and satisfies

[
B −1

] · P = O
(
Xm+n

)
.

Let us estimate the cost of this recursive algorithm: if C(n) denotes the number of operations
needed to compute a n-approximant for B, then

C(n) = 2C(n/2) +O
(
M(n)

)
.

Indeed, the cost O
(
M(n)

)
comes from the computation of the error series and that of mul-

tiplication of the matrices R and Q. We conclude that C(n) = O
(
M(n) log(n)).

Remark The previous algorithm can be extended so as to treat the problem of approxi-
mating several power series. This is called in the literature the Padé-Hermite approximation
problem, see the references [17, 18, 148, 97] and the last Chapter of this thesis, where we use
Padé-Hermite approximants to compute with differential operators.

3.4 Newton iteration for polynomial matrices

Let k be a field and let A ∈ Mn×n

(
k[x]

)
be a n × n invertible polynomial matrix, whose

entries are polynomials of degree less than d. We say that A has degree less than d. We denote
by MM(n, d) the number of arithmetic operations required to multiply two n×n polynomial
matrices of degree less than d. Viewing A as a polynomial with matrix coefficients, one can
always choose MM(n, d) = O(M(d)nω) = Olog(dn

ω), using the general result of Cantor and
Kaltofen [50]. A better bound of MM(n, d) = O

(
nωd+ n2M(d)

)
can be obtained using our

results on the fast chirp transforms described in Chapter 5.

Let P (x) ∈ k[x] be a polynomial relatively prime with the determinant det(A) of A. In what
follows, we will assume for simplicity that A(0) is invertible, so we can choose P a power
of x, but the general case can be handled similarly. Under our assumption, the matrix A−1

admits a P -adic expansion

A−1 = C0 + C1P + · · ·+ CbP
b + . . . ,

where Ci are polynomial matrices of degree less than deg(P ).

For instance, let us consider P = x. Then the x-adic expansion of A−1 can be computed up
to precision N ≥ 1 by Newton’s iteration

X0 = A(0)−1, Xi+1 = Xi +Xi

(
I − AXi

)
mod x2i+1

using

O

(∑
i≥1

MM(n,N/2i)

)
= O

(
MM(n,N)

)

operations in k.

69



Sometimes, as in the scalar case, one only needs a single coefficient or a slice of coefficients
in this expansion. This raises a natural question: can one compute faster, say, the Nth
coefficient XN? Recall from the preceding sections that in the scalar case, the Nth coefficient
of the inverse of a polynomial of degree d can be computed using O

(
log(N) M(d)

)
operations.

We will show now a similar result for polynomial matrices, due to Storjohann [233]. To this
end, we begin by giving a slight generalization of Newton’s iteration.

For any integers a, b ≥ 0, we have that

Ca+1P
a+1+ · · ·+Ca+b+1P

a+b+1 =
(
C0+ · · ·+CbP

b
)(

1−A ·(C0+ · · ·+CaP
a
))

mod P a+b+2.

Proof A quick proof is to multiply term by term the equalities




1−A · (C0 + · · ·+ CaP
a
)

= A · (Ca+1P
a+1 + . . .

)
and

C0 + · · ·+ CbP
b = 1−A · (Cb+1P

b+1 + . . . )

and to use the fact that the right-hand product
(
1−A · (Cb+1P

b+1 + . . . )
) · (Ca+1P

a+1 + . . .
)

is equal to Ca+1P
a+1 + · · ·+ Ca+b+1P

a+b+1 modulo P a+b+2. ¤

In particular, by comparing the coefficients of P a+b+1, we deduce that Ca+b+1 can be com-
puted from Ca, Cb−1 and Cb in time O

(
M(n, d)

)
. More exactly, the following equality holds

Ca+b+1 = − [(
Cb−1 + Cbx

d
) · bACacd

]2d

d
.

Choosing now a = b = 2i−1 − 1 and for a = 2i−1 − 2, b = 2i−1 − 1, we deduce that the
high-order components C2i−2 and C2i−1 (1 ≤ i ≤ `) of the inverse of A can be computed
using O

(
` M(n, d)

)
operations in k.

Example Let F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn Fibonacci’s sequence. Then, setting
P = x2, Ca = F2a + F2a+1x and A = 1− x− x2, we get

F2a+2b+2 + F2a+2b+3x = − čą
F2b−2 + F2b−1x + F2bx

2 + F2b+1x3
ć · ě

(1− x− x2)(F2a + F2a+1x)
ę
2

ď4
2

.

This yields the equations

F2a+2b+2 = F2a+1F2b−1 + (F2a + F2a+1)F2b,
F2a+2b+3 = F2a+1F2b + (F2a + F2a+1)F2b+1.

(3.6)

Using equation (3.6), we obtain the following doubling step iteration for computing high
Fibonacci numbers(

F2i−4, F2i−3, F2i−2, F2i−1

)
7−→

(
F2i+1−4, F2i+1−3, F2i+1−2, F2i+1−1

)
.

This coincides with the classical method [221], which proceeds as follows:

F2m = F 2
m + F 2

m−1

F2m+1 = F 2
m + 2Fm−1Fm.

70



3.4.1 Application to rational system solving

We consider the fundamental problem of solving a linear system

Av = b,

where A ∈Mn×n

(
k[x]

)
, b ∈Mn×1

(
k[x]

)
are polynomial matrices of degree less than d.

By Cramer’s rule, the entries of the vector v = A−1b are rational fractions in x, whose
numerators and denominators have degrees upper bounded by nd. Based on this remark,
Carter and Moenck [170] proposed a method to compute v by adic expansion: first expand
A−1b at order 2nd, then recover its (rational) entries by Padé approximation.

Since the cost of the reconstruction step is O
(
nM(nd) log(nd)

)
, thus nearly linear (up to

logarithmic factors) in the size of the output v, we concentrate on the first step – computing
the expansion of v = A−1b at precision 2nd.

The näıve approach consists in computing the first 2nd terms in the x-adic expansion of
the inverse A−1, then multiplying by b. Using Newton’s iteration described above, this has
complexity O(MM(n, 2nd) + n3 M(d)) = Olog(n

ω+1d).

Carter and Moenck [170] devised a faster method, which exploits the rationality of the entries
of v. It is the matrix equivalent of the Taylor expansion of a rational fraction by slices, as
explained in Section 3.3.2. Indeed, that method can be literally imported, in the setting
of polynomial matrices, provided that one replace the capital letter polynomials by square
matrices of polynomials and the small letter polynomials by column vectors of polynomials.

To compute the first N terms in the x-adic expansion of v = A−1b, this method requires the
inversion of A modulo xd and 2N

d
matrix-vector multiplications of polynomial matrices of

degre d, in other words

O

(
MM(n, d) +

Nn2

d
M(d)

)

operations in k. In our case, N is bounded by 2nd, so the complexity is in the class

O
(
n3 M(d)

)
= Olog

(
n3 d

)
.

3.4.2 Storjohann’s algorithm

We describe now a recent method due to Storjohann [233], which further decreases the
complexity down to Olog(n

ωd). This is nearly linear in the size n2d of the output, under the
hypothesis that ω = 2 and neglecting log factors.

Recall the notation
A−1 = C0 + C1P + · · ·+ CbP

b + . . .

A−1b = c0 + c1P + · · ·+ ca−1P
a−1 + A−1raP

a

and the fact that the family of high order components {C2i−2 +C2i−1 P}0≤2i≤2n, of total size
O

(
log(n) · n2d

)
, can be computed in O

(
log(n) ·M(n, d)

)
.

71



We have seen in the preceding section that computing A−1b amounts to computing the
residues ra fast, for 0 ≤ a ≤ n. In the linear P -adic lifting method of Carter and Moenck,
the ra are computed one by one, each passage from ra to ra+1 being achieved using a constant
number of polynomial matrix-vector products, whence a complexity in O

(
n3 M(d)

)
. To

reduce the complexity of computing the ra (and, a posteriori, that of rational system solving),
Storjohann’s improvement is to replace the matrix-vector products by polynomial matrix-
matrix products.

Informally, the idea is that passing from ra to ra+b can be done using a single matrix-vector
product involving a particular high-order component of the inverse of A which only depends
on b. Thus, if several ra are already available, all their translations by b can be computed
using a single matrix-matrix product instead of several matrix-vector products.

More precisely, denoting Eb = Cb−2 + Cb−1P , one has the formulas

ra+b = −
⌊
A [Ebra]

2d
d

⌋
d

for all b ≥ 2 and ra+1 =
⌈
A [E2ra]

2d
d

⌉d

.

Proof The relation b = A
(
c0 + c1P + · · ·+ ca+b−1P

a+b−1
)

+ ra+bP
a+b shows that

ra+b = −bAca+b−1cd . (3.7)

On the other hand, A−1ra rewrites as:

ca + · · ·+ ca+b−1P
b−1 + . . . =

(
C0 + · · ·+ Cb−2P

b−2 + Cb−1P
b−1 + . . .

)
ra.

Comparing the coefficients of P b−1 in these expressions, we also obtain

ca+b−1 = [Ebra]
2d
d . (3.8)

Equations (3.7) and (3.8) prove the first equality. The second one is similar. ¤

This suggests the following divide-and-conquer strategy: from b = r0, compute rn, then
translate by n/2 and recover rn/2 and r3n/2, then translate by n/4 and recover rn/4, r3n/4,
r5n/4 and r7n/4, and so on. After O(log(n)) steps, all the residues r0, . . . , r2n−1 are computed.
Step i consists in (a constant number of) matrix multiplications between a n×n polynomial
matrix of degree d (a high-order lifting component) and a n × 2i matrix of degree d (built
upon the previously constructed ri’s).

Summing up, the total cost of this procedure and of the whole rational system solving
algorithm based upon it is

O
(
MM(n, d) log(n)

)
.

Application: characteristic polynomials

The results of the previous section yield a probabilistic algorithm for the computation of
characteristic polynomials of scalar matrices. The idea comes from [183], but our complexity
result is better.

72



To determine χM(x) = det(M − xI), we choose a vector b ∈ kn and solve the linear system
(M − xI)v = b using Storjohann’s algorithm. By Cramer’s rule, the denominators of the
entries of the solution v generically equal χM (in degenerate cases, only a factor of χM is
found). The cost of the algorithm is O(MM(n) log(n)), which is nearly the same as that of
Keller-Gehrig’s algorithm [132] explained in Subsection 2.3.3.

73



Chapter 4

Tellegen’s Principle Into Practice

The transposition principle, also called Tellegen’s principle, is a set of transformation rules
for linear programs. Yet, though well known, it is not used systematically, and few practical
implementations rely on it. In this chapter, we propose explicit transposed versions of poly-
nomial multiplication and division but also new faster algorithms for multipoint evaluation,
interpolation and their transposes. We report on their implementation in Shoup’s NTL C++
library.

This chapter is joint work with G. Lecerf and É. Schost [35].

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Tellegen’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Polynomial multiplication . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Plain multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Karatsuba’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Polynomial Division . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Plain division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Sieveking-Kung’s division . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.3 Modular multiplication . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Transposed Vandermonde . . . . . . . . . . . . . . . . . . . . . . 87

4.6.1 Going up the subproduct tree . . . . . . . . . . . . . . . . . . . . . 88

4.6.2 Multipoint evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Conclusion, future work . . . . . . . . . . . . . . . . . . . . . . . 90

74



4.1 Introduction

The transposition principle, sometimes referred to as Tellegen’s principle, asserts that a linear
algorithm that performs a matrix-vector product can be transposed, producing an algorithm
that computes the transposed matrix-vector product. Further, the transposed algorithm has
almost the same complexity as the original one (see Section 4.3 for precise statements).

The following example illustrates this principle, using the computation graph representa-
tion. Taking x1, x2 as input, it computes y1 = ax1 + bx2, y2 = cx1 + dx2; edges perform
multiplications by the constant values a, b, c, d.

+

+a

d

b
c

x2

x1

y2

y1

Reversing all arrows and exchanging vertices + and • yield the following graph:

a

d

b
c

x2

x1

y2

y1

+

+

Taking y1, y2 as input, it computes the transposed map x1 = ay1 + cy2, x2 = by1 + dy2

(see [128] for details).

Such transformation techniques originate from linear circuit design and analysis [8, 29, 192,
239] and were introduced in computer algebra in [80, 81, 119, 128]. Since then, there has
been a recurrent need for transposed algorithms [19, 49, 115, 124, 223, 225, 227, 267]. Yet,
the transposition principle in itself is seldom applied, and specific algorithms were often
developed to circumvent its use, with the notable exceptions of [115, 225].

Contributions In this chapter, we detail several linear algorithms for univariate polyno-
mials and their transposes: multiplication, quotient, remainder, evaluation, interpolation
and exemplify a systematic use of Tellegen’s principle.

Our first contribution concerns univariate polynomial remaindering: we show that this prob-
lem is dual to extending linear recurrence sequences with constant coefficients. This clarifies
the status of algorithms by Shoup [223, 227], which were designed as alternatives to the
transposition principle: they are actually the transposes of well-known algorithms.

Our second contribution is an improvement (by a constant factor) of the complexities of
multipoint evaluation and interpolation. This is done by designing a fast algorithm for
transposed evaluation, and transposing it backwards. We also improve the complexity of
performing several multipoint evaluations at the same set of points: discarding the costs of
the precomputations, multipoint evaluation and interpolation now have very similar com-
plexities.

Finally, we demonstrate that the transposition principle is quite practical. We propose
(still experimental) NTL [226] implementations of all algorithms mentioned here and their

75



0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100 120 140 160 180 200

multiplication
division

Figure 4.1: Transposed/direct ratios

transposes. They show that the expected time ratio of 1 between an algorithm and its
transpose is well respected in practice. The source code can be downloaded from
http://www.math.uvsq.fr/~lecerf.

Contents Section 4.2 introduces the notation used in the rest of this chapter. In Sec-
tion 4.3, we state the transposition principle in two distinct computation models; we discuss
the memory requirement question that was raised in Kaltofen’s Open Problem 6 in [124].

In Section 4.4, we transpose polynomial multiplication. This was already done in [115],
where transposed versions of Karatsuba’s and Fast Fourier Transform (FFT) multiplications
were given. We transpose NTL Karatsuba’s multiplication, which was optimized to treat
unbalanced situations. We also transpose plain, as well as FFT multiplication.
In Section 4.5, we transpose the operations of polynomial quotient and remainder and show
the duality between polynomial remaindering and extending linear recurrence sequences.
In Section 4.6, we finally consider polynomial multipoint evaluation and interpolation. We
give algorithms for these operations and their transposes that improve previously known
algorithms by constant factors.

Implementation Our algorithms are implemented in the C++ library NTL [226]. Fig-
ures 4.1 and 4.2 describe the behavior of our implementation; the computations were done
over Z/pZ, with p a prime of 64 bit length, and the times were measured on a 32 bit archi-
tecture.

Figure 4.1 shows the time ratios between direct and transposed algorithms for polynomial
multiplication and polynomial remainder, for degrees up to 200.

• For multiplication, the horizontal axis gives the degree m of the input polynomials.
Multiplication in NTL uses three different algorithms: plain multiplication for m ≤
19, Karatsuba’s multiplication for 20 ≤ m < 79 and FFT for larger m. The same
thresholds are used for the transposed versions. Note that Karatsuba’s multiplication
is slightly slower in its transposed version.

76



0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

20 40 60 80 100 120 140 160 180 200

evaluation
interpolation

Figure 4.2: Transposed/direct ratios

• The division deals with polynomials of degrees 2m and m. NTL provides the plain
remainder algorithm and a faster one based on Sieveking-Kung’s algorithm, with fur-
ther optimizations. The threshold is 90, we used the same value for the transposed
algorithms.

Figure 4.2 presents the ratios between the direct and transposed versions for our new fast
multipoint evaluation and interpolation algorithms, with degree on the horizontal axis (Sec-
tion 4.6 gives their complexity estimates).

Remark Transposed algorithms were used for modular multiplication and power series
inversion in NTL as soon as [225], yet only for FFT multiplication. More generally the
transposed product is used in [115] to speed up some algorithms for power series.

4.2 Definitions and Notation

Let R be a commutative ring with unity and n ≥ 0. By R[x]n we denote the free R-module
of polynomials of degree at most n. We use the monomial basis 1, x, . . . , xn on R[x]n to
represent polynomials by vectors and linear maps by matrices. It will also be convenient to
consider elements of R[x] as infinite sequences with finite support: we will write a polynomial
a as

∑
i≥0 aix

i, where almost all ai vanish. The degree of a is denoted by deg(a), with
deg(0) = −∞.

For l ≥ 0 and h ≥ 0, we introduce the following maps d.eh, b.cl, [.]hl on R[x] and the power
series ring R[[x]]:

daeh =
h−1∑
i=0

aix
i, bacl =

∑
i≥0

ai+lx
i, [a]hl =

h−l−1∑
i=0

ai+lx
i.

77



Observe that these maps satisfy the following relations:

a = daeh + xh bach , [a]hl = dbacleh−l =
⌊
daeh

⌋
l
.

We define the reversal endomorphism rev(n, .) of R[x]n by rev(n, a) =
∑n

k=0 an−kx
k, for all

a ∈ R[x]n.

By bqc we denote the integer part of a rational q. Finally, we use a block matrix notation:
0h,l denotes a h× l block filled with zeros and 1h the h× h identity matrix.

4.3 Tellegen’s principle

Tellegen’s principle is usually stated using linear computation graphs [128, 239]. In this
section, we first briefly recall it in terms of linear straight-line programs. We then define
another computational model, and prove Tellegen’s principle in that setting. The first model
can be thought as taking only time complexity into account, while the second one considers
both time and space.

Linear Straight-Line Programs Linear straight-line programs can be thought as “or-
dinary” straight-line programs, but with only linear operations, see [47, Chapter 13] for
precise definitions. Their complexity is measured by their number of operations, the size,
which reflects a time complexity. In this model, Tellegen’s principle can be formulated as:

Proposition 1 [47, Th. 13.20] Let φ : Rn → Rm be a linear map that can be computed
by a linear straight-line program of size L and whose matrix in the canonical bases has no
zero rows or columns. Then the transposed map φt can be computed by a linear straight-line
program of size L− n+m.

We will use this proposition in Section 4.6, as the complexity estimates used in that section
are given in the linear straight-line program model.

Another Computational Model We now introduce a measure of space complexity. In-
formally speaking, our model derives from the random access memory model by restricting
to linear operations. In this context, a program P is given by:

• A finite set D of registers, with two distinguished subsets (non necessarily disjoint), I
for the input and O for the output : before execution I contains the input values, at
the end O contains the output.

• A finite sequence of instructions (φi)i∈{1,...,L} of length L. Each instruction is a linear
endomorphism of RD of the following type, with p, q in D, a in R and f in RD:

– p+= q denotes the map that sends f to the function g defined by g(r) = f(r) if
r 6= p and g(p) = f(p) + f(q).

– p ∗= a denotes the map that sends f to the function g defined by g(r) = f(r) if
r 6= p and g(p) = af(p).

78



– p = 0 denotes the map that sends f to the function g defined by g(r) = f(r) if
r 6= p and g(p) = 0.

Let I (resp. P) be the injection RI → RD (resp. the projection RD → RO). Then we say that
the program P computes the linear map Φ : RI → RO defined by P ◦ φL ◦ φL−1 ◦ · · · ◦ φ1 ◦ I.

We can now define the transpose P t(Dt, It,Ot) of P :

• The set of registers of P t is still Dt = D but we let It = O and Ot = I: input and
output are swapped.

• The instructions of P t are φt
L, φ

t
L−1, . . . , φ

t
1.

Let us verify that P t is well-defined. We examine the transpose of each type of instructions:

• The transpose φt of an instruction φ of type p+= q is the instruction q+= p.

• The last two instructions are symmetric maps.

The equality (φL ◦φL−1 ◦ · · · ◦φ1)
t = φt

1 ◦φt
2 ◦ · · · ◦φt

L then shows that P t computes the linear
map Φt. This yields the following form of Tellegen’s principle:

Proposition 2 According to the above notation, let φ : Rn → Rm be a linear map that can
be computed by a program with D registers and L instructions. Then φt can be computed by
a program with D registers and L instructions.

As an example, consider 5 registers, x1, x2 for input, y1, y2 for output and r for temporaries.
Given a, b, c, d in R, consider the instructions: y1 += x1, y1 ∗= a, r+= x2, r ∗= b, y1 += r,
r = 0, y2 += x1, y2 ∗= c, r+= x2, r ∗= d, y2 += r. It is immediate to check that the
linear map computed by this program is the 2 × 2 matrix-vector product presented in the
introduction. The transposed program is r+= y2, r ∗= d, x2 += r, y2 ∗= c, x1 += y2, r = 0,
r+= y1, r ∗= b, x2 += r, y1 ∗= a, x1 += y1.

We could have used more classical instructions such as p = q + r and p = aq, a ∈ R. It
is not difficult to check that such programs can be rewritten in our model within the same
space complexity but a constant increase of time complexity. For such programs, Tellegen’s
principle would be stated with no increase in space complexity, but a constant increase in
time complexity. This is why we use straight-line programs for our complexity estimates in
Section 4.6.

Open Problem 6 in [124] asks for a transposition theorem without space complexity swell.
The above Proposition sheds new light on this problem: In the present computational model,
it is immediate to observe that memory consumption is left unchanged under transposition.

Comments The above models compute functions of fixed input and output size: in the
sequel, we will actually write families of programs, one for each size. We also use control
instructions as for and if, and calls to previously defined subroutines. Last, we will consider
algorithms mixing linear and non-linear precomputations; the transposition principle leaves
the latter unchanged.

79



4.4 Polynomial multiplication

In this section a is a fixed polynomial of degree m. For an integer n ≥ 0, consider the
multiplication map by a:

mul(a, .) : R[x]n → R[x]m+n

b 7→ ab.

The transposed map is denoted by mult(n, a, .); to write our pseudo-code, it is necessary to
consider n as an argument of the transposed function. The next subsection shows that this
map is:

mult(n, a, .) : R[x]m+n → R[x]n
c 7→ [rev(m, a)c]n+m+1

m .

We adopt the following convention: if deg(c) > m+ n then mult(n, a, c) returns an error.

The above formula explains why the transposed multiplication is also called the middle
product [115]. Performing this operation fast is the first task to accomplish before transposing
higher level algorithms. Observe that computing mult(n, a, c) by multiplying rev(m, a) by
c before extracting the middle part requires to multiply two polynomials of degrees m and
m+ n.

Tellegen’s principle implies that this transposed computation can be performed for the cost
of the multiplication of two polynomials of degrees m and n only. In what follows, we make
this explicit for the plain, Karatsuba and Fast Fourier Transform multiplications.

4.4.1 Plain multiplication

In the canonical monomial bases, the matrix of the linear map mul(a, .) : Rn[x] → Rm+n[x]
is the following Toeplitz matrix T with m+ n+ 1 rows and n+ 1 columns:

T =




a0 0 . . . 0

a1 a0
. . .

...
... a1

. . . 0
...

...
. . . a0

am
...

. . . a1

0 am
. . .

...
...

. . . . . .
...

0 . . . 0 am




.

Basically, the plain multiplication algorithm corresponds to performing the matrix vector
product c = Tb naively using the following sequence of instructions:

c ← 0;
for i from 0 to m+ n do

for j from max(0, i− n) to min(m, i) do
ci ← ci + ajbi−j;

80



Reversing the computation flow, b = mult(n, a, c) is computed by the following program:

b ← 0;
for i from m+ n downto 0 do

for j from min(m, i) downto max(0, i− n) do
bi−j ← bi−j + ajci;

Observing that the entries of b are given by:

bi =
i+m∑
j=i

aj−icj, i ∈ {0, . . . , n},

we deduce that the map mult(n, a, .) reformulates in terms of the middle product [115] by
the relation

mult(n, a, c) = [rev(m, a)c]n+m+1
m ,

as announced above.

4.4.2 Karatsuba’s algorithm

The next paragraphs are devoted to the transposition of Karatsuba’s multiplication algo-
rithm. Concretely, we consider the NTL implementation and present the transpose version
we made of it. Figures 4.3 and 4.4 describe Karatsuba’s algorithm and its transpose. As
for the mult function, the transposed Karatsuba multiplication takes n as an additional
argument.

In order to prepare the proof of Algorithm TKarMul we first decompose Algorithm KarMul
into linear maps. Following Algorithm KarMul we enter the procedure with polynomials a
of degree m and b of degree n. We let µ = bm/2c+ 1, ν = bn/2c+ 1 and h = max(µ, ν) and
distinguish three exclusive cases:

Normal case: (m < n and ν ≤ m) or (m ≥ n and µ ≤ n). Note that deg(bach) = m − h,
let ρ = deg(daeh) and λ = deg(daeh + bach). Let Ml : R[x]h−1 → R[x]ρ+h−1, Mh : R[x]n−h →
R[x]m+n−2h and Mf : R[x]h−1 → R[x]λ+h−1 be the linear maps of multiplication by resp.

daeh, bach and daeh + bach. Noticing that n − h ≤ h − 1, we construct the following block
matrix M , where we take r = m+ n and q = ρ+ h:

M =




Ml 0q,n−h+1

0r−2h+1,h Mh

Mf ·
[

1h
1n−h+1

02h−n−1,n−h+1

]



.

Remark that (r, s, t) = Mb, when considering that r ∈ R[x]ρ+h−1, s ∈ R[x]m+n−2h and
t ∈ R[x]λ+h−1. In order to recover the product c = ab it remains to compute c = (N+ −
N−)(r, s, t), with

N+ =


 1ρ+h

0r+1−q,q

02h,r−2h+1

1r−2h+1

0h,λ+h

1λ+h

0r+1−λ−2h,λ+h


 ,

81



m ← deg(a);
n ← deg(b);
if n = 0 then return b0a;
if m ≤ 0 then return a0b;
µ ← bm/2c+ 1;
ν ← bn/2c+ 1;
if µ > n then
u ← KarMul(daeµ , b);
v ← KarMul(bacµ , b);
return u+ xµv;

if ν > m then
u ← KarMul(a, dbeν);
v ← KarMul(a, bbcν);
return u+ xνv;

h ← max(µ, ν);

r ← KarMul(daeh , dbeh);
s ← KarMul(bach , bbch);
t ← KarMul(daeh + bach , dbeh + bbch);
return r + xh(t− s− r) + x2hs;

Figure 4.3: KarMul(a, b)

N− =




0h,ρ+h

1ρ+h

0r−ρ−2h+1,ρ+h

0h,r−2h+1

1r−2h+1

0h,r−2h+1

0r+1,λ+h


 .

Degenerate case 1: µ > n. We let ρ = deg(daeµ) and consider u ∈ R[x]ρ+n, v ∈ R[x]m+n−µ

so that we have ab = N1(u, v), where N1 is:

N1 =

[
1ρ+n+1

0m−ρ,ρ+n+1

0µ,r−µ+1

1r−µ+1

]
.

Degenerate case 2: ν > m. We consider u ∈ R[x]m+ν−1, v ∈ R[x]m+n−ν so that we have
ab = N2(u, v), with

N2 =

[
1m+ν

0n−ν+1,m+ν

0ν,r−ν+1

1r−ν+1

]
.

Proposition 3 Algorithm TKarMul is correct.

Proof. We use the notation of Figure 4.4 and distinguish the same three cases. The normal

82



m ← deg(a);
if deg(c) > m+ n then Error;
if n = 0 then return

∑m
k=0 akck;

if m ≤ 0 then return a0c;
µ ← bm/2c+ 1;
ν ← bn/2c+ 1;

ρ ← deg(daeh);
if µ > n then

u ← TKarMul(n, daeµ , dcen+ρ);
v ← TKarMul(n, bacµ , bccµ);

return u+ v;
if ν > m then

u ← TKarMul(ν − 1, a, dcem+ν);
v ← TKarMul(n− ν, a, bccν);
return u+ v;

h ← max(µ, ν);

λ ← deg(daeh + bach);
r ← TKarMul(h− 1, daeh , dceρ+h − [c]ρ+2h

h );

s ← TKarMul(n− h, bach , bcc2h − [c]m+n−h+1
h );

t ← TKarMul(h− 1, daeh + bach , [c]λ+2h
h );

return r + t+ xh(s+ dten−h+1);

Figure 4.4: TKarMul(n, a, c)

case follows from the equalities

N t
+c = (dceρ+h , bcc2h , [c]

λ+2h
h ),

N t
−c = ([c]ρ+2h

h , [c]m+n−h+1
h , 0).

In Degenerate cases 1 and 2, we respectively compute

N t
1c = (dcen+ρ , bccµ) and N t

2c = (dcem+ν , bccν).

¤
Some refinements may be done when implementing Algorithm TKarMul. First observe that
it saves memory to compute dcem+n−h+1 − bcch in order to deduce r and −s and then one

propagates this change of sign by returning r + t + xh(dten−h+1 − s). Another observation
is that Karatsuba’s multiplication can be done in a different manner using the identity
daeh bbch + bach dbeh = daeh dbeh + bach bbch− (daeh−bach)(dbeh−bbch). When transposing
this slightly different version, we obtain the middle product algorithm presented in [115].

83



4.4.3 The Fast Fourier Transform

Multiplication algorithms using the Fast Fourier Transform are quite easy to transpose since
the matrices involved are symmetric. We only give a brief presentation and refer to [255] for
more details about the discrete Fourier transform.

Let l ∈ N such that m + n + 1 ≤ 2l and that R contains a primitive 2l-th root ω of unity.
The discrete Fourier transform DFT(ω, a) of the polynomial a is the vector

(
a(1), a(ω), . . . , a

(
ω2l−1

)) ∈ R2l

.

Let DFT−1(ω, .) : R2l → R[x]2l−1 be the inverse map of DFT(ω, .) and H the diagonal matrix
of diagonal DFT(ω, a). Then we have the equality

ab = DFT−1(ω,H DFT(ω, b)).

Since DFT(ω, .) and H are symmetric, we deduce that:

mult(n, a, c) =
⌈
DFT(ω,H DFT−1(ω, c))

⌉n+1
,

for any polynomial c of degree at most m+n. Letting H̃ be the diagonal DFT(ω, rev(m, a))
matrix and using

DFT−1(ω, .) =
1

2l
DFT(ω−1, .),

we deduce the equalities

mult(n, a, c) =
⌈
DFT−1(ω, ω−mH̃ DFT(ω, c))

⌉n+1

=
[
DFT−1(ω, H̃ DFT(ω, c))

]m+n+1

m
,

which can also be obtained from the middle product formulation.

4.5 Polynomial Division

We come now to the transposition of the Euclidean division. In this section we are given a
polynomial a 6= 0 of degree m whose leading coefficient am is invertible. For a polynomial b,
we write the division of b by a as b = aq + r with deg(r) < m and define the maps

quo(a, .) : R[x]n → R[x]n−m

b 7→ q,

rem(a, .) : R[x]n → R[x]m−1

b 7→ r,

quorem(a, .) : R[x]n → R[x]n−m ×R[x]m−1

b 7→ (q, r).

84



The transposed operations are written quoremt(n, a, q, r), quot(n, a, q) and remt(n, a, r), with
the convention that these functions return an error if deg(r) ≥ deg(a) or deg(q) > n−deg(a).
The next paragraphs are devoted to transpose the quorem map through the plain and
Sieveking-Kung’s division algorithms. We will prove that the transposed remainder is given
by:

remt(n, a, .) : Rm → Rn+1

(r0, . . . , rm−1) 7→ (b0, . . . , bn),

where the bj are defined by the linear recurrence

(∗) bj = − 1

am

(
am−1bj−1 + · · ·+ a0bj−m

)
, m ≤ j

with initial conditions bj = rj, j ∈ {0, . . . ,m − 1}, so that linear recurrence sequence
extension is dual to remainder computation.

4.5.1 Plain division

We enter the plain division procedure with the two polynomials a and b and compute q and r
by the following algorithm

q ← 0;
r ← b;
for i from 0 to n−m do
q ← xq + rn−i/am;
r ← r − rn−i/amx

n−m−ia;

To transpose this algorithm we introduce the sequences

q{i} ∈ R[x]i−1, r
{i} ∈ R[x]n−i i = 0, . . . , n−m+ 1.

They are defined by q{0} = 0, r{0} = b and for i ≥ 1

q{i+1} = xq{i} + r
{i}
n−i/am,

r{i+1} = r{i} − r{i}n−i/amx
n−m−ia,

so that the relation b = axn−m+1−iq{i} + r{i} holds. For i = n−m+ 1, we have q = q{n−m+1}

and r = r{n−m+1}.

In order to formulate the algorithm in terms of linear maps we introduce v{i} = (q{i}, r{i}) ∈
Rn+1. Then we have v{i+1} = Mv{i}, where

M =




01,n 1/am

1n

0n−m,1

−a0/am
...

−am−1/am



.

85



Now reverse the flow of calculation: we start with a vector v{n−m+1} = (q{n−m+1}, r{n−m+1}) ∈
Rn+1 with q{n−m+1} ∈ R[x]n−m and r{n−m+1} ∈ R[x]m−1. Then we compute v{i} = M tv{i+1}

by the formulae

q{i} =
⌊
q{i+1}⌋

1
,

r{i} = r{i+1} +
1

am

xn−i
(
q
{i+1}
0 −

m−1∑
j=0

am−1−jr
{i+1}
n−i−j−1

)
.

We deduce the following transposed algorithm for computing b = quoremt(n, a, q, r):

b ← r;
for i from m to n do

bi ←
(
qi−m −

∑m−1
j=0 am−1−jbi−j−1

)
/am;

The maps quo(a, .) and rem(a, .) can be obtained by composing a projection after
quorem(a, .) but in practice it is better to implement specific optimized procedures for each.
It is easy to implement these optimizations; we refer to our NTL implementation for details.

Since b = remt(n, a, r) = quoremt(n, a, 0, r), the coefficients of b satisfy the linear recurrence
relation with constant coefficients (∗), as announced above.

4.5.2 Sieveking-Kung’s division

Sieveking-Kung’s algorithm is based on the formula

rev(n, b) = rev(n−m, q)rev(m, a) + xn−m+1rev(m− 1, r),

see [255] for details. This yields

q = rev(n−m, ⌈mul(α, drev(n, b)en−m+1)
⌉n−m+1

),

where α = drev(m, a)−1en−m+1
. Then we deduce r from q using r = b− aq.

Transposing these equalities, we see that for q ∈ R[x]n−m

quot(n, a, q) = rev(n,mult(n−m,α, rev(n−m, q))).

For r ∈ R[x]m−1, it follows:

remt(n, a, r) = r − quot(n, a,mult(n−m, a, r)).

Let s = remt(n, a, r) and p = mult(n−m, a, r). Using the middle product formula to express
this last quot expression yields

s = r − rev(n, [rev(n−m,α)rev(n−m, p)]2(n−m)+1
n−m ),

86



which simplifies to
s = r − rev(n, rev(n−m, dαpen−m+1)).

Last we obtain
remt(n, a, r) = r − xm

⌈
αmult(n−m, a, r)⌉n−m+1

,

which can also be rewritten this way, using the middle product formula again:

remt(n, a, r) = r − xm
⌈
α [rev(m, a)r]n+1

m

⌉n−m+1
.

This actually coincides with the algorithm given in [223] for extending linear recurrence
sequences.

Remark More generally, the following formula holds:

quoremt(n, a, q, r) = r − xm
⌈
α([rev(m, a)r]n+1

m − q)⌉n−m+1
.

4.5.3 Modular multiplication

As a byproduct, our algorithms enable to transpose the modular multiplication. Given a
monic polynomial a of degree m with invertible leading coefficient and a polynomial b of
degree at most m− 1, consider the composed map

R[x]m−1 → R[x]2m−2 → R[x]m−1

c 7→ bc 7→ bc mod a.

An ad hoc algorithm for the transpose map is detailed in [227]. Using our remark on the
transpose of polynomial remaindering, it is seen to essentially coincide with the one obtained
by composing the algorithms for transposed multiplication and transposed remainder. A
constant factor is lost in [227], as no middle product algorithm is used to transpose the first
map; this was already pointed out in [115].

4.6 Transposed Vandermonde

We now focus on algorithms for Vandermonde matrices; we assume that R = k is a field
and consider m + 1 pairwise distinct elements a0, . . . , am in k. Even if not required by the
algorithms, we take m = 2l − 1, with l ∈ N, in order to simplify the complexity estimates.

The Vandermonde matrix Va is the square matrix:

Va =




1 a0 a2
0 . . . am

0

1 a1 a2
1 . . . am

1
...

...
...

...
1 am a2

m . . . am
m


 .

If b is in k[x]m then Vab is the vector (b(a0), . . . , b(am)). This computation is commonly
referred to as multipoint evaluation. The inverse problem is interpolation: for c ∈ km+1,
V −1

a c corresponds to the polynomial b ∈ k[x]m satisfying b(ai) = ci for i ∈ {0, . . . ,m}.

87



We first recall the notion of subproduct tree and refer to [255, §10.1] for details and his-
torical notes. Then we design a fast algorithm for transposed evaluation. We transpose it
backwards to obtain an improved evaluation algorithm, and deduce similar improvements
for interpolation and its transpose.

For complexity analysis we use the straight-line program model [47, Chapter 4]. The function
M(n) denotes the complexity of multiplying a polynomial of degree less than n by a fixed
polynomial of degree less than n, restricting to linear straight-line programs only. This way
Proposition 1 implies that M(n) is also the complexity of the transpose of this multiplication.
Restricting to linear straight-line programs is actually not embarrassing since all known
multiplication algorithms [255] for the straight-line program model fit into this setting.

As in [255, §8.3] we assume that M(n1 + n2) ≥ M(n1) + M(n2) for any positive integers n1

and n2. For the sake of simplicity we also assume that n log(n) ∈ O(M(n)).

4.6.1 Going up the subproduct tree

A common piece of the following algorithms is the computation of the subproduct tree T
with leaves x − a0, x − a1, . . . , x − am. It is defined recursively, together with the sequence
of integers mi, by

T0,j = x− aj, for j ∈ {0, . . . ,m}, m0 = m+ 1,

and for i ≥ 1 by
Ti,j = Ti−1,2jTi−1,2j+1, for j < hi = bmi/2c .

If mi = 2hi + 1 we let Ti,hi
= Ti−1,mi−1 and mi+1 = hi + 1, otherwise we just let mi+1 = hi.

Let d be the smallest integer such that md = 1; we get Td,0 =
∏m

j=0(x − aj). By [255,
Exercise 10.3], T can be computed within 1/2 M(m) log(m) +O(m log(m)) operations.

The following algorithm describes our basic use of T . On input c = (c0, . . . , cm), it computes

the polynomial b =
∑m

j=0 cj
Td,0

x−aj
.

UpTree(c)
b ← c;
for i ← 0 to d− 1 do

for j ← 0 to hi − 1 do
bj ← Ti,2j+1b2j + Ti,2jb2j+1;

if mi = 2hi + 1 then bhi
← bmi−1;

return b0;

We deduce its transpose as follows:

88



TUpTree(b)
c0 ← b;
for i ← d− 1 downto 0 do

if mi = 2hi + 1 then cmi−1 ← chi
;

for j ← hi − 1 downto 0 do
n ← deg(Ti,j)− 1;
c2j+1 ← mult(n, Ti,2j, cj);
c2j ← mult(n, Ti,2j+1, cj);

return c;

On input b ∈ k[x]m, the transposed algorithm outputs the coefficients of xm in the polynomial

products rev(m, b)
Td,0

x−aj
, for j = 0, . . . ,m.

Once T is computed, using Proposition 1 and [255, Th. 10.10], both algorithms require
M(m) log(m) +O(m log(m)) operations.

4.6.2 Multipoint evaluation

We first treat the transposed problem. Let c0, . . . , cm be in k. A direct computation shows
that the entries of b = V t

a c are the first m+ 1 coefficients of the Taylor expansion of S(x) =

m∑
j=0

cj
1− ajx

=
1

rev(m+ 1, Td,0)

m∑
j=0

cjrev(m+ 1, Td,0)

1− ajx
.

The last sum is obtained by computing UpTree(c) and reversing the result. Computing the
Taylor expansion of S requires one additional power series inversion and one multiplication.

α ← 1/rev(m+ 1, Td,0) mod xm+1;
s ← UpTree(c);
t ← rev(m, s);
b ← mul(α, t) mod xm+1;

We deduce the following algorithm for evaluating a polynomial b:

α ← 1/rev(m+ 1, Td,0) mod xm+1;
t ← mult(m,α, b);
s ← rev(m, t);
c ← TUpTree(s);

By the above complexity results, these algorithms require 3/2 M(m) log(m) + O(M(m)) op-
erations, since the additional operations have negligible cost. We gain a constant factor on
the usual algorithm of repeated remaindering, of complexity 7/2 M(m) log(m) + O(M(m)),
see [171] or [255, Exercise 10.9]. We also gain on 13/6 M(m) log(m)+O(M(m)) given in [171,
§3.7] for base fields k allowing Fast Fourier Transform in k[x].

89



Moreover, if many evaluations at the same set of points ai have to be performed, then all data
depending only on the evaluation points (the tree T and α) may be precomputed and stored,
and the cost of evaluation drops to essentially M(m) log(m)+O(M(m)). This improves [255,
Exercise 10.11] by a factor of 2.

As a final remark, our interpretation of the transposed remainder shows that the algorithm
in [223] for transposed evaluation is the exact transposition of the classical evaluation al-
gorithm as given in [255, §10.1], so ours is faster. The algorithm of [49] is still slower by a
constant factor, since it uses an interpolation routine.

4.6.3 Interpolation

The fast interpolation algorithm c = V −1
a b proceeds this way, see [255, §10.2]:

p ← dTd,0/dx;
z ← (p(a0), . . . , p(am));
c ← (b0/z0, . . . , bm/zm);
c ← UpTree(c);

Here, z is computed using fast multipoint evaluation. At the end, c contains the interpolating
polynomial. Reversing the computation flow, we get the transposed algorithm for computing
b = (V −1

a )tc:

p ← dTd,0/dx;
z ← (p(a0), . . . , p(am));
b ← TUpTree(c);
b ← (b0/z0, . . . , bm/zm);

Using the results given above, these algorithms require 5/2 M(m) log(m) +O(M(m)) opera-
tions. This improves again the complexity results of [255].
The algorithm of [127] for transposed interpolation does the same precomputation as
ours, but the call to TUpTree is replaced by (mainly) a multipoint evaluation. Us-
ing precomputations and our result on evaluation, that algorithm also has complexity
5/2 M(m) log(m) +O(M(m)).

4.7 Conclusion, future work

A first implementation of our improved evaluation algorithm gains a factor of about 1.2 to
1.5 over the classical one [255, §10.1], for degrees about 10000. But let us mention that
the crossover point between repeating Horner’s rule and the classical fast evaluation we have
implemented is about 32. In consequence, it seems interesting to explore the constant factors
hidden behind the above quantities O(M(m)).

Our results of Section 4.6 can be generalized to solve the simultaneous modular reduction and
the Chinese remainder problems faster than in [255, Chapter 10]. Theoretical and practical
developments related to these problems are work in progress.

90



Transposed computations with Vandermonde matrices are the basis of fast multiplication
algorithms for sparse and dense multivariate polynomials [19, 49, 267] and power series [248,
152]. Up to logarithmic factors, over a base field of characteristic zero, these multiplications
have linear complexities in the size of the output. Their implementation is the subject of
future work.

91



Chapter 5

Polynomial evaluation and
interpolation on special sets of points

We give complexity estimates for the problems of evaluation and interpolation on vari-
ous polynomial bases. We focus on the particular cases when the sample points form an
arithmetic or a geometric sequence. We improve the known algorithms for evaluation and
interpolation in the monomial basis in both the arithmetic and the geometric case. We
discuss applications, respectively to computations with differential operators and symbolic
summation, and polynomial matrix multiplication.

This chapter is joint work with É. Schost [38].

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 The subproduct tree . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Evaluation and interpolation on the monomial basis . . . . . . . . 98

5.2.3 Conversions between Newton basis and monomial basis . . . . . . 98

5.2.4 Newton evaluation and interpolation . . . . . . . . . . . . . . . . . 100

5.3 Transposed conversion algorithms . . . . . . . . . . . . . . . . . 101

5.4 Special case of an arithmetic progression . . . . . . . . . . . . . 102

5.5 The geometric progression case . . . . . . . . . . . . . . . . . . . 108

5.6 Appendix: Fast conversions between monomial and Bernstein
basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

92



5.1 Introduction

Let k be a field and x0, . . . , xn−1 be n pairwise distinct points in k. Given arbitrary values
v0, . . . , vn−1, there exists a unique polynomial F in k[x] of degree less than n such that
F (xi) = vi, i = 0, . . . , n − 1. Having fixed a basis of the vector space of polynomials
of degree at most n − 1, interpolation and evaluation questions consist in computing the
coefficients of F on this basis from the values (vi), and conversely.

Well-known problems are that of interpolation and evaluation in the monomial basis
1, x, . . . , xn−1:

• Given x0, . . . , xn−1 and v0, . . . , vn−1, monomial interpolation consists in determining the
unique coefficients f0, . . . , fn−1 such that the polynomial F = f0 +f1x+ · · ·+fn−1x

n−1

satisfies F (xi) = vi, for i = 0, . . . , n− 1.

• Given x0, . . . , xn−1 and f0, . . . , fn−1, monomial evaluation consists in computing the
values v0 = F (x0), . . . , vn−1 = F (xn−1), where F is the polynomial f0 + f1x + · · · +
fn−1x

n−1.

The Newton basis associated to the points x0, . . . , xn−1 provides with an alternative basis of
degree n− 1 polynomials, which is defined as

1, (x− x0), (x− x0)(x− x1), . . . , (x− x0) · · · (x− xn−2).

An important particular case is the falling factorial basis

1, x1 = x, x2 = x(x− 1), x3 = x(x− 1)(x− 2), . . . ,

which is a used in many algorithms for symbolic summation, see for instance [3, 193, 191].

Accordingly, Newton interpolation and Newton evaluation are defined as the problems of
interpolation and evaluation with respect to the Newton basis:

• Given x0, . . . , xn−1 and v0, . . . , vn−1, Newton interpolation consists in determining the
unique coefficients f0, . . . , fn−1 such that the polynomial

F = f0 + f1(x− x0) + f2(x− x0)(x− x1) + · · ·+ fn−1(x− x0) · · · (x− xn−2) (5.1)

satisfies F (xi) = vi, for i = 0, . . . , n− 1.

• Given x0, . . . , xn−1 and f0, . . . , fn−1, Newton evaluation consists in computing the val-
ues v0 = F (x0), . . . , vn−1 = F (xn−1), where F is the polynomial given by Formula (5.1).

Fast algorithms for evaluation and interpolation in the monomial basis have been discovered
in the seventies and have complexity in O(M(n) log(n)), where M(n) denotes the complexity
of univariate polynomial multiplication in degree n. Using the FFT-based multiplication
algorithms of [214, 210, 50], for which M(n) can be taken in O(n log(n) log(log(n))), this
complexity is nearly optimal, up to logarithmic factors (note that naive algorithms are
quadratic in n). These fast algorithms are nowadays classical topics covered by most of
the computer algebra textbooks [25, 47, 255] and their practical relevance is recognized.

93



In contrast, fast algorithms for Newton evaluation and interpolation are quite recent, despite
a potentially vast field of applications. The standard algorithms use divided differences and
have a complexity quadratic in n [133]. Yet, using a divide-and-conquer approach, the
complexity of Newton evaluation and interpolation becomes essentially linear in n: the
algorithms suggested in [25, Ex. 15, p. 67] have complexity in O(M(n) log(n)). Such fast
algorithms rely on an additional task: the basis conversion between the monomial basis and
the Newton basis. These conversion algorithms are detailed in Theorems 2.4 and 2.5 in [92].

Our contribution. The first goal of this chapter is to make explicit the constants hidden
behind the Big-Oh notation in the running-time estimates for the three tasks mentioned up
to now:

1. conversions between Newton and monomial bases,

2. monomial evaluation and interpolation,

3. Newton evaluation and interpolation.

Our second and main objective is to obtain better algorithms for special cases of evaluation
points xi. Indeed, it is well known that divided difference formulas simplify when the points
form an arithmetic or a geometric progression; we will show how to obtain improved complex-
ity estimates based on such simplifications. We also discuss applications, to computations
with differential operators, symbolic summation and polynomial matrix multiplication.

Table 5.1 summarizes the best results known to us on the three questions mentioned above;
we will now review its columns in turn. In what follows, all results of type O(M(n) log(n))
are valid when n is a power of 2. The results for the arithmetic progression case require that
the base field has characteristic 0 or larger than n.

The general case. The first column gives estimates for arbitrary sample points. In this
case, the conversion algorithms and the monomial evaluation/interpolation algorithms are
designed first, and Newton evaluation/interpolation algorithms are deduced by composition.

The results on monomial evaluation and interpolation appeared in [35] and improve the
classical results by Borodin, Moenck [169, 30], Strassen [235] and Montgomery [171]. The
other complexity results in that column were already known to lie in the class O(M(n) log(n)),
see for instance [25]; the conversion algorithms were detailed in [92], who also gives their
bit complexity when the base field is Q. Our only contribution here is to apply an idea
by Montgomery [171] to save a constant factor in the conversion from the monomial to the
Newton basis.

The arithmetic progression case. In the arithmetic progression case, a sharp complexity
statement was derived in [92, Th. 3.2 and Th. 3.4], which proved that Newton evaluation
and interpolation at an arithmetic progression can be done within M(n) +O(n) operations.
That article also analyzes the bit complexity when the base field is Q.

94



Question general case

Newton to monomial basis (NtoM) M(n) log(n) +O(M(n)) [25, 92]

Monomial to Newton basis (MtoN) 5/2 M(n) log(n) +O(M(n)) [25, 92]

Monomial evaluation (MtoV) 3/2 M(n) log(n) +O(M(n)) [35]

Monomial interpolation (VtoM) 5/2 M(n) log(n) +O(M(n)) [35]

Newton evaluation (NtoV) 2 M(n) log(n) +O(M(n)) [25]

Newton interpolation (VtoN) 9/2 M(n) log(n) +O(M(n)) [25]

Question arithmetic case geometric case

NtoM M(n) log(n) +O(M(n)) [25] M(n) +O(n)

MtoN M(n) log(n) +O(M(n)) M(n) +O(n)

MtoV M(n) log(n) +O(M(n)) 2 M(n) +O(n) [198, 27, 5]

VtoM M(n) log(n) +O(M(n)) 2 M(n) +O(n)

NtoV M(n) +O(n) [92] M(n) +O(n)

VtoN M(n) +O(n) [92] M(n) +O(n)

Table 5.1: Complexity results on conversions between Newton and monomial bases, mono-
mial evaluation and interpolation, Newton evaluation and interpolation.

Using this result, we improve (by constant factors) many of the other tasks. First, using
the Newton basis for intermediate computations, we obtain a new, faster algorithm for
monomial interpolation in the arithmetic progression case. Using Tellegen’s transposition
theorem [239, 47, 124, 35] and an idea from [49], we deduce an improvement of the complexity
of monomial evaluation as well. This finally enables us to perform the conversion from

95



the monomial basis to the Newton basis faster, using monomial evaluation and Newton
interpolation as intermediate steps; this improves the result of [92, Th. 2.4] by a constant
factor.

We apply these algorithms to conversions between the monomial and the falling factorial
bases. This yields fast algorithms for computing Stirling numbers, which in turn are the
basis for symbolic summation of polynomials and fast computation with linear differential
operators. Also, we discuss the transpose of the algorithm of [92], which is shown to be
closely related to an algorithm of [5] for polynomial shift.

The geometric case. In the geometric progression case, we show that the complexities
of Newton evaluation and interpolation drop to M(n)+O(n) as well. The improvements are
obtained by (mainly) translating into equalities of generating series the formulas for divided
q-differences, similarly to what is done in [92] for the arithmetic case. By considering the
transposed problems, we deduce that the conversions between the Newton and the monomial
bases can be done with the same asymptotic complexity of M(n) + O(n) operations in the
base field.

These results have consequences for evaluation and interpolation in the monomial basis. It is
known [198, 27, 5] that evaluating a polynomial of degree less than n on n points in geometric
progression has cost 2M(n) +O(n) (the algorithm given in [5] actually has complexity more
than 2M(n) + O(n), but using the operation of middle product [115] yields the announced
complexity bound).

An analogue result for the inverse problem — that is, interpolation on the monomial basis
at points in geometric progression — was previously not known. Using the Newton basis
for intermediate computations, we show that this can also be done using 2M(n) + O(n)
operations.

Thus, this allows to exhibit special sequences of points, lying in the base field, for which
both evaluation and interpolation are cheaper by a logarithmic factor than in the general
case. Many algorithms using evaluation and interpolation for intermediate computations
can benefit from this. We exemplify this by improving the complexity of polynomial matrix
multiplication.

Organization of the chapter. In Section 5.2 we recall and/or analyze known algorithms
for evaluation and interpolation in the monomial and Newton bases, as well as conversion
algorithms, in the general case of arbitrary sample points. The operations performed by
these algorithms are linear in the entries of the input: Section 5.3 is devoted to present some
transposed versions of these algorithms, which will be needed in the sequel.

In Section 5.4, we focus on the case when the sample points form an arithmetic sequence, and
present applications to computations with differential operators and symbolic summation.
Section 5.5 is devoted to the special case of evaluation points in a geometric progression; we
conclude this section by an application to polynomial matrices multiplication.

96



We suppose that the multiplication time function M verifies the inequality M(d1)+M(d2) ≤
M(d1 +d2) for all positive integers d1 and d2; in particular, the inequality M(d/2) ≤ 1/2 M(d)
holds for all d ≥ 1. We also make the hypothesis that M(cd) is in O(M(d)), for all c > 0.
The basic examples we have in mind are classical multiplication, for which M(n) ∈ O(n2),
Karatsuba’s multiplication [129] with M(n) ∈ O(n1.59) and the FFT-based multiplica-
tion [214, 210, 50], which have M(n) ∈ O(n log(n) log(log(n))). Our references for matters
related to polynomial arithmetic are the books [25, 255].

5.2 The general case

In this section, we treat the questions of monomial and Newton evaluation and interpolation,
and conversion algorithms, for an arbitrary choice of sample points (x0, . . . , xn−1). In what
follows, we suppose that n is a power of 2.

We first introduce the subproduct tree T associated to the points x0, . . . , xn−1, which is used
in all the sequel. In Subsections 5.2.2 and 5.2.3 we recall fast algorithms for evaluation and
interpolation in the monomial basis and for conversions between monomial and Newton bases.
In Subsection 5.2.4 we deduce fast algorithms for Newton evaluation and interpolation.

Again, let us mention that the algorithms involving the Newton basis were already suggested
or described in [25, 189, 92]. Yet, our more precise complexity analysis is needed later.

5.2.1 The subproduct tree

The subproduct tree is a binary tree, all whose nodes contain polynomials. Our assumption
that n is a power of 2 makes the definition of this tree straightforward: let n = 2m; then the
tree T associated to a sequence x0, . . . , x2m−1 ∈ k2m

is defined as follows:

• If m = 0, T reduces to a single node, containing the polynomial x− x0.

• For m > 0, let T0 and T1 be the trees associated to respectively x0, . . . , x2m−1−1 and
x2m−1 , . . . , x2m−1. Let M0 and M1 be the polynomials at the roots of T0 and T1. Then
T is the tree whose root contains the product M0M1 and whose children are T0 and T1.

Alternately, one can represent the subproduct tree as a 2-dimensional array Ti,j, with 0 ≤
i ≤ m, 0 ≤ j ≤ 2m−i − 1. Then

Ti,j =

2i(j+1)−1∏

k=2ij

(x− xk).

For instance, if m = 2 (and thus n = 4), the tree associated to x0, x1, x2, x3 is given by

T0,0 = x− x0, T0,1 = x− x1, T0,2 = x− x2, T0,3 = x− x3

T1,0 = (x− x0)(x− x1), T1,1 = (x− x2)(x− x3)

T2,0 = (x− x0)(x− x1)(x− x2)(x− x3)

97



In terms of complexity, the subproduct tree associated to x0, . . . , xn−1 can be computed
within 1/2 M(n) log(n) +O(n log(n)) base field operations, see [255].

5.2.2 Evaluation and interpolation on the monomial basis

Let F ∈ k[x] be a polynomial of degree less than n, let x0, . . . , xn−1 be n pairwise distinct
points in k and denote vi = F (xi). The questions of multipoint evaluation and interpo-
lation in the monomial basis consists in computing the coefficients of F in the monomial
representation from the values (vi), and conversely.

Fast algorithms for these tasks were given by Borodin and Moenck [169, 30], then succes-
sively improved by Strassen [235] and Montgomery [171]. All these algorithms are based on
(recursive) polynomial remaindering and have complexity O(M(n) log(n)). Recently, differ-
ent algorithms, based on the (recursive) use of transposed operations, have been designed
in [35, Section 6] and led to improved complexity bounds, by constant factors. For the sake
of completeness, we summarize the corresponding results in [35] in the theorem below:

Theorem 2 Let k be a field, let x0, . . . , xn−1 be pairwise distinct elements of k and let
F ∈ k[x] of degree less than n. Suppose that n is a power of 2 and that the subproduct tree
associated to the points (xi) has been precomputed. Then:

• the evaluation of F at the points (xi) can be done using M(n) log(n) + O(M(n)) oper-
ations in k.

• the interpolation of F at the points (xi) can be done using 2 M(n) log(n) + O(M(n))
operations in k.

Taking into account the complexity of computing the subproduct tree, which is within
1/2 M(n) log(n) + O(M(n)) operations, we obtain the estimates given in the first column,
middle rows, in Table 5.1.

Remark. Interpolation requires to evaluate the derivative of
∏n−1

i=0 (x−xi) on all points xi,
which contributes for M(n) log(n) + O(M(n)) in the above estimate. In the case of an
arithmetic or a geometric progression, these values can be computed in linear time, see for
instance [34], so the complexity of interpolation drops to

(1/2 + 1) M(n) log(n) +O(M(n)) = 3/2 M(n) log(n) +O(M(n))

in these cases. In Sections 5.4 and 5.5 we show that one can actually do better in these two
special cases.

5.2.3 Conversions between Newton basis and monomial basis

We now estimate the complexity for the conversions between the monomial and the Newton
bases. The results are summarized in the theorem below:

98



Theorem 3 Let k be a field, let x0, . . . , xn−1 be pairwise distinct elements of k and let
F ∈ k[x] of degree less than n. Suppose that n is a power of 2 and that the subproduct tree
associated to the points (xi) has been precomputed. Then:

• given the coefficients of F in the Newton basis, one can recover the coefficients of F in
the monomial basis using 1/2 M(n) log(n) +O(M(n)) operations in k.

• given the coefficients of F in the monomial basis, one can recover the coefficients of F
in the Newton basis using 2 M(n) log(n) +O(M(n)) operations in k.

Taking into account the complexity of computing the subproduct tree, we obtain the esti-
mates given in the first column, first two rows, in Table 5.1.

From Newton basis to monomial basis. Let F be a polynomial of degree less than n
and f0, . . . , fn−1 its coefficients in the Newton basis. Given the coefficients (fi), we want to
recover the coefficients of F in the monomial basis. To this effect, we write the equality

F = F0 + (x− x0) · · · (x− xn/2−1)F1, with

F0 = f0 + f1(x− x0) + · · ·+ fn/2−1(x− x0) · · · (x− xn/2−2),

F1 = fn/2 + fn/2+1(x− xn/2) + · · ·+ fn−1(x− xn/2) · · · (x− xn−2).

Using this decomposition, the following recursive conversion algorithm can be deduced. On
input the coefficients f0, . . . , fn−1 and the points x0, . . . , xn−1, it outputs the coefficients of F
on the monomial basis.

NewtonToMonomial(f0, . . . , fn−1, x0, . . . , xn−1)

• if n = 1 return f0.

• let F0 = NewtonToMonomial(f0, . . . , fn/2−1, x0, . . . , xn/2−1).

• let F1 = NewtonToMonomial(fn/2, . . . , fn−1, xn/2, . . . , xn−1).

• return F0 + (x− x0) · · · (x− xn/2−1)F1.

Let us assume that the subproduct tree associated to the points x0, . . . , xn−1 has been pre-
computed. Since all polynomials of the form (x − x0) · · · (x − xn/2−1) that are used in the
recursive steps of the algorithms belong to the subproduct tree, no additional operation is
required to obtain them. Denoting by C(n) the number of necessary operations on inputs of
size n and using the inequality M(n/2) ≤ 1/2 M(n), we obtain the following estimate:

C(n) ≤ 2 C
(n

2

)
+

1

2
M(n) +O(n),

so Lemma 8.2 in [255] yields C(n) = 1/2 M(n) log(n) + O(n log(n)), proving the first part
of Theorem 3. Again, the asymptotic estimate O(M(n) log(n)) was already obtained in [25,
Ex. 15, p. 67] and [92, Th. 2.4], but the more precise form given here is needed in the sequel.

99



From monomial basis to Newton basis. We now treat the inverse problem. Let F be
a polynomial of degree less than n, whose coefficients on the monomial basis are known; we
want to recover the coefficients of F on the Newton basis {1, x−x0, . . . , (x−x0) · · · (x−xn−2)}.
The key fact is that if F writes

F = F0 + (x− x0) · · · (x− xn/2−1)F1,

then it is enough to recover the coefficients of F0 and F1 on the Newton bases {1, x −
x0, . . . , (x− x0) · · · (x− xn/2−2)} and {1, x− xn/2, . . . , (x− xn/2) · · · (x− xn−2)} respectively.

Using this remark, we deduce as above a recursive conversion algorithm. It takes as input
the coefficients of F in the monomial basis and it returns the coefficients of F on the Newton
basis associated to the points x0, . . . , xn−1.

MonomialToNewton(F, x0, . . . , xn−1)

• if n = 1 return F .

• let L1 = MonomialToNewton
(
F mod (x− x0) · · · (x− xn/2−1), x0, . . . , xn/2−1

)
.

• let L2 = MonomialToNewton
(
F div (x− x0) · · · (x− xn/2−1), xn/2, . . . , xn−2

)
.

• return L1 ∪ L2.

The cost analysis is similar to that in the previous subsection. Let us assume that the
subproduct tree associated to the points x0, . . . , xn−1 has been precomputed. Since at all
recursion levels we do division (with quotient and remainder) by (the half of) the polyno-
mials belonging to this subproduct tree, we use Montgomery’s idea [171, p. 22-24], to save
constant factors. Thus, we precompute the power series inverses of the polynomials rev(Ti,j)
at precision 2i, for a cost of M(n) log(n) +O(n log(n)) operations, see [255, Ex. 10.9, (i)].

This way, the cost of the division by (x − x0) · · · (x − xn/2−1) becomes 2 M(n/2) + O(n).
Denoting by C(n) the number of operations required by the previous algorithm on inputs of
size n (without counting precomputations) and using the inequality 2 M(n/2) ≤ M(n), we
obtain:

C(n) ≤ 2 C
(n

2

)
+ M(n) +O(n),

so C(n) = M(n) log(n) + O(n log(n)), by [255, Lemma 8.2]. This concludes the proof of
Theorem 3.

5.2.4 Newton evaluation and interpolation

Combining the results of Sections 5.2.2 and 5.2.3, we deduce the following corollary concern-
ing the complexities of Newton evaluation and interpolation on an arbitrary set of evaluation
points.

Theorem 4 Let k be a field, let x0, . . . , xn−1 be pairwise distinct elements of k and let
F ∈ k[x] of degree less than n. Suppose that n is a power of 2 and that the subproduct tree
associated to the points (xi) has been precomputed. Then:

100



• Newton evaluation of F at the points (xi) can be done using 3/2 M(n) log(n)+O(M(n))
operations in k.

• Newton interpolation of F at the points (xi) can be done using 4 M(n) log(n)+O(M(n))
operations in k.

Taking into account the complexity of computing the subproduct tree, this completes the
entries of the first column of Table 5.1.

5.3 Transposed conversion algorithms

The conversion algorithms described in the previous section all compute base change maps,
which are linear in F . For instance, the algorithm NewtonToMonomial computes the
matrix-vector product between a matrix built on the points xi and a vector whose entries
are the coefficients (fi) of F . In this section we are interested in computing the transpose of
this map. The results presented here are used in Section 5.4.

An algorithmic theorem called the Transposition principle, or Tellegen’s principle [239] states
that given any algorithm that performs a (m + n) × m matrix-vector product using only
linear operations, one can deduce an algorithm that performs the transposed matrix-vector
product, with the same complexity, up to O(n): see [47] for a precise statement and [124]
for historical notes and further comments on this question.

Fast algorithms for transposed monomial evaluation and interpolation are presented in [35].
We now inspect the transpose of the algorithm NewtonToMonomial given in the preceding
section, since this will be used in the next section.

Computing the subproduct tree associated to the points (xi) is a precomputation, which does
not depend on the polynomial F , and is left unchanged by transposition. As to the recursive
part of the algorithm, we need to introduce the transposed multiplication: Let us denote by
k[x]i the vector space of polynomials of degree at most i; then given a ∈ k[x] of degree m,
we denote by mult(n, a, .) : k[x]m+n → k[x]n the transpose of the multiplication-by-a map
k[x]n → k[x]m+n.

Various algorithms for computing the transposed multiplication are detailed in [115, 35].
Tellegen’s principle implies that whatever the algorithm used for polynomial multiplication
is, the cost of the direct and of the transposed multiplication are equal, up to O(m) operations
in k; for instance, if m = n, the complexity of mult(n, a, .) is M(n) +O(n).

Using this operation, we obtain by a mechanical transformation the following transposed
conversion algorithm. The direct version takes a list of coefficients as input and gives its
output in the form of a polynomial; the transposed algorithm takes a polynomial as input
and outputs a list of coefficients.

TNewtonToMonomial(F =
∑n−1

i=0 fix
i, x0, . . . , xn−1)

• if n = 1 return [f0].

• let A = mult
(
n/2− 1, (x− x0) · · · (x− xn/2−1), F

)
.

101



• let [B0, . . . , Bn/2−1] = TNewtonToMonomial(F mod xn/2, x0, . . . , xn/2−1).

• let [C0, . . . , Cn/2−1] = TNewtonToMonomial(A, x0, . . . , xn/2−1).

• return [B0, . . . , Bn/2−1, C0, . . . , Cn/2−1].

It follows from either a direct analysis or the transposition principle that, including the
precomputation of the subproduct tree, this algorithm requires M(n) log(n) + O(n log(n))
base field operations. If the subproduct tree is already known, the complexity drops to
1/2 M(n) log(n) +O(n log(n)).

The same transformation techniques can be applied in order to exhibit the transposes of all
the algorithms in Section 5.2, within the same costs as the direct algorithms, up to linear
factors in n. Since we do not need these transposed algorithms in the sequel, we will not
give further details and leave to the reader the formative task of deriving them by herself.

5.4 Special case of an arithmetic progression

In this section we focus on the special case of evaluation points in arithmetic progression,
and show that many of the above complexity estimates can be improved in this case.

We begin by recalling a result taken from [92, Section 3], which shows that the complexities
of Newton evaluation and interpolation drop to M(n) +O(n) in this case, and we point out
the link between these algorithms and the algorithm for shift of polynomials of [5]. Next,
using the transposed algorithm of Section 5.3, we show how to improve (by constant factors)
the complexities of evaluation and interpolation in the monomial basis on an arithmetic
progression. Finally, we give estimates for the cost of conversions between Newton and
monomial bases, and present some applications.

Newton interpolation and evaluation. We first recall the algorithm of [92, Section 3]:
this gives the last two entries of the second column, in Table 5.1.

Proposition 1 Suppose that k is a field of characteristic 0 or larger than n. Let h be a
non-zero element in k. Then, Newton interpolation and evaluation of a polynomial of degree
n on the arithmetic sequence xi = x0 + ih, for i = 0, . . . , n−1 can be done using M(n)+O(n)
operations in k.

Proof. Let F be a polynomial of degree less than n, (vi) the values (F (xi)) and (fi) the
coefficients of F on the Newton basis associated to the points (xi). Evaluating Formula (5.1)
at xi, we deduce the following equalities relating the values vi and the coefficients fi:

v0 = f0

v1 = f0 + hf1

v2 = f0 + 2hf1 + (2h · h)f2

v3 = f0 + 3hf1 + (3h · 2h)f2 + (3h · 2h · h)f3 . . .

102



This suggests to introduce the auxiliary sequence wi defined by

wi =
vi

i!hi
, i = 0, . . . , n− 1. (5.2)

Note that the sequences (vi)i≤n−1 and (wi)i≤n−1 can be deduced from one another for O(n)
base field operations. Using the sequence (wi)i≤n−1, the above relations become

wi =
∑

j+k=i

1

hkk!
fj.

Introducing the generating series

W =
n−1∑
i=0

wix
i, F =

n−1∑
i=0

fix
i, S =

n−1∑
i=0

1

i!hi
xi, (5.3)

all above relations are summarized in the equation W = FS modulo xn. Since S is the
truncation of exp(x/h), its inverse S−1 is the truncation of exp(−x/h), so multiplying or
dividing by S modulo xn can be done in M(n) +O(n) base field operations. We deduce that
W and F can be computed from one another using M(n) +O(n) base field operations. This
proves the proposition. ¤

Let us make a few comments regarding the previous algorithm. The problem of Newton
evaluation on the arithmetic sequence xi = x0 + ih is closely related to that of Taylor
shift by 1/h. More precisely, the matrix Newtonh of Newton evaluation is equal, up to
multiplication by diagonal matrices, to the transpose of the matrix Shift1/h representing the
map F (x) 7→ F (x+ 1/h) in the monomial basis. Indeed, the following matrix equality is
easy to infer:

Newtonh = Diag
(
1, h, h2, . . . , hn−1

)
· Shiftt

1/h · Diag
(
0!, 1!, . . . , (n− 1)!

)
. (5.4)

In the same vein, one can also interpret Newton interpolation as the transpose of Taylor
shift by −1/h (up to diagonal matrices). A simple way to see this is to take the inverse of
Equation (5.4) and to use the equality between Shift−1

1/h and Shift−1/h. In what follows, we
also need a transposed version of Newton interpolation. Transposing and taking the inverse
in Equation (5.4), we obtain the equation

Newton−t
h = Diag

(
1, h, h2, . . . , hn−1

)−1

· Shift−1/h · Diag
(
0!, 1!, . . . , (n− 1)!

)−1

. (5.5)

Now, a classical algorithm of Aho, Steiglitz and Ullman [5] solves the Taylor shift problem
within M(n) + O(n) operations. Given a degree n − 1 polynomial F (x) =

∑n−1
i=0 fix

i, the
algorithm in [5] computes the coefficients of Shift1/h(F ) = F (x+1/h) by exploiting Taylor’s
formula

Shift1/h(F ) =
n−1∑
j=0

F (j)(1/h)
xj

j!

103



and the fact that F (j)(1/h) is the coefficient of xn−j−1 in the product

(
n−1∑
i=0

i! fix
n−i−1

)
·
(

n−1∑
i=0

xi

i!hi

)
.

In view of Equation (5.4), it is actually immediate to show that the algorithm for Newton
evaluation on an arithmetic progression presented in Proposition 1 can be interpreted as the
transposition of the algorithm in [5] (up to diagonal matrices multiplications) and thus could
have been deduced automatically from that algorithm using the effective transposition tools
in [35].

Evaluation and interpolation on the monomial basis. A surprising consequence of
Proposition 1 is the following improvement on the complexity of evaluation and interpolation
on the monomial basis, for an arithmetic sequence. Indeed, the following corollary shows
that in this case, one can speed up both evaluation and interpolation using the Newton
basis for intermediate computations. This gives the middle entries of the second column in
Table 5.1.

Corollary 1 Let n be a power of 2 and let k be a field of characteristic 0 or larger than n.
Let F ∈ k[x] of degree less than n and let x0, . . . , xn−1 be an arithmetic progression in k.
Then:

• Given the coefficients of F on the monomial basis, all values F (x0), . . . , F (xn−1) can
be computed in M(n) log(n) +O(M(n)) base field operations.

• Given the values F (x0), . . . , F (xn−1), all coefficients of F on the monomial basis can
be computed in M(n) log(n) +O(M(n)) base field operations.

Proof. We first treat the interpolation. To this effect, we first perform a Newton interpolation,
which takes M(n)+O(n) base field operations by Proposition 1. Then, as in Section 5.2.3, we
compute the subproduct tree associated to the sample points (xi), and apply the conversion
algorithm NewtonToMonomial to deduce the coefficients of F on the monomial basis. The
estimates of Sections 5.2.1 and 5.2.3 give the complexity bound 1/2 M(n) log(n) + O(M(n))
for both the subproduct tree step and for the conversion step. Summing up, this entails a
cost of M(n) log(n)+O(M(n)). Let us show that in the present arithmetic setting, a factor of
1/4 M(n) log(n) +O(M(n)) can be saved, thus yielding the announced running time bound.

This improvement comes from the observation that in the conversion step, only the polyno-
mials Ti,2j from the subproduct tree are necessary. We show now that under the hypotheses
of Corollary 1, we are able to build the subproduct tree for roughly halving the cost of
precomputing all its nodes. The crucial point is that at every level i, the nodes Ti,j can be
deduced from one another by performing a polynomial shift. Thus, our strategy is to first
determine the left-hand nodes Ti,0, then to obtain the desired nodes by polynomial shifts
performed at every level i.

104



The left-hand nodes Ti,0, for 0 ≤ i ≤ m− 1, can all be determined by a recursive procedure
based on the equality

Ti+1,0(x) = Ti,0(x) · Ti,0(x+ 2ih), 0 ≤ i ≤ m− 2.

Using the algorithm for the polynomial shift in [5] (recalled on page 103), this can be done
within O(M(n)) operations in k.

Starting from the Ti,0, the remaining desired nodes can be determined using the equality

Ti,2j(x) = Ti,0(x+ 2i+1jh), 0 ≤ i ≤ m− 2, 0 ≤ j ≤ 2m−i−1,

by performing one shift in degree n/4, two shifts in degree n/8, etc., thus for a total cost
of 1/4 M(n) log(n) + O(n log(n)) operations in k. This finishes the proof of the first part
of Corollary 1.

Let us turn to evaluation. Let V be the Vandermonde matrix associated to the points
x0, . . . , xn−1 and V t its transpose. Following [49], we use the reduction of a multipoint
evaluation to a transposed evaluation. This is done with the help of the equality

(V t)V = H, with Hi,j =
n−1∑

k=0

xi+j−2
k ,

which rewrites as V = (V t)−1H. Let us see how to derive from this equality an algorithm
for multipoint evaluation, whose cost is within the requested complexity bound.

First, we compute the subproduct tree associated to the points (xi), so in particular we have
at our disposal the polynomial P = (x−x0) · · · (x−xn−1). The matrix H is the n×n Hankel
matrix whose entries are the Newton sums of P ; since P is known, they can be computed
in time O(M(n)), see [212]. Then the product by H also has complexity O(M(n)), see [25]
(actually, the cost is precisely M(n) +O(n), see [115]).

We next consider the multiplication by (V t)−1. The above algorithm for interpolation per-
forms the multiplication by V −1 using Newton interpolation followed by the conversion algo-
rithm of Section 5.2.3. Transposing it is immediate: we first apply the transposed conversion
algorithm TNewtonToMonomial of Section 5.3, followed by the transposed Newton in-
terpolation mentioned after Proposition 1. The complexity estimates from Sections 5.2.1,
Section 5.3 and Proposition 1 conclude the proof. ¤

Conversions between monomial and Newton bases. A straightforward consequence
of Proposition 1 and Corollary 1 is an improvement of conversion from the monomial to the
Newton basis in the special case of an arithmetic progression; this presents an improvement
on [92, Th. 2.4] by a constant factor. In the converse direction, we use the same algorithm
as in the general case, which, we recall, was already given in [92, Th. 2.5]. This completes
the second column of Table 5.1.

Corollary 2 Let n be a power of 2, let k be a field of characteristic 0 or larger that n and let
x0, . . . , xn−1 be an arithmetic progression in k. Then the conversions between the monomial
and Newton bases associated to the points (xi) can be done using M(n) log(n) + O(M(n))
operations in k.

105



Proof. The conversion from the monomial to the Newton basis is done by an evaluation on
the points (xi) followed by a Newton interpolation. ¤

Applications. Our initial interest in improving evaluation and interpolation on the points
of an arithmetic progression was motivated by the study of linear recurrences with polynomial
coefficients presented in [59, 34]: the algorithms therein can benefit from any improvement on
evaluation and interpolation on an arithmetic progression. The cryptographic-sized record
obtained in [34] requires to work in degree several tens of thousands, and gaining even a
constant factor is interesting in such sizes.

We conclude this section by describing another two applications of Corollary 2. The first
one comes from the domain of exact computations with linear differential operators, while
the second one is a basic item in effective difference algebra.

While computing with linear differential operators, it is sometimes easier to work with the
derivation δ = x d

dx
instead of the usual derivation D = d

dx
. For instance, the coefficients of a

power series solution
∑

i≥0 six
i of a linear differential operator L satisfy a linear recurrence,

whose coefficients can be read off the coefficients of L when it is written in δ. More precisely,
if L =

∑n
i=0 pi(x)δ

i has coefficients pi(x) =
∑m

j=0 pijx
j, then letting p̃j(x) =

∑n
i=0 pijx

i for
0 ≤ j ≤ m, the recurrence satisfied by the si writes

p̃m(i)si + · · ·+ p̃0(i+m)si+m = 0, for all i ≥ 0.

Converting from the representation in δ to that in D, or backwards, amounts to compute
several matrix-vector products Sv or S−1v, where S is the n× n matrix

S =




1 1 1 1 . . . S1,n

0 1 3 7 . . . S2,n

0 0 1 6 . . . S3,n

0 0 0 1 . . . S4,n
...

...
...

...
. . .

...
0 0 0 0 . . . Sn,n



.

Indeed, one has the equalities, seemingly known by Stirling [230], see also [201]:

δ1 = xD,
δ2 = xD + x2D2,
δ3 = xD + 3 x2D2 + x3D3,
δ4 = xD + 7 x2D2 + 6 x3D3 + x4D4,
δ5 = xD + 15 x2D2 + 25 x3D3 + 10x4D4 + x5D5 . . .

Writing L =
∑n

i=0 pi(x)δ
i in matrix form, as the product

[
1 x . . . xm

] ·



p00 p10 . . . pn0
...

...
...

...
p0m p1m . . . pnm


 ·




1
δ
...

δn




106



the previous equalities show that rewriting L in D amounts to m matrix-vector products by
the Stirling matrix S.

Conversely, let L =
∑n

i=0 qi(x)D
i be a linear differential operator of order n in D, whose

coefficients qi(x) =
∑k

j=0 qjix
j are polynomials of degree at most k. Expressing L in the

matricial form:

L =
[

x−n x−(n−1) . . . xk
] ·




0 0 . . . qn0
...

...
...

...
0 q10 . . . qnk

q00 q11 . . .
...

...
...

q1k
...

q0k 0 . . . 0




·




1
xD
...

xnDn




shows that the problem of expressing L as an operator with rational function coefficients in δ
is reduced to the n+ k matrix-vector multiplications by the inverse of the Stirling matrix.

The entries (Si,j) of the matrix S are the Stirling numbers of the second kind; they satisfy the
recurrence Si,j+1 = Si−1,j + iSi,j. These numbers also represent the coordinates of ordinary
powers 1, x, . . . , xn−1 in the falling factorial basis 1, x1 = x, . . . , xn−1 = x(x−1) · · · (x−n+2).
For instance, for j = 1, . . . , 5 these relations write

x1 = x1,
x2 = x1 + x2,
x3 = x1 + 3 x2 + x3,
x4 = x1 + 7 x2 + 6 x3 + x4,
x5 = x1 + 15 x2 + 25 x3 + 10 x4 + x5 . . .

Hence, the entries of the vector Sv represent the coefficients of the polynomial
∑n−1

i=0 vix
i

in the Newton basis 1, x1, x2, . . . Similarly, computing S−1v amounts to converting a poly-
nomial from its Newton representation (in the falling factorial basis) to the monomial one.
Classically, these conversions are done by a direct quadratic algorithm, but using Corollary 2,
they can be done in complexity M(n) log(n) +O(M(n)).

This remark yields a fast algorithm to convert a differential equation of order n in D with
polynomial coefficients of degree at most m to the recurrence satisfied by a power series
solution. By the previous considerations, its complexity is O(M(n)max(n,m) log(n)). In
comparison, the classical method uses the recurrence

n∑
j=0

m∑

k=0

pk,j(i− k + 1)(i− k + 2) · · · (i− k + j)sn+j−k = 0

and amounts to compute the mn polynomials (x − k + 1)(x − k + 2) · · · (x − k + j), which
can be done in complexity of O(mnM(n)). If m and n are of the same order, our method
saves a factor of n.

107



The previous considerations on the Stirling matrix also yields a fast algorithm for the definite
summation problem for polynomials. This should be compared with the classical quadratic
algorithm described in [75] which was probably used by Faulhaber [134] in the 17th century,
see also [255, Section 23.1]. We precise this result in the following corollary.

Corollary 3 Let n be a power of 2, k a field of characteristic zero or larger than n, g
a polynomial in k[x], of degree less than n and m a positive integer. The coefficients of
the definite sum

∑m
i=0 g(i) (as a polynomial in m) can be determined using 2 M(n) log(n) +

O(M(n)) operations in k.

Proof. Let S be the (n + 1) × (n + 1) Stirling matrix and let T be the (n + 1) × (n + 1)
matrix obtained by bordering the n × n Stirling matrix with first row [1, 0, . . . , 0] and first
column [1, 0, . . . , 0]t. If g̃ denotes the (n+ 1)× 1 matrix whose entries are the coefficients of
g, then the required coefficients of

∑m
i=0 g(i) are the entries of the vector S−1DTg̃, where D

is the diagonal matrix with diagonal entries [1, 1/2, . . . , 1/(n+1)]. The complexity estimates
follow at once. ¤

5.5 The geometric progression case

Simplifications for Newton evaluation and interpolation also arise when the sample points
form a geometric progression; this was already pointed out in [208] and references therein,
but without mention to complexity.

In this section we show that the complexities of Newton evaluation and interpolation on a
geometric progression of size n drop to M(n) + O(n). By transposition, we deduce that the
conversion between monomial and Newton bases have the same asymptotic cost. Last, as in
the previous section, we obtain as corollaries fast algorithms for evaluation and interpolation
on the monomial basis: the complexities of both tasks is shown to be in O(M(n)), i.e. better
by a logarithmic factor than in the case of arbitrary samples points.

Thus, geometric progressions should be considered as interesting choices for algorithms rely-
ing on evaluation and interpolation techniques. We illustrate this in the case of polynomial
matrix multiplication algorithms.

In all what follows, we actually assume for simplicity that the geometric progression we
consider has the form xi = qi, i = 0, . . . , n − 1. Treating the general case xi = x0q

i,
with arbitrary x0, does not alter the asymptotic estimates, and only burdens the notation.
Finally, we mention that many formulas presented below can be thought as q-analogues of
those presented in the previous section.

Newton interpolation and evaluation. Our first question is that of Newton interpola-
tion and evaluation: the following proposition proves the estimates of the last entry in the
third column of Table 5.1.

Proposition 2 Let k be a field and let q ∈ k such that the elements xi = qi are different
from 1, for i = 0, . . . n − 1. Then Newton interpolation and evaluation on the geometric
sequence 1, . . . , qn−1 can be done using M(n) +O(n) base field operations.

108



Proof. Let F be a polynomial of degree less than n, let (vi) be the values (F (xi)) and (fi)
the coefficients of F on the Newton basis associated to the points (xi). As in the previous
section, we evaluate Formula (5.1) on the points xi, yielding

v0 = f0

v1 = f0 + (q − 1)f1

v2 = f0 + (q2 − 1)f1 + (q2 − 1)(q2 − q)f2

v3 = f0 + (q3 − 1)f1 + (q3 − 1)(q3 − q)f2 + (q3 − 1)(q3 − q)(q3 − q2)f3 . . .

Let us introduce the triangular numbers ti = 1 + 2 + · · · + (i − 1) = i(i − 1)/2, for i ≥ 0
and the modified sequence gi = qtifi, for i = 0, . . . , n − 1. Note that all coefficients qti can
be computed in O(n) base field operations, since qti+1 = qiqti . Thus, the coefficients gi and
fi can be computed from one another for O(n) base field operations. With this data, the
above relations become

v0 = g0

v1 = g0 + (q − 1)g1

v2 = g0 + (q2 − 1)g1 + (q2 − 1)(q − 1)g2

v3 = g0 + (q3 − 1)g1 + (q3 − 1)(q2 − 1)g2 + (q3 − 1)(q2 − 1)(q − 1)g3 . . .

Next, we introduce the numbers wi defined by

w0 = v0, wi =
vi

(q − 1) · · · (qi − 1)
, i = 1, . . . , n− 1. (5.6)

As above, wi and vi can be computed from one another for O(n) base field operations. Using
the modified values wi, the above relations become

wi = gi +
i−1∑
j=0

1

(q − 1) · · · (qi−j − 1)
gj.

We conclude as in the arithmetic case. We introduce the generating series

W =
n−1∑
i=0

wix
i, G =

n−1∑
i=0

gix
i, T = 1 +

n−1∑
i=1

1

(q − 1) · · · (qi − 1)
xi, (5.7)

so that the above relations become W = GT modulo xn. All coefficients of the series T can
be obtained in O(n) base field relations, and its inverse modulo xn is given by

1 +
n−1∑
i=1

q
i(i−1)

2 (−1)i

(q − 1) · · · (qi − 1)
xi,

whose coefficients can also be obtained in O(n) operations. The conclusion follows. ¤

109



Conversions between monomial and Newton bases. Our next step is to study the
complexity of conversion between monomial and Newton bases. We prove the following
result, which completes the first two entries in the last column of Table 5.1.

Proposition 3 Let k be a field and let q ∈ k such that the elements xi = qi are different
from 1, for i = 0, . . . n − 1. Then the conversion between the Newton basis associated to
1, q, . . . , qn−1 and the monomial basis can be done using M(n) +O(n) base field operations.

The proof comes from considering the transposed of the Newton evaluation and interpolation.
Indeed, the following lemma relates these questions to those of conversions between monomial
and Newton bases.

Lemma 3 Let k be a field, let q ∈ k \ {0} and let r = 1/q. Suppose that 1, q, . . . , qn−1 are
pairwise distinct and define the following matrices:

• Let A be the matrix of base change from the Newton basis associated to 1, q, . . . , qn−1

to the monomial basis.

• Let B the matrix of Newton evaluation at {1, r, . . . , rn−1}.
• Let D1 and D2 be the n× n diagonal matrices

D1 = Diag

[
qi(i−1)/2

∏i−1
k=0(q

k − 1)

]n

i=1

and D2 = Diag
[
(−1)j−1q

(j−1)(j−2)
2

]n

j=1
.

Then the matrix equality A = D1B
tD2 holds.

Proof. Given two integers n and k, the q-binomial coefficient [202, 117, 91] is defined as

[
n
k

]

q

=

{
1−qn

1−q
· 1−qn−1

1−q2 · · · 1−qn−k+1

1−qk , for n ≥ k ≥ 1,

0, for n < k or k = 0.

The following generalization of the usual binomial formula holds:

n∏

k=1

(
1 + qk−1x

)
=

n∑

k=0

[
n
k

]
q
q

k(k−1)
2 xk. (5.8)

From Equation (5.8), it is then easy to deduce that the entries of the matrix A are

Ai,j = (−1)j−i

[
j − 1
i− 1

]

q

q(j−i)(j−i−1)/2.

On the other hand, the (i, j) entry of the matrix representing Newton evaluation with respect
to {x0, . . . , xn−1} is zero if j < i and equals

∏j−1
k=1

(
xi−1 − xk−1

)
for all j ≥ i ≥ 1. Applying

this to xi = 1/qi, we get

Bi,j = (−1)j−1 ·
j−1∏

k=1

qi−k − 1

qi−1
, for all j ≥ i ≥ 1.

110



Having the explicit expressions of the entries of A and B allows to write the equality

Bt
i,j

Ai,j

= (−1)j−1 q
i(i−1)

2
+

(j−1)(j−2)
2

(q − 1) · · · (qi−1 − 1)
,

from which the lemma follows. ¤

Thus, up to multiplications by diagonal matrices, the conversion maps between monomial
and Newton bases are the transposes of those of Newton evaluation and interpolation, at
the cost of replacing q by 1/q. Using Tellegen’s theorem, the proof of Proposition 3 is now
immediate, since the two diagonal matrices involved can be computed in time O(n).

For the sake of completeness, we describe below an algorithm for the transposed evaluation
on a geometric sequence. On input the n values v0, . . . , vn−1, it does the following:

• Compute the values wi defined in Equation (5.6).

• Compute the transposed product
∑n−1

i=0 gix
i of the series T defined in Equation (5.7)

by the series
∑n−1

i=0 wix
i.

• Return the values qtigi, for 0 ≤ i ≤ n− 1, where ti = i(i− 1)/2.

The algorithm for transposed interpolation would be deduced in a similar manner.

Evaluation and interpolation on the monomial basis We now treat the question of
fast monomial evaluation and interpolation on a geometric progression. As before, we take
xi = qi, i = 0, . . . , n − 1, where q ∈ k is such that the elements 1, q, . . . , qn−1 be pairwise
distinct.

It is known that evaluating a polynomial P = p0+p1x+· · ·+pnx
n on the geometric progression

{1, q, . . . , qn−1} can be done using O(M(n)) operations. This operation, generalizing the
discrete Fourier transform, is called the chirp transform and has been independently studied
by Rabiner, Schafer and Rader [198] and by Bluestein [27], see also [5]. In contrast, to the
best of our knowledge, no algorithm for the inverse operation – interpolation at a geometric
progression – has ever been given. Our aim is now to show that the inverse chirp transform
can be performed in a similar asymptotic complexity. These results are gathered in the
following proposition, which completes the entries of Table 5.1.

Proposition 4 Let k be a field, let n ≥ 0 and let q ∈ k such that the elements xi = qi, for
i = 0, . . . n− 1, are pairwise distinct. If F ∈ k[x] has degree less than n then:

• Given the coefficients of F on the monomial basis, all values F (x0), . . . , F (xn−1) can
be computed in 2M(n) +O(n) base field operations.

• Given the values F (x0), . . . , F (xn−1), all coefficients of F on the monomial basis can
be computed in 2M(n) +O(n) base field operations.

111



Proof. We briefly recall how the direct chirp transform works. It is based on the equalities:

P (qi) =
n∑

j=0

pjq
ij = q−i2/2 ·

n∑
j=0

pjq
−j2/2q(i+j)2/2.

Suppose first that q is a square in k. Computing the values bi = qi2/2, for 0 ≤ i ≤ 2n and
cj = pjq

−j2/2, for 0 ≤ j ≤ n, takes linear time in n, using the recurrence q(i+1)2 = qi2q2iq.
Then, the preceding formula shows that the values P (qi) are, up to constant factors, given
by the middle part of the polynomial product

(
b0 + b1x+ · · ·+ b2nx

2n
)(
cn + cn−1x+ · · ·+ c0x

n
)
.

Using standard polynomial multiplication, this algorithm requires 2M(n) operations, but the
complexity actually drops to M(n) +O(n), using the middle product of [115].

In the general case when q is not a square, several possibilities are available. The first
idea is to introduce a square root for q by computing in K = k[T ]/(T 2 − q). Another
choice is to use the algorithms described previously: performing first a change of base to the
Newton representation, and then a Newton evaluation. This way, we obtain the estimate of
2M(n) +O(n) operations for the chirp transform.

Let us now focus on the computation of the inverse chirp transform. As above, we use the
Newton basis for intermediate computations: first perform a Newton interpolation, then
perform a conversion from the Newton basis to the monomial basis. Both steps have com-
plexities M(n) + O(n), which gives the estimate of 2M(n) + O(n) operations for the inverse
chirp transform. ¤
For completeness, we give in Figure 5.1 and Figure 5.2 below our new algorithms for evalu-
ation and interpolation on points in a geometric progression.

EvalGeom(p0, . . . , pn−1, F )
q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; g0 ← 1;
for i ← 1 to n− 1 do
qi ← qi−1 · pi−1;
si ← si−1 · (pi − 1);
ui ← ui−1 · pi/(1− pi);
zi ← (−1)iui/qi;

G ← mult(n− 1,
∑n−1

i=0 zix
i,

∑n−1
i=0 Coeff(F, i)/zi x

i);
for i ← 1 to n− 1 do
gi ← (−1)iui Coeff(G, i);

W ← (
∑n−1

i=0 gix
i) · (∑n−1

i=0 s
−1
i xi);

return s0 Coeff(W, 0), . . . , sn−1 Coeff(W,n− 1);

Figure 5.1: Polynomial evaluation at the points p0 = 1, p1 = q, . . . , pn−1 = qn−1.

112



InterpGeom(p0, p1, . . . , pn−1, v0, . . . , vn−1)
q0 ← 1; s0 ← 1; u0 ← 1; z0 ← 1; w0 ← v0;
for i ← 1 to n− 1 do
qi ← qi−1 · pi−1;
si ← si−1 · (pi − 1);
ui ← ui−1 · pi/(1− pi);
zi ← (−1)iui/qi;

H ← (
∑n−1

i=0 vi/six
i) · (∑n−1

i=0 (−x)iqi/si);
for i ← 1 to n− 1 do
wi ← (−1)iCoeff(H, i)/ui;

G ← mult(n− 1,
∑n−1

i=0 uix
i,

∑n−1
i=0 wix

i);

return
∑n−1

i=0 zi Coeff(G, i)x
i;

Figure 5.2: Polynomial interpolation at the points p0 = 1, p1 = q, . . . , pn−1 = qn−1.

Application to polynomial matrix multiplication. We now apply the above results
to improve the complexity of polynomial matrix multiplication. This problem is important,
since polynomial matrix multiplication is a primitive of linear algebra algorithms dealing with
polynomial matrices (determinant, inversion, system solving, column reduction, integrality
certification, normal forms), see for instance [251, 233, 97]. It also occurs during computa-
tions of matrix Padé-type approximants [17, 18, 241, 242, 97], recurrences with polynomial
coefficients [59, 34] and linear differential operators.

Let MM(n, d) represent the number of base field operations required to multiply two n× n
matrices with polynomial entries of degree at most d. For simplicity, the cost MM(n, 0) of
scalar n× n matrix multiplication will be denoted MM(n).

Cantor and Kaltofen [50] described an algorithm for multiplying degree d polynomials with
coefficients from an arbitrary (possibly non commutative) algebra using O(M(d)) algebra
operations. Viewing polynomial matrices as polynomials with scalar matrix coefficients, the
result in [50] implies that MM(n, d) = O (M(d) MM(n)) . Over base fields of cardinality larger
than 2d, the use of an evaluation/interpolation scheme allows to uncouple polynomial and
matrix products and yields the better bound

MM(n, d) = O
(
MM(n) d+ n2 M(d) log(d)

)
. (5.9)

An important remark [241, 242] (see also [18]) is that if the base field supports FFT, then
choosing the roots of unity as sample evaluation points improves the previous estimate to

MM(n, d) = O
(
MM(n) d+ n2 d log(d)

)
. (5.10)

However, the algorithm in [241, 242] is dependent on the specific use of FFT, which might
not be pertinent for polynomials of moderate degrees.

In contrast, using evaluation and interpolation at a geometric progression enables us to
obtain the following result.

113



Theorem 5 Let n, d ≥ 0 and let k be a field of characteristic 0, or a finite field of cardinality
at least 2d+ 1. Then we have the estimate

MM(n, d) = 2 dMM(n) + 6n2 M(2d) +O(n2d).

Proof. In both cases, we use multipoint evaluation and interpolation on a geometric progres-
sion 1, q, . . . , q2d−1 of size 2d. In characteristic 0, we can take q = 2. If k is finite, we take for
q a generator of the multiplicative group k∗ (for practical purposes, we might as well choose
q at random, if k has a large enough cardinality). ¤

Theorem 5 may be seen as an improvement by a log factor of the bound (5.9), generalizing
the bound (5.10) to an arbitrary multiplication time M function satisfying the hypotheses
described at page 97. Still, for polynomial matrices of high degrees, the method in [241, 242]
is better by a constant factor than ours, since the polynomial multiplication uses FFT, and
thus itself requires evaluating and interpolating at the roots of unity.

To conclude this chapter, Figure 5.3 and Figure 5.4 display the speed-up obtained using our
polynomial matrix multiplication algorithm, versus a naive product (thus, a larger number
means a more significant improvement). The matrix sizes vary from 1 to 120, the polynomial
degrees vary from 0 to 200, and the base field is Z/pZ, where p is a 32 bit prime. The time
ratios are given in the table of Figure 5.3 and displayed graphically in Figure 5.4.

The implementation is made using Shoup’s NTL C++ library [226]; we used a naive matrix
multiplication of cubic complexity, and NTL’s built-in polynomial arithmetic (for polynomi-
als in the range 0–200, naive, Karatsuba and FFT multiplication algorithms are successively
used). The timings are obtained on an Intel Pentium 4 CPU at 2GHz.

15 35 55 75 95 115 135 155 175 195
20 0.6 0.8 1.4 1.4 1.6 1.6 2.2 2.1 1.7 1.7
30 1.1 1.2 2.0 2.0 2.4 2.3 3.3 3.2 2.5 2.5
40 1.2 1.6 2.6 2.7 3.2 3.0 4.3 4.1 3.3 3.2
50 1.4 2.0 3.2 3.3 3.9 3.6 5.3 5.1 4.1 4.0
60 1.7 2.3 3.8 3.9 4.6 4.4 6.3 6.1 4.8 4.7
70 1.9 2.6 4.3 4.5 5.3 5.0 7.2 6.9 5.6 5.4
80 2.1 2.9 4.8 4.9 6.0 5.6 8.1 7.7 6.2 5.9
90 2.3 3.3 5.5 5.7 6.6 6.2 9.0 8.6 6.9 6.7
100 2.5 3.5 6.0 6.2 7.3 6.8 9.8 9.3 7.5 7.3
110 2.6 3.9 6.3 6.6 7.8 7.3 10.6 10.1 8.1 7.9

Figure 5.3: Time ratios between classical and improved polynomial matrix multiplication
algorithms. Rows are indexed by the matrix size (20—110); columns are indexed by the
matrix degree (15–195).

114



"chirp.dat"

0
20

40
60

80
100

120
matrix size 0

20
40

60
80

100
120

140
160

180
200

matrix degree

0

2

4

6

8

10

12

time ratio

Figure 5.4: Speed-up between classical and improved polynomial matrix multiplication.

5.6 Appendix: Fast conversions between monomial

and Bernstein basis

Let k be a field and let n ∈ N. The Bernstein basis of the k-vector space of polynomials of
degree at most n is defined by:

Bk(x) =

(
n

k

)
xk(1− x)n−k.

In this short appendix, we address the question of converting a polynomial from the Bernstein
basis to the monomial basis and vice-versa. The direct question translates in matrix terms
as the problem of matrix-vector multiplication by the lower triangular Bernstein matrix B
defined as follows:

Bi,j = (−1)i−j

(
n

j − 1

)(
n− j + 1

i− j
)
, for 1 ≤ j ≤ i ≤ n+ 1.

115



For instance, the 6× 6 Bernstein matrix is




1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0
−10 30 −30 10 0 0
5 −20 30 −20 5 0
−1 5 −10 10 −5 1



.

Spencer [229] proposed an algorithm using divided differences, whose complexity is quadratic
in the degree of the polynomial. That algorithm amounts to constructing the entries of the
matrix B above. Using generating series, we show that the complexity of both conversion
problems is in 2 M(n) +O(n).

The complexity estimate is given in terms of number of operations in the base field (e.g. the
rational field or any other field of characteristic zero or larger than n). When the base field
is Q, we do not consider the bit complexity of these computations.

Algorithms

Let q0, . . . , qn be the coefficients of P (x) in the Bernstein basis. Denoting

di = qi −
(
i

1

)
qi−1 + · · ·+ (−1)iq0 and ci =

(
n

i

)
,

it is easy to show that the coefficients of P (x) in the monomial basis are given by the formula

pi = cidi.

The terms ci can be computed in O(n) using the recurrence ci = ci−1
n−i+1

i
for 1 ≤ i ≤ n,

with initial condition c0 = 1. This shows that our conversion problems reduce to computing
the terms di from the coefficients of P in the monomial basis and conversely.

Our fast solution relies on the observation that the generating series
∑

i≥0 dix
i is rational

and equals N(x)/D(x), where D(x) = (x+ 1)n+1 and

N(x) =
n∑

i=0

qix
i(x+ 1)n−i.

Denoting Q =
∑n

i=0 qix
n−i, we deduce that N(x) is the reversal polynomial of Q(x+ 1).

The conversion algorithms follow easily from this remark.

From Bernstein basis to monomial basis. Starting from Q =
∑n

i=0 qix
n−i, compute

R = Q(1+x), then multiply the first n terms of the power series rev(Q)/(1+x)n+1 by
c0, . . . , cn. This gives P .

116



From the monomial basis to Bernstein basis. Starting from P =
∑n

i=0 pix
i, compute

the product S between (1 + x)n+1 and
∑n

i=0 pi/cix
i modulo xn+1, then evaluate the

reversal rev(S) on (x− 1) to obtain the coefficients qi of P in Bernstein basis.

Let us estimate the complexities of these algorithms. It is well known that the coefficients
of either (1 + x)n+1 or its inverse modulo xn+1 can be obtained in O(n) operations. Indeed,
denoting

(1 + x)n+1 =
n∑

j=0

ajx
j mod xn+1 and 1/(1 + x)n+1 =

n∑
j=0

bjx
j mod xn+1,

the coefficients aj and bj satisfy the recurrences

a0 = 1, ai+1 =
n+ 1− i
i+ 1

ai and b0 = 1, bi+1 = −i+ n+ 1

i+ 1
bi, for 0 ≤ i ≤ n− 1.

Thus, the previous algorithms both require two polynomial multiplications in degree n and
O(n) additional operations. This proves our claims on the complexity of the operations with
Bernstein matrix.

117



Chapter 6

Equivalence between polynomial
evaluation and interpolation

We compare the complexities of multipoint polynomial evaluation and interpolation. We
show that, over fields of characteristic zero, both questions have equivalent complexities, up
to a constant number of polynomial multiplications.

The results of this chapter are joint work with É. Schost [37].

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Computational model, main result . . . . . . . . . . . . . . . . . 121

6.3 Program transposition . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 From interpolation to evaluation . . . . . . . . . . . . . . . . . . 124

6.5 From evaluation to interpolation . . . . . . . . . . . . . . . . . . 125

118



6.1 Introduction

Multipoint polynomial evaluation and interpolation are ubiquitous problems. They can be
stated as follows:

Evaluation: Given some evaluation points x0, . . . , xn and the coefficients p0, . . . , pn of a
polynomial P , compute the values P (xi) =

∑n
j=0 pjx

j
i , for i = 0, . . . , n.

Interpolation: Given distinct interpolation points x0, . . . , xn and values q0, . . . , qn, compute
the unique coefficients p0, . . . , pn such that

∑n
j=0 pjx

j
i = qi holds for i = 0, . . . , n.

It is known that the complexities of these operations are closely related: for instance, the
interpolation algorithms of Lipson [156], Fidducia [80], Borodin and Moenck [169, 30] and
Strassen [235] all require to perform a multipoint evaluation as a subtask. Thus in this note,
rather than describing particular algorithms, we focus on comparing the complexities of both
questions, that is, on reductions of one question to the other.

Close links appear when one puts program transposition techniques into use. Roughly speak-
ing, such techniques prove that an algorithm that performs a matrix-vector product can be
transformed into an algorithm with essentially the same complexity, and which performs the
transposed matrix product. These techniques are particularly relevant here, as many rela-
tions exist between Vandermonde matrices, their transposes, and other structured matrices
such as Hankel matrices.

Using such relations, reductions of interpolation to evaluation, and conversely, have been
proposed in (or can be deduced from) [127, 49, 184, 83, 104, 105, 25, 189]. Nevertheless, to
our knowledge, no equivalence theorem has been established for these questions. All results
we are aware of involve the following additional operation: given x0, . . . , xn, compute the
coefficients of

∏n
i=0(T − xi), that is, the elementary symmetric functions in x0, . . . , xn. If

we denote by E(n), I(n) and S(n) the complexities of multipoint evaluation, interpolation
and elementary symmetric functions computation on inputs of size n + 1, then the above
references yield

I(n) ∈ O(E(n) + S(n)) and E(n) ∈ O(I(n) + S(n)).

The best currently known result gives S(n) ∈ O(M(n) log(n)), where M(n) is the cost of
degree n polynomial multiplication, see [255, Ch. 10].

Our purpose in this note is to reduce the gap, replacing the terms S(n) by M(n) in the
above estimates. This is all the more relevant as the best currently known algorithms for
evaluation and interpolation have complexities in O(M(n) log(n)) [169, 30, 235, 35], and
obtaining algorithms of complexity O(M(n)) for any of these questions are long-standing
open problems.

Actually, we prove a sharper statement: it is known that evaluation or interpolation simplifies
for particular families of points (e.g., geometric progressions), see for instance [5, 38] and the
comments below. We take this specificity into account; roughly speaking, we prove that:

119



• given an algorithm that performs evaluation on some distinguished families of points,
one can deduce an algorithm that performs interpolation on the same families of points,
and with essentially the same complexity, up to a constant number of polynomial
multiplications.

• given an algorithm that performs interpolation on some distinguished families of points,
one can deduce an algorithm that performs evaluation on the same families of points,
and with essentially the same complexity, up to a constant number of polynomial
multiplications.

We can infer two corollaries from these results: first, we deduce the estimates

I(n) ∈ O(E(n) + M(n)) and E(n) ∈ O(I(n) + M(n)),

as claimed above.

Our second corollary relates to results from [5]. That article studies the families of n points
in C on which any degree n polynomial can be evaluated in time O(M(n)). The above results
show that these are precisely the families of points on which any degree n polynomial can
interpolated in time O(M(n)). For instance, it is proved in [5] that given any a, b, c, z ∈ C4,
any degree n polynomial can be evaluated on the sequence a + bzi + cz2i in time O(M(n)).
We deduce that as soon as all these points are distinct, any degree n polynomial can be
interpolated on this sequence in time O(M(n)) as well.

Our approach closely follows the ideas given in the references mentioned above, notably [127,
49]. In particular, we borrow from these two references the reductions of one problem to
the other. In both cases, we have to compute the symmetric functions in the sample points
x0, . . . , xn. Technically, our contribution is to point out that the cost of this operation
reduces to that of either interpolation or evaluation, up to a constant number of polynomial
multiplications. The main ideas are the following:

• Suppose that an algorithm that performs interpolation at x0, . . . , xn is given. We
cannot use it to deduce the polynomial F =

∏n
i=0(T − xi) directly, since F has degree

n+1. Nevertheless, we can recover the polynomial
∏n

i=1(T −xi) by interpolation, since
it has degree n, and its values at x0, . . . , xn are easy to compute. Then, recovering F
is immediate.

• Suppose that an algorithm that performs evaluation at x0, . . . , xn is given. By trans-
position, this algorithm can be used to compute the power sums of the polynomial
F =

∏n
i=0(T − xi). Then one can deduce the coefficients of F from its power sums

using the fast exponentiation algorithm of [42, 212].

The rest of this chapter is devoted to give a rigorous version of these considerations. In the
next section, we first precise our computational model, then state our results in this model.
The final two sections give the proofs.

120



6.2 Computational model, main result

Our basic computational objects are straight-line programs (allowing divisions), which are
defined as follows: Let A = A0, . . . , Ar be a family of indeterminates over a field k of
characteristic 0. Let us define F−r = A0, . . . , F0 = Ar. A straight-line program γ is a
sequence F1, . . . , FL ⊂ k(A) such that for 1 ≤ ` ≤ L, one of the following holds:

• F` = λ, with λ ∈ k;
• F` = λ ? Fi, with λ ∈ k, ? ∈ {+,−,×,÷} and −r ≤ i < `;

• F` = Fi ? Fj, with ? ∈ {+,−,×,÷} and −r ≤ i, j < `.

The size of γ is L; the output of γ is a subset of {F−r, . . . , FL}. For a = a0, . . . , ar ∈ kr+1, γ
is defined at a if a cancels no denominator in {F1, . . . , FL}.
In the sequel, we will consider algorithms that take as input both the sample points x =
x0, . . . , xn and the coefficients (resp. values) of a polynomial P . We will allow arbitrary
operations on the sample points. On the other hand, since we compute linear functions of
the coefficients (resp. values) of P , we will only allow linear operations on them; this is
actually not a limitation, because any non-linear step can be simulated by at most 3 linear
steps, see [236] and [47, Th. 13.1].

Formally, we will thus consider straight-line programs taking as input two families of inde-
terminates A and B, allowing only linear operations on the second family of indeterminates.
The straight-line programs satisfying these conditions are called B-linear straight-line pro-
grams and are defined as follows (compare with [47, Ch. 13]).

Let A = A0, . . . , Ar and B = B0, . . . , Bs be two families of indeterminates over a field k
of characteristic 0. Let us define F−r = A0, . . . , F0 = Ar and G−s = B0, . . . , G0 = Bs.
A B-linear straight-line program Γ is the data of two sequences F1, . . . , FL ⊂ k(A) and
G1, . . . , GM ⊂ k(A)[B] such that:

• F1, . . . , FL satisfy the axioms of straight-line programs given above.

• For 1 ≤ m ≤M , one of the following holds:

– Gm = λGi, with λ ∈ k ∪ {F−r, . . . , FL} and −s ≤ i < m;

– Gm = ±Gi ±Gj, with −s ≤ i, j < m.

In particular, G1, . . . , GM are linear forms in B, as requested. Here, the size of Γ is L+M .
The output of Γ is a subset of {G−s, . . . , GM}. For a = a0, . . . , ar ∈ kr+1, Γ is defined at a
if a cancels no denominator in {F1, . . . , FL} ∪ {G1, . . . , GM}.

121



Composition rules. In the sequel, we use estimates for the behaviour of the size of
straight-line programs and B-linear straight-line programs under various compositions. We
now state them explicitly for completeness; later, we will use them in an implicit manner.

Let A and B be as above. Let the cost function C assign to a sequence F ⊂ k(A) the
minimal size of a straight-line program that computes F; define Clin similarly for sequences
of linear forms in k(A)[B], using B-linear straight-line programs.

Let F,F′ be sequences of rational functions in k(A) and let G,G′ be sequences of linear
forms in k(A)[B]. The rational functions F ◦ F′ and the linear forms G ◦ G′ are defined
in an obvious way, as soon as dimensions match. We next define G ◦ F ∈ k(A) as the
evaluation of G on F, and G ¦ F ∈ k(A)[B] as the linear form where all coefficients of G
are evaluated at F (again, as soon as dimensions match). Then all our results rely on the
following straightforward properties:

C(F ◦ F′) ≤ C(F) + C(F′), C(F ∪ F′) ≤ C(F) + C(F′),

Clin(G ◦G′) ≤ Clin(G) + Clin(G
′), Clin(G ∪G′) ≤ Clin(G) + Clin(G

′),

C(G ◦ F) ≤ Clin(G) + C(F), Clin(G ¦ F) ≤ Clin(G) + C(F).

Multiplication. We will use a function denoted by M(n), which represents the complexity
of univariate polynomial multiplication. It is defined as follows: For any n ≥ 0, let us intro-
duce the indeterminates A = A0, . . . , An, B = B0, . . . , Bn, and let us define the polynomials
C0, . . . , C2n in k[A,B] by the relation

(
n∑

i=0

AiT
i

)(
n∑

i=0

BiT
i

)
=

2n∑
i=0

CiT
i

in k[A,B][T ]. The polynomials Ci are linear in B (they are of course actually bilinear in
A,B); then, we require that they can be computed by a B-linear straight-line program of
size M(n). Theorem 13.1 in [47] shows again that restricting to such linear operations is no
limitation, since allowing arbitrary operations in B would at best gain a constant factor.

Main results. With this definition, our results are the following. Roughly speaking, The-
orem 6 shows that, up to a constant number of polynomial multiplications, evaluation is
not harder than interpolation, and Theorem 7 shows the converse. As mentioned above, we
want to take into account the possibility of specialized algorithms, which may give the result
only for some distinguished families of sample points: this justifies putting hypotheses on
the points x in the theorems.

Theorem 6 Let Γ be a Q-linear straight-line program of size L, taking as input X =
X0, . . . , Xn and Q = Q0, . . . , Qn, and let G0, . . . , Gn ∈ k(X)[Q] be the output of Γ. Then
there exists a P-linear straight-line program ∆ of size 2L+O(M(n)), taking as input X and
P = P0, . . . , Pn, and with the following property.

122



Let x = x0, . . . , xn be pairwise distinct points such that Γ is defined at x and such that the
vector Gj(x,Q) satisfies

n∑
j=0

Gj(x,Q)xj
i = Qi, for i = 0, . . . , n.

Then ∆ is defined at x and the output H0, . . . , Hn of ∆ satisfies

Hi(x,P) =
n∑

j=0

Pjx
j
i , for i = 0, . . . , n.

Theorem 7 Let ∆ be a P-linear straight-line program of size L, taking as input X =
X0, . . . , Xn and P = P0, . . . , Pn, and let H0, . . . , Hn ∈ k(X)[P] be the output of ∆. Then
there exists a Q-linear straight-line program Γ of size 3L+O(M(n)), taking as input X and
Q = Q0, . . . , Qn, and with the following property.

Let x = x0, . . . , xn be pairwise distinct points such that ∆ is defined at x and such that the
vector Hj(x,P) satisfies

Hi(x,P) =
n∑

j=0

Pjx
j
i , for i = 0, . . . , n.

Then Γ is defined at x and the output G0, . . . , Gn of Γ satisfies

n∑
j=0

Gj(x,Q)xj
i = Qi, for i = 0, . . . , n.

6.3 Program transposition

Inspired by [127, 49, 189], we will use the following idea: any algorithm that performs
multipoint evaluation (resp. evaluation) can be transformed into one that performs the
transposed operation. Originating from [239], Tellegen’s principle precisely gives this kind
of result, and predicts the difference of complexity induced by the transposition operation;
see [47] for a proof and [124] for a detailed discussion. In our context, we easily obtain the
following result:

Lemma 4 Let Γ be P-linear straight line program of size L, taking as input X = X0, . . . , Xn

and P = P0, . . . , Pn and let G0, . . . , Gn ∈ k(X)[P] be the output of Γ. Then there exists a
Q-linear straight line program Γ† of size L+ O(n), taking as input X and Q = Q0, . . . , Qn,
and with the following property.

Let x ∈ kn+1 be such that Γ is defined at x and let ϕ be the linear map p 7→ (Gi(x,p)). Then
Γ† is defined at x and q 7→ (Hi(x,q)) is the transposed map ϕt.

123



6.4 From interpolation to evaluation

We now prove Theorem 6: given an algorithm that performs interpolation, possibly on some
distinguished families of points only, one deduces an algorithm which performs evaluation,
on the same families of points, and with essentially the same complexity.

The reduction follows from the following matrix identity, which appeared in [49]:




1 . . . 1
...

...
xn

0 . . . xn
n







1 . . . xn
0

...
...

1 . . . xn
n


 =



s0 . . . sn
...

...
sn . . . s2n


 ,

where si =
∑n

j=0 x
i
j is the ith Newton sum of F =

∏n
i=0(T − xi). We rewrite this identity

as (V t)V = H, where H is the Hankel matrix made upon s0, . . . , s2n, which in turn yields
V = (V t)−1H.

Using this last equality, we deduce the following algorithm to evaluate a polynomial P on
the points x; this algorithm appeared originally in [49] (in a “transposed” form).

1. Compute the power sums s0, . . . , s2n of the polynomial F =
∏n

i=0(T − xi).

2. Compute p′ = Hp, where H is as above and p is the vector of coefficients of P .

3. Compute (V t)−1p′.

Our contribution is the remark that the first step can be essentially reduced to perform a
suitable interpolation. Consider indeed F̃ =

∏n
i=1(T − xi). Then we have the equalities

F̃ (x0) =
n∏

i=1

(x0 − xi) and F̃ (xi) = 0, i > 0.

All these values can be computed in time O(n). It suffices to interpolate these values at

x0, . . . , xn to recover the coefficients of F̃ , since this polynomial has degree n. Then, the
coefficients of F can be deduced for O(n) additional operations. Finally, we can compute the
first 2n+1 power sums of F for O(M(n)) additional operations using power series expansion,
see [212]; this concludes the description of Step 1.

On input the power sums s0, . . . , s2n and the coefficients of P , Step 2 can be done in time
O(M(n)) since H is a Hankel matrix, see [25]. It then suffices to perform a transposed
interpolation to conclude Step 3.

Formally, let Γ be a Q-linear straight-line program of size L as in Theorem 6. Using the
composition rules given in the introduction, we deduce from the above discussion that Step 1
can be performed by a straight-line program that takes X as input, and has size L+O(M(n)).
Step 2 can be done by a P-linear straight-line program that takes s0, . . . , s2n and P as input,
and has size O(M(n)). By Lemma 4, Step 3 can be done by a P′-linear straight-line program
of size L + O(n) that takes X and P′ as input. We conclude the proof by composing these
programs.

124



6.5 From evaluation to interpolation

We finally prove Theorem 7: given an algorithm that performs evaluation, possibly on some
distinguished families of points only, one deduces an algorithm which performs interpolation,
on the same families of points, and with essentially the same complexity. Consider the
matrix-vector product 


1 . . . xn

0
...

...
1 . . . xn

n






p0
...
pn


 =



q0
...
qn


 .

Our goal is to compute p on input q. To do so, we first consider the transposed problem,
that is, computing p′ on input q, where p′ is defined by




1 . . . 1
...

...
xn

0 . . . xn
n






p′0
...
p′n


 =



q0
...
qn


 . (6.1)

To solve this question, we use a reduction that appeared in [127] (see also [189] for an
alternative formula originating from [104], which requires essentially the same operations).
The generating series Q =

∑n
i=0 qiT

i satisfies the following identity:

Q ·
n∏

i=0

(1− xiT ) =
n∑

i=0

(
p′i

j 6=i∏
0≤j≤n

(1− xjT )

)
mod T n+1.

Let us next define

I =
n∑

i=0

(
p′i

j 6=i∏
0≤j≤n

(T − xj)

)
and F =

n∏
i=0

(T − xi).

Then we have p′i = I(xi)/F
′(xi). We deduce the following algorithm for recovering p′0, . . . , p

′
n

from q0, . . . , qn. This originally appeared in [127] and follows [267].

1. Compute F =
∏n

i=0(T − xi) and G = T n+1F (1/T ) =
∏n

i=0(1− xiT ).

2. Compute H = Q ·G mod T n+1.

3. Evaluate I = T nH(1/T ) and F ′ on x0, . . . , xn and output I(xi)/F
′(xi).

As in the previous section, our contribution lies in Step 1: we show that computing F is not
more costly than performing an evaluation and some polynomial multiplications.

Indeed, let us compute the transposed evaluation on the set of points x0, . . . , xn with input
values x0, . . . , xn: this gives the first n+2 Newton sums of F . Then we can recover the coef-
ficients of the polynomial F using the exponentiation algorithm of [42, 212], which requires
O(M(n)) operations.

125



This concludes the description of Step 1. Step 2 can then be done for M(n) operations, and
Step 3 for two multipoint evaluations plus n+ 1 scalar divisions.

Formally, let ∆ be a P-linear straight-line program of size L as in Theorem 7. Using Lemma 4
and the composition rules, the above discussion shows that the coefficients of F can be
computed by a straight-line program that takes X as input and has size L+O(M(n)). Step 2
can be done by a Q-linear straight-line program of size M(n) that takes the coefficients of F
and Q as input. Finally, Step 3 can be done by a H-linear straight-line program that takes
X and the coefficients of F and H as input, and has size L+O(n).

By composition, we obtain a Q-linear straight-line program Γ that takes X and Q as input
and has size 3L + O(M(n)); on an input x that satisfies the assumptions of Theorem 7, Γ
computes the values p′ satisfying Equation (6.1), as requested. Applying Lemma 4 to Γ
concludes the proof.

126



Part III

Fast Algorithms for Algebraic
Numbers

127



Chapter 7

Fast Computation with Two
Algebraic Numbers

We propose fast algorithms for computing composed products and composed sums, as well
as diamond products of univariate polynomials. These operations correspond to special
resultants, that we compute using power sums of roots of polynomials, by means of their
generating series. This chapter is joint work with Ph. Flajolet, B. Salvy and É. Schost.

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Fast Conversion Algorithms between Polynomials and Power
Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 The case of characteristic zero or large enough . . . . . . . . . . . 138

7.2.2 The small positive characteristic case – Schönhage-Pan’s algorithm 140

7.3 Two Useful Resultants that Can Be Computed Fast . . . . . . 140

7.3.1 Computing the composed product . . . . . . . . . . . . . . . . . . 141

7.3.2 Computing the composed sum in characteristic zero or large enough142

7.3.3 Computing the composed sum in small characteristic . . . . . . . . 143

7.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4 Computing the Diamond Product . . . . . . . . . . . . . . . . . 147

7.4.1 Computations in the quotient algebra . . . . . . . . . . . . . . . . 149

7.4.2 Power projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.3 Representing the linear forms . . . . . . . . . . . . . . . . . . . . . 153

7.4.4 Complexity of the product in Q . . . . . . . . . . . . . . . . . . . . 153

7.4.5 Complexity of the transposed product . . . . . . . . . . . . . . . . 155

7.4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 Applications and Related Questions . . . . . . . . . . . . . . . . 158

128



7.5.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.5.2 Related questions and open problems . . . . . . . . . . . . . . . . 160

129



7.1 Introduction

Let k be a field and let f and g be monic polynomials in k[T ], of degrees m and n respectively.
We are interested in computing efficiently their composed sum f ⊕ g and composed product
f ⊗ g. These are polynomials of degree D = mn defined by

f ⊕ g =
∏

α,β

(
T − (α + β)

)
and f ⊗ g =

∏

α,β

(T − αβ),

the products running over all the roots α of f and β of g, counted with multiplicities, in an
algebraic closure k of k.

More generally, given a bivariate polynomial H ∈ k[X,Y ], of degree less than m in X and
of degree less than n in Y , we study the fast computation of the diamond product f ¦H g of
f and g, which is the polynomial of degree D = mn defined by

f ¦H g =
∏

α,β

(
T −H(α, β)

)
, (7.1)

the product running over all the roots α of f and β of g, counted with multiplicities.

The operation ¦H was introduced by Brawley and Carlitz in [39]. They showed that if
k is finite, for large families of polynomials H, the diamond product enjoys the following
remarkable property: f ¦H g is irreducible if and only if both f and g are irreducible and their
degrees are co-prime. Consequently, diamond products are used for constructing irreducible
polynomials of large degree over finite fields, see [39, 40, 222, 224].

These operations, in particular composed sums and composed products, actually appear as
basic subroutines in many other algorithms, including computations with algebraic numbers,
symbolic summation and study of linear recurrent sequences. We present some of these
applications in Section 7.5.

The polynomials f⊕g and f⊗g can be expressed in terms of resultants, see for instance [159]:

(f ⊕ g)(x) = Resy(f(x− y), g(y))
(f ⊗ g)(x) = Resy(y

mf(x/y), g(y)).
(7.2)

A similar (less well-known) formula also holds for f ¦H g:

(f ¦H g)(x) = Resy

(
Resz

(
x−H(z, y), f(z)

)
, g(y)

)
. (7.3)

Formulas (7.2) and (7.3) already show that f ⊗ g, f ⊕ g and f ¦H g have coefficients in k.
They also provide a way of computing these polynomials. Still, the efficiency of the resulting
algorithms is not entirely satisfactory. For instance, if f and g have degrees of order

√
D,

the fastest available algorithms for multivariate resultants [218, 154, 199, 255, 155] based
on formulas (7.2) have complexity of order Olog

(
DM(

√
D))

)
field operations, while that

exploiting formula (7.3) has complexity Olog

(
D2 M(

√
D)

)
.

130



Indeed, suppose that m and n are of order
√

D. We estimate the complexity of computing f ¦H g

using formula (7.3) and an evaluation-interpolation method. We treat only the simpler case when
the base field k has at least D + 1 distinct elements x0, . . . , xD. Denote Rj(y) = Resz

(
xj −

H(y, z), f(z)
)
, for 0 ≤ j ≤ D. Then evaluating f at the points xj amounts to computing the values

δj = Resy(Rj(y), g(y)). It is easy to see that each polynomial Rj has degree at most D, so that the
computation of δ0, . . . , δD requires O(D M(D) log D) operations in k. Since interpolating f ¦H g at
the points xj has cost O(M(D) log D), it remains to determine the complexity of computing the
polynomials Rj . This can be done again by evaluation-interpolation at the points x0, . . . , xD, using
the equality Rj(xi) = Resz

(
xj−H(xi, z), f(z)

)
. The polynomials H(xi, z) can be computed naively

in O(D2), so the cost of computing Rj(xi) is dominated by the mn = D resultants of polynomials
of degree

√
D, that is, Olog(D2 M(

√
D)).

In this chapter M(D) stands for the number of base field operations required to perform the
product of two polynomials of degree D and, also, the first D coefficients in the product
of two formal power series given at precision D. The symbol Olog indicates the presence of
logarithmic terms in D.

Over fields of characteristic zero, a different approach for computing composed sums and
products was suggested by Dvornicich and Traverso [74]. The key idea is to represent poly-
nomials by the power sums of their roots; for convenience, this will be called Newton rep-
resentation. Dvornicich and Traverso gave formulas expressing f ⊕ g and f ⊗ g in terms of
f and g in this alternative representation. However, a direct application of their formulas,
combined with the use of Newton formulas for conversions between Newton representation
and the monomial one, lead them to algorithms using O(D2) operations in k.

Brawley, Gao and Mills proposed in [40] several algorithmic solutions for the composed
product and sum over a finite field. Apart from the resultant method described below, their
most efficient solution has quadratic complexity in the degree D of the output and works
only under the assumption of an irreducible output.

In [40, Section 3], Brawley, Gao and Mills also considered the problem of computing the dia-
mond product. Their algorithm works over a finite field with q elements and has complexity
Olog

(
D log(q) +D3

)
, if f and g have degrees of order

√
D.

Our contribution

In this chapter our aim is to show that better can be done, both in characteristic zero and in
positive characteristic. One of the algorithmic keys of our approach is the use of fast algo-
rithms in [212, 188], for converting a polynomial from the classical monomial representation
to its Newton representation and backwards.

Another crucial ingredient is our reformulation, in terms of generating series, of some for-
mulas in [74] expressing f ⊗ g and f ⊕ g in their Newton representation, in characteristic
zero or large enough. This enables us to give nearly optimal algorithms for the composed
product and the composed sum, if the characteristic char(k) of the base field is zero or
large enough. Our algorithms use mainly multiplications, inversions and exponentiations of
power series, for which nearly optimal algorithms are known [228, 138, 42], see also [118,
Section 13.9], [25], [47, Chapter 2], [255, Section 9.1]. In this chapter, “nearly optimal”

131



means that the number of operations in the base field k is linear in the size of the result, up
to logarithmic factors.

Our algorithm for the composed product can be very slightly modified so as to work in
arbitrary characteristic, but the situation is different for the composed sum. By introducing
a new combinatorial idea, we reduce the computation of composed sums in small character-
istic p to multiplying two multivariate power series of degree less than p in each variable.
The resulting algorithm is faster than the existing methods. However, it is not nearly opti-
mal, since no nearly optimal algorithms for such multivariate power series multiplication are
known to us. Any improvement on the latter problem would have a positive impact on our
algorithm.

We also propose a fast algorithm for computing the general diamond operation. The key
point of our method consists in relating the Newton representation of f ¦H g to the traces
of multiplication by successive powers of H in the quotient algebra k[X, Y ]/(f(X), g(Y )).
This way, the computation of f ¦H g reduces roughly to solving a particular instance of the
power projection problem in k[X, Y ]/(f(X), g(Y )). For the latter problem, we propose an

explicit algorithm using O
(√

D
(
M(D) +Dω/2

))
operations in k. Here ω denotes a feasible

exponent of matrix multiplication over the field k, that is, a positive real number such that
any two n× n matrices over k can be multiplied using O(nω) operations in k.

Combining our algorithm for the power projection problem in k[X, Y ]/(f(X), g(Y )) with
the fast conversion techniques mentioned above, we obtain an algorithm for the diamond

product of complexity O
(√

D
(
M(D) +Dω/2

))
. Taking the best upper bound known to this

date ω < 2.376 [69], and using Fast Fourier Transform for the power series multiplication,
for which M(D) = O

(
D log(D) log log(D)

)
, see [255, Section 8.2], the theoretical complexity

of our algorithm is in O(D1.688) 1. Note that even using naive matrix multiplication (ω = 3)
this improves the previously known complexity results for the computation of the diamond
product roughly by a factor of

√
D.

It should be noted that the same complexity result for the composed product is already
(implicitly) given in [224], in a slightly more general context, see also [124]. Nevertheless,
the result in [224] is an existence theorem, as no explicit algorithm with this complexity is
given. On the contrary, our algorithm is completely explicit; we refer to Section 7.4 for more
developped historical notes on this subject.

One of our aims has been to demonstrate the practical relevance of fast algorithms, in
particular, that of Strassen’s matrix multiplication [234], whose exponent is ω = log2(7) '
2.808. In Section 7.4 we also report the practical achievement of our sub-quadratic algorithm
for the diamond product.

Complexity statements.

We encapsulate our complexity results in the following theorem. Our algorithms for the com-
posed sums and products and for the diamond product work under no additional assumption

1The exponent 1.688 may be slightly improved to 1.667 by using the faster algorithms for rectangular
matrix multiplication by Huang and Pan [121].

132



if the base field has characteristic zero or large enough. Over fields of small positive charac-
teristic, they require a mild assumption, which is satisfied, for instance, if the output is an
irreducible polynomial.

Theorem 8 Let k be a field of characteristic p and let f and g be two monic polynomials
in k[T ] of degrees m and n. Let D = mn.

1. If p = 0 or p > D, then the composed operations f ⊗ g and f ⊕ g can be performed
using O(M(D)) operations in k;

2. If p is larger than all the multiplicities of the roots of f ⊗ g, then the composed product

f ⊗ g can be computed within O
(
p M

(
D
p

)
log

(
D
p

)
+ M(D)

)
operations in k;

3. If p is larger than all the multiplicities of the roots of f ⊕ g, then the composed sum

f ⊕ g can be computed within O
(
p M

(
D
p

)
log

(
D
p

)
+ M

(
D1+ 1

log(p)
))

operations in k;

Suppose that H ∈ k[X,Y ] has degree less than m in X and degree less than n in Y . Then
one can compute:

4. the diamond product f ¦H g using O
(√

D
(
M(D) +Dω/2

))
operations in k, if p is zero

or larger than all the multiplicities of the roots of f ¦H g (see comments below).

We stress the fact that taking M(D) ∈ Olog(D) justifies our claims on the near optimality of
our algorithms for the composed product and sum.

Table 7.1 aims at clarifying our contributions to the state of the art on the questions ad-
dressed in this chapter. The complexities are stated in terms of the degree D of the output.
The entries in the case of the arbitrary characteristic are valid under the assumptions of
Theorem 8.

Finally, let us mention again that the existence of an algorithm computing the diamond
product within the above complexity bound was proved in [224], our contribution being a
first explicit and practical algorithm. The star in Table 7.1 refers to this fact.

Outline of the chapter

• In Section 7.2, we recall fast algorithms for the translation between Newton repre-
sentation and classical representation of univariate polynomials. Depending on the
characteristic of the base field, we split the presentation into two cases, which are
detailed in Subsections 7.2.1 and 7.2.2.

• In Section 7.3 we use these results to compute the composed product and sum, and we
present the experimental behavior of the resulting algorithms.

133



char(k) f ⊗ g f ⊕ g

p=0
p>D

O
(
M(D)

)
O

(
M(D)

)

p > 0 O
(
p M

(
D
p

)
log

(
D
p

)
+ M(D)

)
O

(
p M

(
D
p

)
log

(
D
p

)
+ M

(
D1+ 1

log(p)
))

char(k) f ¦H g

any O
(√

D
(
M(D) +Dω/2

))
?

Table 7.1: A bird’s eye-view on our contribution. See comments after Theorem 8 concerning
the starred entry.

• In Section 7.4 we address the problem of computing the diamond product f ¦H g. We
show that it amounts to evaluating the trace form on the successive powers of H in
the quotient algebra k[X,Y ]/(f(X), g(Y )). This is a particular instance of the power
projection problem; we solve it using an effective bivariate version of a “baby-step /
giant-step” algorithm of Shoup’s. We conclude the section by experimental results.

• Section 7.5 presents several applications of these composed operations and describes
two related questions: the fast computation of resolvents and of Graeffe polynomials.

Notation

In the rest of this chapter, we make use of the following notation:

• Ns(h) denotes the sth power sum of the roots of a polynomial h ∈ k[T ], that is, the
sum

∑
γ γ

s, taken over all the roots of h in k, counted with multiplicities.

• The Newton series Newton(h) of h ∈ k[T ] is the power series
∑

s≥0Ns(h)T
s.

• If P is a polynomial in k[T ] of degree at most n, we write rev(n, P ) for its nth reversal,
namely P

(
1
T

)
T n.

• For h > l ≥ 0, we introduce the operations d.eh and [.]hl on P =
∑

i piT
i:

dP eh =
h−1∑
i=0

piT
i, [P ]hl =

h−l−1∑
i=0

pi+lT
i.

134



• Given a power series S =
∑

i≥0 siT
i ∈ k[[T ]] and an integer m ≥ 1, we write S

mod Tm for the truncated power series
∑m−1

i≥0 siT
i.

• By bqc we denote the integer part of a rational number q.

• For a k-vector space V , we denote by V̂ its dual, that is, the k-vector space of k-linear
maps ` : V → k.

• For any integer m ≥ 1, we write k[T ]<m for the set of polynomials of degree less than
m and k[[T ]]<m for the set of power series truncated at Tm. They are dual k-vector
spaces.

7.2 Fast Conversion Algorithms between Polynomials

and Power Sums

As mentioned in the Introduction, our acceleration in computing composed and diamond
operations is based on the use of an alternative representation for univariate polynomials,
the Newton representation by power sums of roots.

The use of the Newton representation for polynomials is certainly not our innovation. It is
already present in [147], but also in [74, 144, 244, 102, 240, 213, 108, 106, 107, 204, 250,
44], . . . Following [74], our contribution is to demonstrate that it provides the appropriate
data structure for the efficient computation of composed sums and products and of diamond
products.

A polynomial of degree D is uniquely determined by the first D power sums of its roots,
at least in characteristic zero or larger than D. Moreover, Newton formulas provide a
straightforward algorithm to make these conversions, which has quadratic complexity in
the degree D.

Fortunately, faster conversion methods exist. As far as we know, Schönhage [212] was the
first to propose such methods, in the context of devising numerical root-finders for univariate
polynomials. Over fields of characteristic zero, his algorithms extend to an exact setting
as well, see [185, Appendix A] and [25, Problem 4.8]. Moreover, Schönhage’s algorithm
for translating a polynomial to its Newton representation remains valid over fields of any
characteristic, while his algorithm for the converse direction works over fields of characteristic
large enough.

The question of converting power sums of roots to coefficients for polynomials over fields of
small characteristic is more delicate and many efforts have been done to bypass its difficulty.
Historically, two kinds of approaches were proposed: on the one hand, the techniques of
recursive triangulation originating in [125], on the other hand, those using fundamental sets
of power sums of [213, 25, 186, 188]. The best currently known solution is that of [188].

Thus, the results of this section are not new. The conversions algorithms described hereafter
will be used as basic algorithmic bricks in the rest of our chapter. For the sake of complete-
ness, we gathered them together, under the shape of ready-to-implement pseudo-code.

135



The structure of this section is as follows: we begin by recalling an algorithm for the di-
rect conversion (from a polynomial to its Newton representation), which works in arbi-
trary characteristic. Next, we detail the algorithm in [212] for the inverse conversion in
characteristic zero or large enough. We conclude the section by presenting an algorithm
for the inverse conversion in the positive characteristic setting. This algorithm is due to
Pan [188]. It inherits mathematical ideas of Schönhage [213] and successive algorithmic
improvements [25, 186, 187].

From monomial to Newton representation

The translation from a polynomial to the power sums of its roots is quite simple and is based
on the following basic result.

Lemma 5 Let h be a monic polynomial in k[T ], of degree D. Then, the series Newton(h)
is rational; moreover, the following formula holds:

Newton(h) =
rev(D − 1, h′)

rev(D, h)
.

Proof. Let γ1, . . . , γD be the roots of h in k. Since h =
∏D

i=1(T − γi), we have

Newton(h) =
∑
s≥0

( D∑
i=1

γs
i

)
T s =

D∑
i=1

( ∑
s≥0

γs
i T

s
)

=
D∑

i=1

1

1− γiT
=

rev(D − 1, h′)
rev(D, h)

.

¤

Proposition 5 If h is a polynomial of degree D in k[T ] and if N ≥ D, then the first N
power sums of the roots of h can be computed within O

(
N
D

M(D)
)

operations in k.

Proof. By the preceding Lemma, it is sufficient to prove that if a polynomial A has degree
at most D − 1 and if a polynomial B has degree D, then the first N ≥ D coefficients of
the rational series A/B can be computed within the announced running time bound. The
idea is to proceed by slices of size D. We first compute the first D coefficients of 1/B, using
Sieveking-Kung’s algorithm [228, 138], for a cost of O(M(D)) operations in k. We denote B0

the corresponding polynomial, of degree D − 1. We let C0 = dAB0eD and recursively define
the polynomials

Cj+1 = − ⌈bBCjcD B0

⌉D
, for 0 ≤ j ≤ bN/Dc .

Then, it is a simple matter to verify that A
B

= C0 + TDC1 + T 2DC2 + . . . and the result
follows. ¤
We summarize the corresponding algorithm in Figure 7.1.

136



Computing the Newton series
of a polynomial

Input: a polynomial h of degree D.
Output: the series Newton(h) at preci-
sion N .

A← rev(D − 1, h′)
B ← rev(D, h)

B0 ←
⌈

1
B

⌉D

C0 ← dAB0eD
l← ⌊

N
D

⌋
for j from 0 to l do

Cj+1 ← −
⌈bBCjcD B0

⌉D

return
∑l

i=0CiT
Di +O(TN)

Figure 7.1: Computing the Newton series of a polynomial

From Newton representation to the monomial one

The converse direction is more difficult to handle: while in characteristic zero the Newton
formulas give a one-to-one correspondence between power sums and elementary symmetric
sums, in the positive characteristic case distinct monic polynomials of the same degree may
have equal power sums of roots. Consequently, the treatment of this question should take
into account the characteristic of the base field. The results of the next subsections are
summarized in the following proposition.

Proposition 6 Let h be a polynomial of degree D in k[T ].

1. If k has characteristic zero or greater than D, then the polynomial h can be computed
from the first D power sums of its roots within O

(
M(D)

)
operations in k.

2. Suppose that k has positive characteristic p and that all the roots of h have multiplicities
less than p. Then, the polynomial h can be computed from the first 2D power sums of
its roots within

O

(
M(D) + p M

(D
p

)
log

(D
p

))

operations in k.

As we already mentioned in the preamble of this section, the results of Proposition 6 are not
new; the first part is commonly attributed to Schönhage [212], while the second one is due
to Pan [188].

137



We are now going to discuss these results in some detail and present the corresponding
algorithms. In Subsection 7.2.1 we treat the case of characteristic zero or large enough,
since we consider that the ideas involved in that case are important and help understanding
the extension to the arbitrary positive characteristic case. The latter case is addressed in
Subsection 7.2.2, where technical details are intentionally omitted. Instead we preferred to
put down a complete pseudo-code, to simplify the task of reading Pan’s original paper [188].

7.2.1 The case of characteristic zero or large enough

The exponential of a power series F with positive valuation over a field k of characteristic
zero is given by

exp(F ) =
∑
s≥0

F s

s!
.

If the base field k has positive characteristic p, we define, as an analogue to the exponential
of a power series F ∈ k[[T ]] with positive valuation, the series

exp(F ) =

p−1∑
s=0

F s

s!
.

Note that if F and G are power series with positive valuation over a field of characteristic
p > 0, one has the formula exp(F +G) = exp(F ) · exp(G) mod T p.

The next lemma expresses the reverse of a monic polynomial as the exponential of a series
involving its Newton series. The subsequent corollary proves the first part of Proposition 6.

Lemma 6 Let h be a monic polynomial of degree D in k[T ], where k is a field of character-
istic zero or larger than D. Then the following formula holds:

rev(D, h) = exp

(∫
1

T
·
(
D − Newton(h)

))
.

Proof. Let γ1, . . . , γD be the roots of h in k. By definition, it follows that:

1

T
·
(
D − Newton(h)

)
= −

∑
s≥0

Ns+1(h)T
s.

On the other hand, an immediate calculation shows that:

rev(D, h)′

rev(D, h)
=

∑
i

−γi

1− γiT
= −

∑
s≥0

( ∑
i

γs+1
i

)
T s. (7.4)

As one can easily verify, for a polynomial P ∈ k[T ] with constant coefficient 1, the formula
P = exp(

∫
P ′/P ) holds as soon as k has characteristic zero. The same equality remains valid

modulo T p if char(k) is larger than the degree of P . By applying this fact to P = rev(D, h)
in conjunction with the previous two formulas, we conclude the proof of the lemma. ¤

138



Corollary 4 A monic polynomial h of degree D over a field of characteristic zero or larger
than D can be computed from the first D power sums of its roots within O(M(D)) base field
operations.

Proof. (Compare [25, p. 34–35]) By assumption, we know the series Newton(h) at precision
D, from which we deduce the series

∫
1
T
· [D − Newton(h)

]
at precision D in linear time. By

Lemma 6, exponentiating the latter series gives the polynomial rev(D, h). The exponential of
a power series can be computed within O(M(D)) field operations, using a Newton iteration;
this was pointed out for the first time by Brent in [42]. Finally, we recover the polynomial
h = rev

(
D, rev(D, h)

)
. ¤

At this time, the first part of Proposition 6 is proved. We present the resulting algorithm
in Figure 7.2. For a polynomial P , we denote by Coeff(P, i) the coefficient of T i in P . We
use a slightly modified Newton iteration, whose complexity has a better constant factor and
which is similar to that suggested in [187, Appendix A].

Recovering a monic polynomial
from

its Newton series in characteristic
zero

Input: the first D terms of the series
Newton(h).
Output: the polynomial h.

S ← (Newton(h)−D)/T
R← 1− Coeff(S, 0)T
n← 2
while n ≤ D do

M ′ ← − ⌈
R′
R

+ S
⌉2n−1

M ← 1 +
∑

i Coeff(M
′, i)T i

i

R← dRMe2n

n← 2n

R← dReD+1

return rev(D,R)

Figure 7.2: Recovering a polynomial from its Newton series in characteristic zero

139



7.2.2 The small positive characteristic case – Schönhage-Pan’s al-
gorithm

Let h =
∏D

i=1(T − λi) be a polynomial over a field of positive characteristic p < D.
Schönhage [213] suggested the following method for recovering the polynomial h from
its first 2D power sums Nj =

∑D
i=1 λ

j
i . Write H for rev(D, h) and decompose it as∑p−1

j=0 Hj(T
p)T j. Next, consider the auxiliary power series Q(T ) = H(T )

H0(T p)
=

∑
i≥0 qiT

i.

Then, Q′/Q equals H ′/H and, by Equation (7.4), the latter coincides with −∑
i≥0Ni+1T

i.
Moreover, Q and H coincide up to precision p and q0 = 1, qpi = 0, for all i ≥ 1.

Based on these facts, Schönhage’s strategy consists of the following two stages:

1. From the first 2D power sums of h, determine the first 2D coefficients of Q.

2. Starting from Q, recover the polynomial h.

In [213] the first stage was completed using a reduction to a triangular linear system of
size bD/pc, for a total cost of O

(
M(D) + (D/p)2

)
operations in k. Subsequently, Pan [186]

gave an improved solution for the computation of Q, by adapting Newton’s iteration in
the algorithm of Corollary 4 to the positive characteristic setting, thus leading to a cost of
O (M(D)) operations in k for this first stage.

Concerning the second stage, Schönhage proposed in [213] a solution based on the resolution
of a linear system of equations of size bD/pc. This step was accelerated by Pan in [187],
who showed that it amounts to solving p − 1 Padé approximation problems of sizes at
most (D/p,D/p).

For further technical details, we refer to the original papers [213, 186, 187, 188]. To facilitate
the reader’s task, we give in Figure 7.3 the algorithm we extracted from [188]. This algorithm
takes as input the first 2D terms of the series Newton(h) and returns the polynomial h. We
use the notation lcm(fi) for the least common multiple of a family of polynomials (fi) and
Pade(S, a, b) for the Padé approximant (A,B) of a power series (polynomial) S, that is the
(unique) pair of polynomials A and B of minimal degrees such that B(0) = 1 and such that
the following relations hold:

A−BS = 0 mod T a+b+1, deg(A) ≤ a, deg(B) ≤ b.

7.3 Two Useful Resultants that Can Be Computed

Fast

The results of the preceding section will help us design optimal algorithms for the compu-
tation of the composed product f ⊗ g and composed sum f ⊕ g of two monic polynomials f
and g of degrees m and n. These are particular instances of resultants

(f ⊗ g)(x) =
∏

g(β)=0

βmf(x/β) = Resy

(
ymf(x/y), g(y)

)
,

140



Schönhage-Pan’s algorithm

Input: the first 2D terms of Newton(h).
Output: the polynomial h.

S ← (Newton(h)−D)/T
R← 1− Coeff(S, 0)T
n← 2
while n ≤ 2D do

M ′ ← −
⌈

R′
R + S

⌉2n−1

M ← 1 +
∑

p 6 | i Coeff(M
′, i)T i

i

g ← b2n−1
p c

if gp > n then

A← [R]gp−n+1
1 [M ]gp

n

M ←M −∑g
i=dn

p
e Coeff(A, ip− n− 1)T ip

R← dRMe2n

n← 2n
for i from 1 to p− 1 do

di ←
⌊

D−i
p

⌋

Qi ←
∑d+di

j=0 Coeff(R, jp + i)T j

(Ai, Bi)← Pade(Qi, di, d)
H0 ← lcm(Bi)
Hi ← dQiH0edi+1

H ← H0(T p) +
∑p−1

i=1 Hi(T p)T i

return rev(D, H)

Figure 7.3: Recovering a monic polynomial from its Newton series in small characteristic

and
(f ⊕ g)(x) =

∏

g(β)=0

f(x− β) = Resy

(
f(x− y), g(y))

that we compute faster than the general bivariate resultants. Our algorithms are based on
formulas expressing the Newton series of f ⊗ g and of f ⊕ g in terms of those of f and g.
Note that designing nearly optimal algorithms for general bivariate resultants is still an open
problem, see [255, Research problem 11.10].

7.3.1 Computing the composed product

Our algorithm for the composed product f ⊗ g is based on the following lemma:

141



Lemma 7 Let f and g be two polynomials in k[T ]. Then, the following formula holds:

Newton(f ⊗ g) = Newton(f)¯ Newton(g),

where ¯ denotes the Hadamard (term-wise) product of power series.

Proof. For s ≥ 0, the sth power sum of the roots of f ⊗ g is
∑

α,β(αβ)s, the sum running

over all the roots α of f and β of g. This sum can be rewritten as
(∑

α α
s
) · ( ∑

β β
s
)
, which

is the product of the sth power sums of the roots of f and of g. This proves that the series
Newton(f ⊗ g) is the Hadamard product of Newton(f) and Newton(g). ¤
As a corollary, we obtain the following algorithm for f ⊗ g. Given two monic polynomials f
and g of degrees m and n, we first compute the power series Newton(f) and Newton(g) up to
precision D = mn. Using Proposition 5, this step requires O

(
D
m

M(m) + D
n
M(n)

)
operations

in k. Then we perform, for a cost linear in D, the Hadamard product of Newton(f) and
Newton(g). By the preceding lemma, we thus obtain the Newton series of f ⊗ g at precision
D. We recover the polynomial f ⊗ g by applying the conversion algorithms in Proposition 6.
Summing up the costs of each stage proves the complexity results concerning f ⊗ g in the
first two assertions in Theorem 8.

7.3.2 Computing the composed sum in characteristic zero or large
enough

Let k be a field of arbitrary characteristic and let E ∈ k[[T ]] denote the power series

E = exp(T ),

where exp denotes the exponential defined in Section 7.2.1. Then our algorithm for f ⊕ g is
based on the following lemma:

Lemma 8 Let f and g be two polynomials in k[T ]. Then

1. If the characteristic of k is zero, the following formula holds:

Newton(f ⊕ g) ¯ E =
(
Newton(f) ¯ E

) · (Newton(g) ¯ E
)
;

2. If p > 0 is the characteristic of k, the following formula holds:

Newton(f ⊕ g) ¯ E =
(
Newton(f) ¯ E

) · (Newton(g) ¯ E
)

mod T p.

Proof. We give the proof in the zero characteristic case; the same arguments apply mutatis
mutandis in the second case, by truncating the series involved judiciously.

The definition of Newton implies that

Newton(f ⊕ g) =
∑
s≥0

(∑

α,β

(α + β)s

)
T s,

142



the second sum running over all the roots α of f and β of g. The conclusion now reads

∑
s≥0

∑
α,β (α+ β)s

s!
T s =

(∑
s≥0

∑
α α

s

s!
T s

)
·
(∑

s≥0

∑
β β

s

s!
T s

)

and we are done, as the latter equality simply translates the fact that

∑

α,β

exp
(
(α + β)T

)
=

( ∑
α

exp
(
αT

)) ·
( ∑

β

exp
(
βT

))
.

¤
As a corollary, we obtain an algorithm for computing the composed sum of two monic
polynomials f and g: first, compute Newton(f) and Newton(g) to precision D, perform
their Hadamard product with E, then compute the product of power series in Lemma 8
to recover Newton(f ⊕ g) at precision D and finally convert the last Newton series to the
polynomial f ⊕ g. Using Proposition 5 and Proposition 6, we complete the proof of the first
assertion in Theorem 8.

7.3.3 Computing the composed sum in small characteristic

In this section we generalize the technique of the preceding paragraphs to the computation
of composed sums over fields of small characteristic. Recall that our algorithm in the case of
large positive characteristic relies on a combinatorial identity involving the exponential series.
Because of factorials, the definition of the latter series is not straightforward in the present
case. In what follows we overcome this difficulty by using some multivariate exponential
generating series.

We begin by giving the intuition behind our approach on a particular case. Suppose that
f and g are polynomials over a field of characteristic p > 0; our aim is express the first p2

power sums of the roots
∑

α,β(α + β)` in terms of
∑

α α
` and

∑
β β

`. The first p of these
sums can be determined using the method in the previous section, which amounts to exploit
the identity exp((α + β)T ) = exp(αT ) · exp(βT ). For ` between p and p2 − 1, this method
fails, since one is not able to divide by p in k. In contrast, if we write ` as i+pj with i and j
less than p, then the equality (α+ β)` = (α+ β)i(αp + βp)j suggests the use of the bivariate
identity

exp
(
(α + β)T + (α + β)pU

)
= exp(αT + αpU) · exp(βT + βpU),

which translates into the following equality modulo (T p, Up)

(
p−1∑
i,j=0

( ∑
α

αi+pj
)T iU j

i!j!

)
·
(

p−1∑
i,j=0

( ∑

β

βi+pj
)T iU j

i!j!

)
=

p−1∑
i,j=0

( ∑

α,β

(α + β)i+pj
)T iU j

i!j!
,

helping to find the first p2 power sums of f⊕g by means of a single multiplication of bivariate
power series. We are going now to formalize this idea in the general case.

Let k be a field of characteristic p > 0. For any i ∈ N, we write ip = (i0, . . . , is) for
its p-adic expansion, that is, the (unique) sequence of integers 0 ≤ i` < p such that i =

143



i0 + i1p + · · · + isp
s. Let T be an infinite set of indeterminates (Ti)i≥0. We define the

p-exponential Ep ∈ k[[T]] as the multivariate power series

Ep =
∑
i≥0

Tip

ip!

where for ip = (i0, . . . , is), we denote ip! = i0! · · · is! and Tip = T i0
0 · · ·T is

s .

For a univariate polynomial f ∈ k[T ], we call the p-Newton series of f the series

Newtonp(f) =
∑
i≥0

Ni(f)Tip .

By definition, the degree of Newtonp(f) is smaller than p in each variable.

With these notation, our algorithm for f ⊕ g in small characteristic is based on the following
results, which can be seen as a generalization of Lemma 8.

Lemma 9 Let k a field of characteristic p and let f be a polynomial in k[T ]. Then:

Newtonp(f)¯ Ep =
∑
s≥0

∑

f(α)=0

(
s∏

`=0

exp(αp`

T`)

)
,

where ¯ denotes the term-wise product of multivariate power series.

Proof. By definition, the left-hand side equals

∑
i≥0

ip=(i0,...,is)

Ni(f)

i0! · · · is! T
i0
0 · · ·T is

s =
∑
s≥0

∑

f(α)=0




∑
0≤i0<p
···

0≤is<p

αi0+i1p+···+isps

i0! · · · is! T i0
0 · · ·T is

s


 .

Since, for any ` ≥ 0, the summation indices i` vary independently and since

∑
0≤i`<p

αi`p
`

i`!
T i`

` = exp(αp`

T`),

the lemma follows. ¤

Lemma 10 Let k be a field of characteristic p > 0 and let f and g be two monic polynomials
in k[T ]. Then the following identity holds:

Newtonp(f ⊕ g)¯ Ep =
(
Newtonp(f)¯ Ep

) · (Newtonp(g)¯ Ep

)
mod (Tp),

where (Tp) denotes the ideal generated by the monomials T p
0 , . . . T

p
s , . . . in k[[T]].

144



Proof. By Lemma 9, we can rewrite the left-hand side as

∑
s≥0

∑
f(α)=0
g(β)=0

exp
(
(α+ β)T0

) · · · exp
(
(α+ β)ps

Ts

)

and the right-hand side as

∑
s≥0

∑
f(α)=0
g(β)=0

exp(αT0) exp(βT0) · · · exp(αps

Ts) exp(βps

Ts).

Using the fact that the series

exp
(
(α + β)p`

T`

)
= exp

(
αp`

T` + βp`

T`

)

is equal to exp(αp`
T`) exp(βp`

T`) modulo T p
` for any ` ≥ 0, the conclusion of the lemma

follows. ¤

Via the fast conversion algorithms in Section 7.2, the preceding lemma enables us to reduce
the computation of the composed sum of characteristic p > 0 to a single multiplication of
multivariate series involving a finite number of variables and of degree less than p in each
variable. More precisely, to recover the polynomial f ⊕g, only 2D terms of its Newton series
suffice, where D = deg(f⊕g), and this means that in the p-Newton series of f⊕g, all we need
to know are coefficients of the monomials containing T0, . . . , Ts, where s = blog(2D)/ log(p)c.
By Lemma 10, this can be done by multiplying two multivariate power series involving at
most

log(2D)/ log(p)

variables and of degree less than p in each variable.

Given two multivariate power series f , g in k[[T0, . . . , Ts]] of degree less than p in each vari-
able, a naive multiplication routine has quadratic complexity in the size ps of the output fg.
Improving this running time bound is an important question in itself. At this time, no nearly
optimal algorithm is available, contrary to the univariate case. We refer to [25, Section 1.8]
for more details.

Our solution relies on Kronecker’s substitution (see [137] and [255, Section 8.4]), which allows
to find the product of multivariate power series by performing a multiplication of univariate
power series of degree less than N = 2sps+1. The key point is the use of the substitution map

ψ : k[[T0, . . . , Ts]] → k[T ]<N

Ti 7→ T (2p−1)i
,

which provides an encoding of multivariate power series into univariate ones and which
behaves well under multiplication. Indeed, the coefficients of a multivariate product fg can
be read off the coefficients of the univariate product ψ(f)ψ(g) of the images of f and g under
this substitution. The cost of this multiplication method is O

(
M(2sps+1)

)
operations in k.

145



In our case, we deal with series with at most log(2D)/ log(p) variables of degree less than p
in each variable, so their product can be performed using Kronecker’s substitution within

O
(
M(2sps+1)

)
= O

(
M

(
D1+ 1

log(p)
))

operations in k.

We summarize our algorithm in Figure 7.4. To simplify notation, we write

[a]qp = a0 + a1q + · · ·+ asq
s,

where
∑s

i=0 aip
i is the p-adic expansion of the integer a. NewtonToPol denotes the procedure

described in Section 7.2.2, which outputs a polynomial, given its Newton representation.

Computing the composed sum
in small characteristic

Input: f , g in k[T ], char(k) = p >
0.
Output: the polynomial f ⊕ g.

D ← deg(f)deg(g)

A1 ←
2D∑
i=0

Ni(f)

ip!
T [i]2p−1

p

A2 ←
2D∑
i=0

Ni(g)

ip!
T [i]2p−1

p

A← A1 · A2

R←
2D∑
i=0

Coeff(A, [i]2p−1
p ) ip! T i

return NewtonToPol(R)

Figure 7.4: Our algorithm for the composed sum in small characteristic

The first 2D terms 1
ip!

can be computed iteratively using O(D) operations. Taking into

account the cost of conversions between coefficients and power sums, this concludes the
proof of the third part in Theorem 8.

7.3.4 Experimental results

We have implemented the algorithms for the composed sum and product, in their versions
for large or zero characteristic. We used the NTL C++ package as a basis [226].

146



Since our complexity estimates are stated in terms of number of operations in the base field,
we have chosen to experiment on finite fields of the form Z/pZ, with p prime. For such base
fields, NTL implements polynomial arithmetic using classical, Karatsuba and Fast Fourier
Transform multiplications.

For the tests presented in Figure 7.5, the input polynomials have equal degrees m = n and
their coefficients are chosen randomly; the output has degree D = m2. We let m vary from
1 to 500 by steps of 8, so that D varies from 1 to 250000; the base field is defined by a 32 bit
prime. We stress the fact that such output degrees are met in applications, see Section 7.5.

All the tests have been performed on the computers of the MEDICIS resource center2, using
a 2 GB, 2200+ AMD Athlon processor.

0

10

20

30

40

50

60

0 50000 100000 150000 200000 250000

Product

0

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000

Sum

Figure 7.5: Composed product and sum. (Time in sec. vs output degree)

In both cases (composed product and composed sum), the running time presents an abrupt
jump when the output degree D passes a power of 2. This feature is actually already
present in the polynomial multiplication, and is intrinsic to NTL’s Fourier Transform: see
Figure 7.6, which displays the time for one polynomial multiplication, in the same degree
range as Figure 7.5. We also plot the ratios between the times of composed sum (resp.
product) and polynomial multiplication. For large degrees, the ratios do not exceed 5.

We finally give the timings given by NTL’s Resultant computation. NTL implements both
quadratic and fast resultant algorithms, the latter being used for m larger than 180, i.e. D
larger than 32400. The experimental times are given in Figure 7.7; in large degrees, the
resultant computations take several hours, whereas our algorithms take approximately one
minute.

7.4 Computing the Diamond Product

We finally address the general case: computing the diamond product of f and g. From the
data of a polynomial H(X,Y ), of degree less than m in X and less than n in Y , the diamond

2http://www.medicis.polytechnique.fr

147



-2

0

2

4

6

8

10

12

14

0 50000 100000 150000 200000 250000

Polynomial multiplication

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 50000 100000 150000 200000 250000

Sum
Product

Figure 7.6: Left: polynomial multiplication (Time in sec. vs output degree). Right: (Com-
posed product or sum time) / (Multiplication time) vs output degree.

0

2000

4000

6000

8000

10000

12000

0 50000 100000 150000 200000 250000

Product

0

2000

4000

6000

8000

10000

12000

0 50000 100000 150000 200000 250000

Sum

Figure 7.7: Composed sum and product by resultant computation. (Time in sec. vs output
degree)

product is defined as the polynomial of degree D = mn

f ¦H g =
∏

α,β

(
T −H(α, β)

)
,

where the product runs over all the roots α of f and β of g, counted with multiplicities. In
this section, we give an algorithm that computes f ¦H g using

O
(√

D
(
M(D) +Dω/2

))

operations in k, where ω is the exponent of matrix multiplication [47, Chapter 15].

Anticipating the following section, f ¦H g is the characteristic polynomial of H in the quotient
algebra k[X,Y ]/(f(X), g(Y )). This characterization of the diamond product enables us to
reduce its computation to that of the power projections of H under the trace map, followed
by a linearly generated sequence recovery.

The origins of this approach trace back at least to Le Verrier [147] (see also [213]) who
proposed a method for computing characteristic polynomials of matrices by means of traces
of matrix powers and using Newton identities for the recovery step. The idea of using power

148



projections for computing minimal polynomials in quotient algebras appears in [240, 200] in
the one variable case k[X]/(f(X)). A breakthrough was achieved in [224] by Shoup, who was
the first to notice that the power projection problem is dual to the modular composition prob-
lem, see also Kaltofen [124]. Moreover, combining a complexity result of Brent & Kung [43]
for the latter problem with a general algorithmic theorem, called Tellegen’s principle, Shoup
proved the theoretical existence of an algorithm solving the power projection problem within
the same complexity as ours, even for the more general algebra k[X, Y ]/(f(X), g(X,Y )).
Still, Shoup gave no explicit algorithm. In [225, Section 4.1 and 7.5] he partially filled in
this gap and proposed a “baby step/giant step” algorithm for the power projection in the
univariate case, yet only in the FFT polynomial multiplication setting; in a subsequent pa-
per [227, Section 2.2], Shoup extended his algorithm to the bivariate case, and independently
of the polynomial multiplication model. Yet, the complexity of algorithms in [225, 227] is
higher, the term Dω/2 being replaced by D3/2.

In what follows, we explicitly solve the power projection problem for our special quotient alge-
bra Q = k[X,Y ]/(f(X), g(Y )) within the complexity predicted by Tellegen’s principle. This
is done by applying some effective transposition techniques [35] to Brent & Kung’s algorithm
for modular composition algorithm in Q. We point out that similar ideas apply to the case
k[X, Y ]/(f(X), g(X,Y )), yielding a practical algorithm of complexity O

(√
D(M(D)+Dω/2)

)
for the power projection in this more general algebra. Finally, we refer to [36] for a descrip-
tion of the general multivariate power projection problem, and its applications to the context
of polynomial system solving.

7.4.1 Computations in the quotient algebra

Let Q be the quotient algebra k[X, Y ]/(f(X), g(Y )). In the rest of this section, we repeatedly
use the trace, which is a linear form defined on Q: the trace of A ∈ Q is defined as the trace
of the endomorphism of multiplication by A in Q.

Our algorithm for the diamond product is based on the following fundamental fact, which is
sometimes referred to as Stickelberger’s Theorem, see [70, Proposition 2.7]: for any A in Q,
the characteristic polynomial of A equals

∏
α,β

(
T − A(α, β)

)
, where the product runs over

all the roots of f and g counted with multiplicities. As a corollary, we have the following:

Lemma 11 The polynomial f ¦H g is the characteristic polynomial of H in Q. The sth
power sum of the roots of f ¦H g is the trace of Hs in Q.

Indeed, the second part of Lemma 11 in conjunction with fast conversion algorithms of Sec-
tion 7.2 shows that proving the final part of Theorem 8 amounts to giving a fast computation
scheme for the first traces of Hs in Q. This is the object of the following proposition.

Proposition 7 Given N ≥ 1, the sequence

trace(1), trace(H), trace(H2), . . . , trace(HN−1)

can be computed within O
(√

N M(D) +DN (ω−1)/2
)

base field operations.

149



We immediately deduce the proof of the complexity estimates in Theorem 8: from Propo-
sition 6, the number of traces to be computed is at most 2D and by Proposition 7, this
has complexity O

(√
D(M(D) + Dω/2)

)
. Then Proposition 6 and the obvious inequality

p M(D
p
) log(D

p
) ≤ M(D) log(D) show that the cost of recovering f ¦H g from the power sums

of its roots is negligible.

Thus, we now concentrate on proving Proposition 7.

7.4.2 Power projection

Computing the traces of the first N powers of H is a particular instance of the power
projection problem: given a linear form ` on the k-algebra Q, “compute” the linear map

Q̂ → k[[T ]]<N

` 7→
N−1∑
i=0

`(H i)T i +O(TN),

where Q̂ is the dual k-vector space of Q, while k[[T ]]<N denotes the k-vector space of power
series truncated at TN .

It is useful to notice that k[[T ]]<N naturally identifies, as a k-vector space, with the dual of the
space k[T ]<N formed by polynomials of degree at most N − 1. Under this identification, the
linear map defining the power projection is the transposed map of the modular composition
(polynomial evaluation) by H

k[T ]<N → Q
p 7→ p(H).

Now, an algorithmic theorem called transposition principle, or Tellegen’s principle, states,
roughly speaking, that for any algorithm computing a linear map there exists an algorithm
that computes the transposed map using almost the same number of arithmetic operations
(see the next proposition for a precise statement). In our situation, this principle establishes
a computational equivalence between the dual problems of modular composition and of
power projection. This fact was pointed out for the first time by Shoup in [224], see also
Kaltofen [124].

We recall Tellegen’s principle in terms of linear straight-line programs ; the latter can be
thought as “ordinary” straight-line programs, but using only linear operations, see [47, Chap-
ter 13] for precise definitions. The complexity of a linear straight-line program is measured
by its size, that is, the number of operations it uses.

Proposition 8 [47, Th. 13.20] Let M be a m × n matrix with zr zero rows and zc zero
columns. For every linear straight-line program of size L that computes the matrix-vector
product Mv there exists a linear straight-line program of size L−n+m−zr+zc that computes
the transposed matrix-vector product Mtrv.

In [190], Paterson & Stockmeyer proposed a “baby-step / giant-step” algorithm for the
modular composition by H, requiring the computation of only

√
N powers of H. The key

150



idea is to see p(H) as a polynomial in H
√

N of degree
√
N . Computing its coefficients

amounts to
√
N modular compositions of polynomials of degree at most

√
N by the same

element H. Brent & Kung [43, Algorithm 2.1] (see also [255, Section 12.2]) remarked that
these simultaneous modular compositions can be done using D/

√
N products of pairs of√

N×√N matrices. Adding the O(
√
N) multiplications in Q, the total cost of this algorithm

is
O

(√
N M(D) +DN (ω−1)/2

)
.

Tellegen’s principle implies that the power projection problem can also be solved within
O

(√
N M(D)+DN (ω−1)/2

)
operations in k. This has been noted by Shoup, see the historical

notes at the beginning of this section.

We now propose a practical algorithm within this complexity. As we show thereafter, it is
obtained by making explicit and then transposing the maps involved in the algorithm for

modular composition described above. In order to simplify the notation, we let r =
⌊√

N
⌋

and G = Hr. For a polynomial p = p0 + · · ·+pN−1T
N−1, we let p̃i = p(i−1)r + · · ·+pir−1T

r−1.
The modular composition map p 7→ p(H) decomposes as follows.

k[T ]<N → k[T ]<r × · · · × k[T ]<r → Q× · · · ×Q → Q

p(T ) 7→
(
p̃1(T ), . . . , p̃r(T )

)

(q1, . . . , qr) 7→
(
q1(H), . . . , qr(H)

)

(A1, . . . , Ar) 7→ ∑r
i=1AiG

i−1

After precomputing the elements 1, H, . . . , Hr, Brent & Kung’s algorithm computes the three
linear maps above, as follows:

• The first one is a splitting map, so no arithmetic operation is required.

• The second map is M 7→ HM , where H is the r × D matrix whose columns contain
the coordinates of the first r − 1 powers of H.

• The third map is computed using a Horner-like method.

We now proceed to inspect the transposed maps. To write down the transpose of the last
one, we first note that, by definition, the transpose of the usual product map B 7→ AB on
Q is the map Q̂→ Q̂ that associates to ` ∈ Q̂ the linear form

A ◦ ` : Q → k
B 7→ `(AB).

This is why, from now on, we will use the classical denomination transposed product for the
operation A ◦ `. An important property of this operation is that it endows the dual Q̂ with
a natural Q-module structure. In particular, for any A,C in Q and any ` in Q̂, the following
equation holds:

(AC) ◦ ` = A ◦ (C ◦ `). (7.5)

151



With these notation, reversing the arrows in the previous diagram gives the following de-
composition of the power projection map; recall that 1, H, . . . , Hr−1 and G = Hr are pre-
computed.

k[[T ]]<N ← k[[T ]]<r × · · · × k[[T ]]<r ← Q̂× · · · × Q̂ ← Q̂∑r
i=1 SiT

(i−1)r ←[ (S1, . . . , Sr)( ∑r−1
i=0 `j(H

i)T i
)

1≤j≤r
←[ (`1, . . . , `r)

(`, . . . , Gr−1 ◦ `) ← [ `

Let us make a few comments concerning the way to compute each of these maps. For the
first one, we transpose Horner’s rule: by Equation (7.5), this amounts to computing G ◦ `,
then G ◦ (G ◦ `) and so on. The second map is simply given by M 7→ HtrM and the last
map can be computed for free.

Summarizing these considerations, our algorithm for the power projection works as described
in Figure 7.4.2 below; therein we denoted by M [i, j] the (i, j)th entry of a matrix M and by
1Q the unity of the algebra Q.

Power projection

Input: H in Q, ` in Q̂, N ≥ 1 in N.
Output: the series

∑N−1
i=0 `(H i)T i +

O(TN).

r ← b√Nc, s← dN/re
H0 ← 1Q

for p from 1 to r do
Hp ← H ·Hp−1

M1 ← the D × r matrix whose pth column is Hp−1

`0 ← `
for q from 1 to s− 1 do

`q ← Hr ◦ `q−1

M2 ← the s×D matrix whose qth row is `q−1

M ←M2M1

return
∑
1≤i≤s
1≤j≤r

M [i, j]T (i−1)r+j−1 +O(TN)

Figure 7.8: Bivariate power projection

Apart from the computation of a product of two rectangular matrices M1 and M2 of sizes√
N × D and D×√N , this algorithm requires

√
N multiplications in Q and

√
N transposed

152



products. Decomposing the matrices M1 and M2 into D/
√
N square matrices of size

√
N

allows to compute their product M2M1 within O
(
DN (ω−1)/2

)
operations in k. In the next

sections, we give explicit algorithms for the product and the transposed product in Q, which
have complexity O(M(D)). This concludes the proof of Proposition 7.

We stress the fact that, in contrast with Shoup’s algorithm for the power projection in [227],
our algorithm uses fast matrix arithmetic. Interestingly, in [126, Algorithm AP], a related
question, the automorphism evaluation problem, is solved in a similar fashion as the above
algorithm for the power projection problem.

7.4.3 Representing the linear forms

The quotient algebra Q has a canonical monomial basis: since f has degree m and g has
degree n, then

M = {xiyj, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}
forms a monomial basis of Q, where x and y are the images of X and Y in Q.

The linear forms will be given by their coefficients in the dual basis of M, that is, by the
list of their values on the elements in M. Then the cost of a single evaluation is mn = D
operations in the base field.

As a preamble to our algorithm, it is also necessary to compute the trace of all elements in
the basisM.

Let us thus consider i in 0, . . . ,m − 1 and j in 0, . . . , n − 1. By Stickelberger’s theorem,
the trace of xiyj is

∑
α,β α

iβj; then Lemma 7 shows that this trace is the product of the

coefficients of T i in Newton(f) and T j in Newton(g).

The series Newton(f) and Newton(g) can be computed at precision respectively m and n in
O(M(max(m,n))) base field operations. Then by the above reasoning, the value of the trace
form on the canonical basisM can be computed for mn = D additional multiplications.

7.4.4 Complexity of the product in Q

Due to the very specific form of the ideal defining Q, one can design the following algorithm
for the product in Q. It takes as input two elements A,B in Q. To obtain AB in Q, we first
compute their product as plain polynomials in k[X, Y ], then reduce this product modulo
(f(X), g(Y )).

We use again Kronecker’s substitution X ← T, Y ← T 2m−1 (see [137] and [255, Section 8.4])
to reduce the computation of the product of A andB as polynomials in k[X, Y ] to a univariate
multiplication of polynomials of degree at most 2mn−m− n < 2D. This can be done with
complexity M(2D), which is clearly bounded by 4M(D). The resulting product P = AB is
a bivariate polynomial of degree at most 2m − 2 in X and at most 2n − 2 in Y . We next
proceed to reduce it modulo the ideal (f(X), g(Y )); this can be done in two steps.

We first consider P as a polynomial in k[X][Y ] and we reduce all its coefficients Pj(X) modulo
f , using the variant of Sieveking-Kung’s algorithm [228, 138] described in [255, Algorithm

153



9.5]: given Pj, compute Sj = du · rev(2m − 2, Pj)em−1, where u denotes the power series
1/rev(m, f) at precision m; then Pj mod f is given by Pj − rev(m− 2, Sj) · f . Besides the
precomputation of u, whose cost is 3M(m) +O(m) base field operations, see [255, Theorem
9.4], this algorithm uses at most 2n(2M(m)+O(m)) = 4nM(m)+O(D) operations in k. We
obtain a bivariate polynomial of degree at most m−1 in X and at most 2n−2 in Y , which we
now view in k[Y ][X]. The final step consists in reducing its coefficients modulo g(Y ). This
can be done using again Sieveking-Kung’s algorithm, within 2mM(n) + O(D) operations in
k, plus the precomputation of 1/rev(n, g), of cost 3M(n) + O(n). As, by assumption, both
mM(n) and nM(m) are at most M(mn) = M(D), our algorithm for the product in Q uses
O(M(D)) operations in k.

We give the detailed corresponding pseudo-code in Figure 7.9 below. The function Coeff

extracts coefficients of univariate polynomials.

Product in Q

Input: A and B in Q =
k[X, Y ]/(f(X), g(Y )),
m = deg(f), n = deg(g).
Output: the product AB in Q.

C(T )← A(T, T 2m−1) ·B(T, T 2m−1)
u← d1/rev(m, f)em−1

for j from 0 to 2n− 2 do

Pj ←
∑2m−2

i=0 Coeff(C, (2m− 1)j + i)X i

Sj ← du · rev(2m− 2, Pj)em−1

Pj ← Pj − rev(m− 2, Sj) · f
v ← d1/rev(n, g)en−1

for i from 0 to m− 1 do

Qi ←
∑2n−2

j=0 Coeff(Pj, i)Y
j

Ri ← dv · rev(2n− 2, Qi)en−1

Qi ← Qi − rev(n− 2, Ri) · g

return

m−1∑
i=0

Qi(Y )X i

Figure 7.9: Bivariate modular multiplication

Note that in [256, Lemma 2.2], a similar algorithm has been given for the more general case
of multiplication in a quotient algebra of type k[X, Y ]/(f(X), g(X, Y )).

154



7.4.5 Complexity of the transposed product

In this section we explicit an algorithm for the transposed product in Q, whose complexity
is the same as that of the multiplication in Q. As noticed by Shoup [224], Proposition 8
already implies that such an algorithm exists, our contribution is to exhibit a simple, ready
to implement one. We derive it from the algorithm of Section 7.4.4, by using some effective
program transformation techniques described in [35]. Roughly, they work as follows. Given
a program, we decompose it into “elementary” blocks of instructions, then go through from
the bottom to the top and transpose each block. In this process, the ascending for loops
are transformed into descending ones, and the input and the output are swapped. We refer
to [35] for more details.

In our case, two main procedures have to be transposed: the bivariate polynomial multipli-
cation using Kronecker’s substitution on one hand, and the Sieveking-Kung’s algorithm on
the other hand. The latter is explicitly transposed in [35]. Since Kronecker’s substitution is
the identity map in the canonical bases, transposing it is immediate, so it remains to trans-
pose the univariate polynomial product involved in the bivariate multiplication. In [115],
the following operation is defined: given two polynomials, P of degree m and Q of de-
gree at most m + n, their middle product is the polynomial [rev(m,P ) · Q]m+n+1

m , denoted
MidProd(n, P,Q). When viewed as a linear map : k[T ]<m+n+1 → k[T ]<n+1, the middle
product is the transposed map of the classical polynomial multiplication by P , so by Propo-
sition 8 it can be computed for the cost of one multiplication of two polynomials of degree m
and n, up to O(m) operations, see [115, 35] for explicit algorithms. Note that the transposed
Sieveking-Kung’s algorithm described in [35] also uses middle products.

With these specifications in mind, our algorithm for the transposed product in Q goes as in
Figure 7.4.5.

We stress the fact that this program has been constructed by operating some transformation
on the instructions of the program treating the dual question in Section 7.4.4. Its correctness
is guaranteed by the validity of these transformations techniques. However, we conclude this
section by giving the interpretation of what is computed.

The algorithm takes as input a linear form ` in Q̂. Since f(x) = 0 in Q, for any integer j ≥ 0,
the sequence `(xiyj)i≥0 satisfies a linear recurrence with constant coefficients, of characteristic
polynomial f . The problem of extending such a linear recurrent sequence is dual to the
division with remainder by f , see [35, Section 5], so in the first for loop, the algorithm
computes the values `(xiyj), for 0 ≤ j ≤ n − 1 and m ≤ i ≤ 2m − 2. Similarly, after the
pass through the second for loop, all the values taken by ` on the monomials in the set
M2 = {xiyj, 0 ≤ i ≤ 2m− 2, 0 ≤ j ≤ 2n− 2} are computed; these values are encoded in the
polynomial P (X, Y ).

By definition of the middle product, one can finally check that the algorithm outputs the
part supported byM in the product A( 1

X
, 1

Y
) · P (X,Y ), that is, in the product

A
( 1

X
,

1

Y

)
·

∑

xiyj∈M2

`(xiyj)X iY j.

155



Transposed product in Q

Input: A in Q = k[X, Y ]/(f(X), g(Y )), `
in Q̂,
m = deg(f), n = deg(g).
Output: the transposed product A ◦ `.

v ← d1/rev(n, g)en−1

for i from m− 1 downto 0 do

Qi ←
∑n−1

j=0 `(x
iyj)Y j

Ri ← MidProd(n− 2, g, Qi)
Qi ← Qi −XndRi · ven−1

u← d1/rev(m, f)em−1

for j from 2n− 2 downto 0 do

Pj ←
∑m−1

i=0 Coeff(Qi, j)X
i

Sj ← MidProd(m− 2, f, Pj)
Pj ← Pj −XmdSj · uem−1

P (X,Y )←∑2n−2
j=0 Pj(X)Y j

C ← MidProd
(
2mn−m− n,A(T, T 2m−1), P (T, T 2m−1)

)

return
∑

0≤i≤m−1
0≤j≤n−1

Coeff(C, (2m− 1)j + i)X iY j

Figure 7.10: Bivariate transposed product

Since [36, Proposition 1] shows that this part gives the coefficients of A ◦ ` in the dual basis
ofM, this finishes an alternative proof of the correctness of our algorithm.

7.4.6 Experimental results

We have implemented our diamond product algorithm on the basis on the NTL C++ pack-
age [226]; as for the composed sum and product, we implemented the version for large or
zero characteristic, for base fields of the form Z/pZ, with p prime. Our implementation
uses Winograd’s variant of Strassen’s matrix multiplication algorithm [234]; it also uses the
implementation of transposed polynomial multiplication presented in [35].

The data used to test the diamond product are similar to those used in Section 7.3.4: the
input polynomials f(X) and g(Y ) have equal degrees m = n and their coefficients are
chosen randomly; the output has degree D = m2. The polynomial H is a randomly chosen
polynomial of degree less than m in both X and Y . We let m vary from 1 to 425 by steps

156



of 8; the base field is defined by a 32 bit prime. As in Section 7.3.4, the tests were made on
the computers of the MEDICIS resource, using a 2 GB, 2200+ AMD Athlon processor.

Figure 7.11 gives the time of the diamond product computation. Again, the abrupt time
jumps that occur at powers of 2 come from the Fourier transform algorithm. In Figure 7.12,
we separate the times used in respectively the polynomial multiplication and transposed
multiplication step, and the linear algebra step. The polynomial multiplication step is pre-
dominant, but the ratio between this step and the linear algebra one actually reduces as the
degree grows.

0

5000

10000

15000

20000

25000

30000

0 50000 100000 150000 200000

Diamond product

Figure 7.11: Diamond product. (Time in sec. vs output degree)

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000

Polynomial multiplications
Linear algebra

Figure 7.12: Respective times for polynomial multiplications & linear algebra. (Time in sec.
vs output degree)

For completeness, we compare in Figure 7.13 the times for one matrix multiplication, using
classical and Strassen’s multiplication algorithms. Recall that the diamond product algo-
rithm handles matrices of size

√
D, which equals m here, and thus varies from 1 to 425.

It appears that for such problem sizes, using a fast matrix multiplication algorithm does
have a practical significance on the whole diamond product computation time. Indeed we
save a factor of up to 3 on the linear algebra phase, and thus more than 1/4 on the whole
computation time.

157



0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400 450

Strassen
Classical

Figure 7.13: Classical and Strassen’s matrix multiplications. (Time in sec. vs size)

7.5 Applications and Related Questions

To conclude this chapter, we present several situations where composed operations, notably
composed sums and products, are used. We also mention two questions somehow similar to
composed operations, but for which no optimal algorithms are known to us.

7.5.1 Applications

Algebraic numbers

Algebraically, one may represent an algebraic number by its minimal polynomial (to distin-
guish between conjugates, one can use numerical approximates).

If α and β are two algebraic numbers represented by their minimal polynomials f(x) and
g(y), the sum α+β is represented by one of the irreducible factors of the composed sum f⊕g.
Similarly, the product αβ is represented by one of the irreducible factors of the composed
product f ⊗ g. Thus the resultant methods described in [64, 159] can be replaced by our
faster solutions, even if factoring the output remains necessary and possibly costly.

We mention that [124] presents an alternative solution for this question: it consists in fac-
toring f in the algebraic extension Q[y]/(g(y)) beforehand, and then computing a power
projection modulo a system of the form g(y) = 0, h(x, y) = 0. Thus, the factorization in
degree deg(f)deg(g) over Q is avoided, at the cost of a factorization in degree deg(f) in a
number field of degree deg(g).

Algebraic functions

The algorithms described in this chapter also adapt to operations over algebraic functions
and series as it suffices to operate with a base field of the form k(z). As a matter of fact,
formal ideas similar to the ones developed in Section 7.3 prove useful in determining the
generating series of walks over the half-line determined by a fixed finite set of allowed jumps;
see the “Platypus Algorithm” [sic] and the discussion of [13, p. 56–58]. (There the problem

158



is to calculate the minimal polynomial satisfied by a product α1 · · ·αk of k distinct branches
of an algebraic function defined by P (z, α) = 0.)

Dispersion set of polynomials

In many algorithms for symbolic summation (e.g., [2, 109, 3, 193, 191]) one has to compute
the dispersion set of two polynomials, that is, the set of the (integer) distances between their
roots. Classically, this is done by computing the polynomial whose roots are the elements of
the dispersion set. The latter polynomial is again a resultant of the particular form discussed
in Section 7.3 and can be computed fast using our algorithms. We point out that alternative
methods for determining the dispersion set have been recently designed [162, 93]. It would
be interesting to carefully compare the (bit) complexities and the practical performances of
the resulting algorithms.

Irreducible polynomials

Constructing irreducible polynomials of prescribed degree over finite fields is a difficult and
useful task. It is used, for instance, to implement arithmetic in extension fields. The most
efficient algorithm is due to Shoup [222, 224]: it consists in first constructing irreducible
polynomials of prime power degree, then combining them to form an irreducible polynomial,
using composed products.

In [224], the second step is achieved by a minimal polynomial computation, which has com-
plexity O

(
D(ω+1)/2

)
, where D is the degree of the output. Using our algorithm for the

composed product, the cost of this step becomes linear in D, up to logarithmic factors.

Point counting

Designing genus 2 hyperelliptic cryptosystems requires the ability to compute the cardinality
of the Jacobian of genus 2 curves defined over finite fields. When the base field is a prime field
of the form Z/pZ, the most commonly used solution is an extension of Schoof’s algorithm
for elliptic curves [215, 88], which requires to compute torsion subgroups of the Jacobian.

Working out the details, one is led to compute the solutions of systems of the form

f(x1)

g(x1)
=
f(x2)

g(x2)
,

h(x1)

g(x1)
=
h(x2)

g(x2)
,

where f, g, h are univariate polynomials. Taking into account the symmetry in x1, x2, we
wish to compute an eliminating polynomial for x1 +x2. This can be done through a suitable
resultant computation, but the denominators g(x1) and g(x2) create high-degree parasitic
factors in this resultant, which should be computed and removed. The parasites are powers
of the composed sum of g with itself; in the cryptographic-size record presented in [89], they
have degrees several hundreds of thousands. To treat problems of such sizes, the use of our
fast algorithms for composed sums becomes necessary.

159



Linear recurrent sequences with infinitely many zeros

A classical result [24] asserts that a linear recurrent sequence has infinitely many zero terms
if its minimal polynomial f has a unitary pair, that is, if it has two roots whose ratio is a
root of unity.

In [263], Yokoyama, Li and Nemes give algorithms to test this condition, and if so, to find the
order of the multiplicative group generated by the corresponding roots of unity. The most
time-consuming part of their algorithm is the computation of a polynomial whose roots are
the ratios of all pairs of roots of f . This directly reduces to the computation of a composed
product.

Shift of polynomials

In [254], six algorithms for computing shifts of polynomials are proposed and their complexity
is analyzed. A seventh algorithm can be deduced as a straightforward application of our
algorithm for the composed sums, since f ⊕ (T + a) is the shift polynomial of f by a. In
characteristic zero, the complexity of this algorithm is linear (up to logarithmic factors) in the
degree of f , in terms of base field operations. Yet, the convolution method of Aho, Steiglitz
and Ullman [5] is better by a constant factor. In small characteristic, the comparative
analysis has yet to be done.

7.5.2 Related questions and open problems

Resolvents

Resolvents are an important tool in Galois theory, notably for the direct problem of deter-
mining the Galois group of an irreducible polynomial f of degree m. Their factorization
patterns help determine the Galois group of f .

For h ≤ m, an example of such a resolvent is the polynomial f+h of degree N =
(

m
h

)
, whose

roots are the sums αi1 + · · · + αih , with 1 ≤ i1 < · · · < ih ≤ m, where (αi)1≤i≤m are the
roots of f . This differs from the hth iterated composed sum, since repetitions of roots are
not allowed here. Yet, the methods we have presented can help answer some simple cases,
as illustrated in the following example.

Let f(T ) = T 7 − 7T + 3 be the Cartier polynomial introduced in [102], and F = f+3 the
polynomial whose roots are all sums of h = 3 distinct roots of f . To prove that the Galois
group of f is not the symmetric group S7, it is enough to check that F is not irreducible.
The polynomial F has degree 35, so knowing its Newton series to order 35 suffices to recover
it. To do this, we first decompose f⊕3 = f ⊕ f ⊕ f as

f⊕3 =
∏
α

(T − 3α) ·
∏

α 6=β

(
T − (α + 2β)

)3 ·
∏

α 6=β 6=γ 6=α

(
T − (α + β + γ)

)6
.

Then, using the definition F =
∏

α6=β 6=γ 6=α

(
T − (α+ β + γ)

)
and the equalities

∏
α

(T − 3α) = f ⊗ (T − 3) and
∏

α 6=β

(
T − (α+ 2β)

)
=
f ⊕ (

f ⊗ (T − 2)
)

f ⊗ (T − 3)

160



enables to express Newton(F ) as

1

6

(
Newton

(
f⊕3

)
+ 2 Newton

(
f ⊗ (T − 3)

)− 3 Newton
(
f ⊕ (

f ⊗ (T − 2)
)) )

.

Using Lemmas 7 and 8, the last series can be computed from the series Newton(f) and
exp(T ) to order 35. The polynomial F is then recovered from its Newton series, using the
algorithms in Section 7.2. The CPU time used in the whole computation is about 300 times
as fast as a direct resultant computation.

A straightforward generalization of this approach for an arbitrary h is not satisfactory, due
to the combinatorial explosion of the number of terms involved. A faster method is presented
in [53] and has complexity Olog (h2N +N2). It is based on the following recurrence relation,
expressing f+h in terms of f+j, for j < h:

(
f+h

)h
=

h∏
i=1

((
f ⊗ (T − i))⊕ f+(h−i)

)(−1)i+1

.

Using this formula and the fast conversion algorithms presented in Section 7.2 reduces the
complexity to Olog (hN). Nevertheless, the degree of the output isN , so an optimal algorithm
for this question has yet to be found.

Graeffe polynomials

Let f be a monic polynomial of degree m and N be a positive integer. We call Nth Graeffe
polynomial of f the polynomial of degree m whose roots are the Nth powers of the roots
of f .

This polynomial can be obtained using O(M(mN)) operations in k, by computing the com-
posed product of f and XN − 1. Note that the same complexity result is announced in [118,
Section 13.8]. This is nearly optimal with respect to m, but not to N . On the other hand,
the Nth Graeffe polynomial of f is the characteristic polynomial of XN modulo f . Com-
puting XN mod f has complexity O(M(m) log(N)), which is optimal in N , but then the
characteristic polynomial computation has complexity more than linear in m.

In [252], Graeffe polynomials are computed by means of determinants of so-called decimation
matrices; these are structured (Toeplitz, quasi-circulant) N × N matrices with polynomial
entries of degree at most m+N

N
. Using an evaluation-interpolation scheme, the cost of this

method is dominated by the evaluation of m determinants of N×N scalar Toeplitz matrices.
Thus, this method is slower than ours.

Writing P (X) = P0(X
N) +XP1(X

N) + · · ·+XN−1PN−1(X
N), the entries of the decimation

matrix M of P are M [i, j] = Pi−j if i ≥ j and M [i, j] = XPN+i−j if i < j.

M =




P0(X) XPN−1(X) · · · XP1(X)

P1(X) P0(X)
. . . XP2(X)

...
. . . . . .

...
PN−1(X) · · · P1(X) P0(X)


 .

161



Is there a way of reducing the whole cost to O(M(m) log(N))? If N is a power of 2, this can
be achieved using binary powering, but the general case remains open.

162



Chapter 8

Fast Algorithms for Zero-Dimensional
Polynomial Systems using Duality

Many questions concerning a zero-dimensional polynomial system can be reduced to linear
algebra operations in the quotient algebra A = k[X1, . . . , Xn]/I, where I is the ideal gen-
erated by the input system. Assuming that the multiplicative structure of the algebra A
is (partly) known, we address the question of speeding up the linear algebra phase for the
computation of minimal polynomials and rational parametrizations in A.

We present new formulæ for the rational parametrizations, extending those of Rouillier,
and algorithms extending ideas introduced by Shoup in the univariate case. Our approach is
based on the A-module structure of the dual space Â. An important feature of our algorithms
is that we do not require Â to be free and of rank 1.

The complexity of our algorithms for computing the minimal polynomial and the rational
parametrizations are O(2nD5/2) and O(n2nD5/2) respectively, where D is the dimension of A.
For fixed n, this is better than algorithms based on linear algebra except when the complexity
of the available matrix product has exponent less than 5/2.

This chapter is joint work with B. Salvy and É. Schost [36].

Contents

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 On the Dual of the Quotient Algebra . . . . . . . . . . . . . . . 170

8.3 Computing Minimal Polynomials and Rational Parametrizations173

8.3.1 Computing a minimal polynomial . . . . . . . . . . . . . . . . . . 173

8.3.2 Computing parametrizations . . . . . . . . . . . . . . . . . . . . . 175

8.3.3 Complexity estimates for the first approach . . . . . . . . . . . . . 177

8.4 Speeding up the Power Projection . . . . . . . . . . . . . . . . . 178

8.4.1 Baby step / giant step techniques . . . . . . . . . . . . . . . . . . . 178

8.4.2 Complexity estimates for the second approach . . . . . . . . . . . . 180

163



8.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.6 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.6.1 Minimal polynomials of generic elements and local factors . . . . . 185

8.6.2 High order derivations, dual spaces and generating series . . . . . . 189

8.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

164



8.1 Introduction

Many questions concerning zero-dimensional polynomial systems can be reduced to linear
algebra operations in some quotient algebra. Assuming that the multiplicative structure of
this algebra is (partly) known, we address the question of speeding up the linear algebra
phase for two questions.

Specifically, let k be a field, let k be its algebraic closure and let I be a zero-dimensional
ideal of k[X1, . . . , Xn]. Let V(I) ⊂ k

n
be the zero-set of the polynomial system defined by

I. Given an element u of A = k[X1, . . . , Xn]/I, we consider the following problems:

1. compute its minimal polynomial mu, that is, the (unique) monic univariate polynomial
of minimal degree such that mu(u) = 0 in A;

2. if u separates the points of V(I) (see definition below), compute parametrizations
expressing the coordinates of these points in terms of u.

We suppose that k is a perfect field. This discards many pathologies such as algebraic field
extensions of k without a primitive element. In most applications we have in mind, k is finite
or of characteristic zero, so this assumption is satisfied.

The computation of minimal polynomials of elements in such quotient algebras is of particular
interest when A is a field or a product of fields. This question appears as a basic subroutine for
the computation of triangular sets [145], for the study of the intermediate fields between k and
A [146], in Galois theory [9], . . . For instance, starting from a description of a quotient algebra
by means of a Gröbner basis, Lazard’s algorithm Triangular [145] produces a “triangular
description” of the input ideal through repeated minimal polynomial computations.

In the noncommutative setting of the effective theory of D-modules, an important role is
played by the b-function of a holonomic system of linear partial differential equations. Al-
gorithm 5.1.5 in [205] reduces the computation of the b-function to that of the minimal
polynomial of an element in a quotient algebra of the type we consider here.

Another of our initial motivations is the study of algebraic curves and cryptosystems built
upon them. Factorization patterns of the minimal polynomials of well-chosen elements help
determine the cardinality of the Jacobian of hyperelliptic curves over finite fields, see [55, 86,
216, 90]. In such situations, the element u will typically not be primitive for k → A. The
polynomial mu has degree less than the dimension of A, and of course we want to make use
of this fact.

Our second interest is the determination of a parametrization of the coordinates of the
solutions of I. To this effect, we say that u ∈ A separates the points of V(I), or is a
separating element for I if for all points P 6= P ′ in V(I), u takes distinct values on P and P ′

(see [6, 204]). Since k is a perfect field, this is the case if and only if u is a primitive element
of the reduced algebra Ared = k[X1, . . . , Xn]/

√I, where
√I is the radical of I, see [16]. In

this situation, the coordinates of the points in V(I) can be expressed as rational functions of
u. We call rational parametrization of the coordinates of the points in the zero-set V(I) the
data of a separating element u, its minimal polynomial mu, and rational functions f1, . . . , fn

such that Xi = fi(u) holds in Ared.

165



Such representations, which go back to Kronecker [137], are well suited to many purposes
such as effective computation in the reduced algebra Ared or counting and isolation of
real or complex roots. Introduced in Computer algebra by Chistov and Grigoriev [56],
then constantly revisited [135, 48, 94, 141, 99, 6], this kind representation bears the name
Geometric Resolution in [101, 100, 103, 149]. Using the characteristic polynomial of u instead
of its minimal polynomial, this representation is called a Rational Univariate Representation
of the roots of I, using the denomination introduced in [204].

In this chapter, we present some structure theorems related to the two questions mentioned
above, then show how algorithmic ideas introduced in the univariate case by Shoup [224, 227]
fit into this context. Our algorithms require precomputations, either of some multiplication
matrices in A, or of the whole multiplication table. These objects may be obtained from the
computation of a Gröbner basis [45, 79, 77]. We do not address the difficult question of the
complexity of these precomputations.

Computing a minimal polynomial.

Let u be an element in A and δ a bound on the degree of its minimal polynomial mu. A
natural algorithm for the computation of mu consists in expressing the first δ powers of
u on a basis of the k vector space A and then looking for a linear dependency between
them. This last step has complexity O(Dω), where ω is the exponent of the complexity of
matrix multiplication, and D is the dimension of A over k [47]. Thus ω = 3 for the naive
product, and the best result known to this date is ω < 2.376 [69]. However, the fastest
widely available implementation we are aware of is based on Strassen’s algorithm [234] of
exponent log2(7) ' 2.808, in the computer algebra system Magma [32].

A first improvement consists in considering the values taken by a linear form ` on the powers
of u. The sequence (`(ui))i≥0 admits a minimal linear recurrence relation, which coincides,
for a random choice of `, with the minimal polynomial of u, and which can be computed
efficiently. This suggests the following algorithm: compute the powers of u, evaluate ` on
them, and recover the minimal polynomial. This requires the ability to multiply by u. The
input of this first algorithm will thus be the multiplication matrix of u in A.

In the context of polynomial factorization over finite fields, Shoup showed in [224, 227] how to
speed up these computations in the univariate case when A = k[X]/(f). His idea is to adapt
Paterson and Stockmeyer’s fast evaluation algorithm [190] using an A-module structure on

the dual space Â. The clever use of this structure avoids the computation of all the powers
of the element u.

We demonstrate here that this idea extends to multivariate situations, and yields another
method for computing a minimal polynomial. The main difficulty lies in obtaining an efficient
implementation of the operations in Â. For the moment, our solution requires a stronger
input than above: the whole multiplication table of A. This input is also used for instance
in the algorithms of [6, 204].

These results are presented in a precise fashion in the following theorem. The algorithms
require an a priori bound δ on the degree of the minimal polynomial we want to compute.

166



A trivial bound is the dimension D of A. Problem-specific bounds are often available, as for
instance in [55, 86, 90, 216].

Theorem 9 Let D be the dimension of A as a k-vector space, and let u be in A, with
minimal polynomial mu. Suppose that δ is an a priori bound on the degree of mu.

1. If the matrix of multiplication by u is known, then mu can be computed by a probabilistic
algorithm in O(δD2) operations in k.

2. If the multiplication table of A is known, then mu can be computed by a probabilistic
algorithm in O(2nδ1/2D2) operations in k.

In both cases, the algorithm chooses D values in k. If these values are chosen in a finite
subset Γ of k, all choices except at most δ|Γ|D−1 assure success.

For δ ≈ D, the complexity is O(D3) in the first case and O(2nD5/2) in the second case. If
the number of variables n is fixed, the gain in complexity is of order

√
D, typical of the baby

step/giant step techniques which underlie the second approach.

The probabilistic aspect comes from the choice of a linear form over A. For unlucky choices,
the output of our algorithms is a strict divisor of the actual minimal polynomial. If the
degree of the output coincides with the upper bound δ, then this output is necessarily
correct. Otherwise, we can either estimate the probability of an unlucky choice, or evaluate
the candidate minimal polynomial on u.

Computing parametrizations.

In the discussion leading to the proof of Theorem 9, we introduce some generating series,
depending on both the element u and a linear form over A. If u is separating, we show that
such series allow to compute rational parametrizations of the points of V(I). This yields our
formulæ in Theorem 11, that extend those of Rouillier [204].

Our formulæ are satisfied if I is a radical ideal. In the general case, they remain valid
under an additional hypothesis, given in Theorem 10 below, and explained in more detail in
§8.3.2. In short, the minimal polynomial of u must have the maximal possible degree, and
the characteristic of the base field must be zero or large enough.

To use these formulæ in practice, the computational task is quite similar to that required
to compute a minimal polynomial: evaluating some linear forms on the powers of u. So in
a similar fashion, we propose two methods: the direct approach, which requires only multi-
plication matrices, or its refinement based on Shoup’s idea, using the whole multiplication
table.

The first approach has the same complexity as the algorithm of [204], at most O(D3), but
our input is weaker. The second approach takes the same input as [204]. Its complexity is
at most O(n2nD5/2). This becomes better when the number n of variables is kept constant,
whereas the dimension of the quotient algebra becomes large. As above, the gain is then of
order

√
D.

167



Theorem 10 Let D be the dimension of A = k[X1, . . . , Xn]/I as a k-vector space, and let
u be a separating element in A, with minimal polynomial mu. Assume that

• the characteristic of k is zero or greater than min{s | √I s ⊂ I};
• the degree of the minimal polynomial of u is the degree of the minimal polynomial of a

generic element in A.

If δ is an a priori bound on the degree of mu, then the following holds:

1. If the matrices of multiplication by u and x1, . . . , xn are known, then a rational
parametrization of the zero-set V(I) can be computed in O(δD2 + nD2) operations
in k.

2. If the multiplication table of A is known, then a parametrization can be computed in
O(n2nδ1/2D2) operations in k.

The algorithms are probabilistic. In both cases, the algorithm chooses D values in k. If these
values are chosen in a finite subset Γ of k, all choices except at most δ|Γ|D−1 assure success.

The probabilistic aspect lies, as in Theorem 9, in the choice of a linear form over A. If I is
a radical ideal, it is straightforward to check the correctness of the output, see Section 8.3.1.
Otherwise, the last assertion in the theorem makes it possible to estimate the probability of
choosing an unlucky linear form.

The algorithms mentioned in Theorems 9 and 10 are easily implemented in a computer
algebra system such as Magma [32]. Our experiments show their good practical behavior
(see Section 8.5).

Related results.

The A-module Â is called the canonical module [207, 139, 76], and has been used in a variety

of applications. In particular, the case when the dual Â is a free A-module of rank 1 has led
to new geometric and arithmetic forms of the Nullstellensatz [101, 100], a new proof of the
Eisenbud-Levine formula [15], or fast algorithms for isolating roots of complete intersection
multivariate systems [173, 174, 175, 176].

One of our main contributions is to propose algorithms using this module structure whenever
the operations in A and Â are effective, even if the dual is not free and of rank 1.

We have focused on the case when the structure of the algebra A is explicitly given. Our
ideas also apply if I is given by n generators without zeros at infinity. Indeed, in this
context, the basis of the results in [174, 175, 176] are fast multiplication algorithms in A.
It might be possible to extend these results so as to obtain similar complexity estimates for
the operations in Â, which would lead to improved complexity algorithms in this case. More
generally, any efficient algorithm for the operations in A and Â can be used in conjunction
with the ideas presented here.

168



In a different context, the geometric resolution algorithm of [103] solves polynomial systems
of dimension zero without multiplicities. Its complexity is quadratic in a geometric quantity
attached to the input system, and linear in its complexity of evaluation, that is, the number
of arithmetic operations necessary to evaluate the system. Recently, this algorithm has been
extended so as to handle arbitrary systems, see [149, 150, 151]. An important issue is to
extend our algorithmic ideas to this context.

Finally, let us mention that F. Rouillier informed us of an improvement of the second result
given in Theorem 10, where a factor of order n is saved.

Outline of the chapter.

In Section 8.2, we define the module structure on the dual of A, and some useful generating
series. In Section 8.3, we show how both a minimal polynomial and some parametrizations
can be read out from such series. A direct approach to compute these series yields at once the
first assertions in Theorems 9 and 10. In Section 8.4, we show how to improve the crucial step:
the evaluation of a linear form on the successive powers of an element in A. This will prove
the second parts of Theorems 9 and 10. In Section 8.5 we present the experimental behavior
of our algorithms. The last section gives the proof of a key proposition in Section 8.3.

Notation.

We use the following notation:

• The radical of an ideal I of k[X1, . . . , Xn] is denoted by
√I.

• The algebra A is the quotient k[X1, . . . , Xn]/I; the images of the variables X1, . . . , Xn

in A are denoted by x1, . . . , xn. We denote by D the dimension of the k-vector space
A, by Ω = {ωi}i=1,...,D a monomial basis of A and by E ⊂ Nn the set of exponents of
the elements in Ω.

• Given α = (α1, . . . , αn) in Nn, we write Xα for the monomial Xα1
1 · · ·Xαn

n , and xα for
the product xα1

1 · · · xαn
n .

• The minimal polynomial of any element t in a finite-dimensional algebra is denoted by
mt.

• For two subsets E ⊂ Nn and F ⊂ Nn, we let E + F be their Minkowski sum, that is,
the set {e+ f, e ∈ E, f ∈ F}. We use the abbreviation 2E for E + E ⊂ Nn.

• Â designates the dual space Homk(A, k) of the k-linear forms on A. The set Ω̂ =
{ω̂i}i=1,...,D represents the dual basis of Ω.

• For a polynomial P ∈ k[U ], we write rec(P ) for its reciprocal Udeg(P )P ( 1
U
).

169



8.2 On the Dual of the Quotient Algebra

Most results in this chapter involve linear forms defined over the algebra A. We frequently
use the following operation, which makes the dual Â a A-module:

◦ : A× Â→ Â

(u, `) 7→ u ◦ ` : v 7→ `(vu).

This section is devoted to basic results related to this operation. As mentioned in the
introduction, the case when Â is a free A-module of rank 1 is of particular interest, but this
assumption is not required here.

The following lemma (see also [227, 175]) justifies the terminology transposed product for the

A-module operation on Â.

Lemma 12 Let u be in A. The matrix of the linear operator

Â→ Â

` 7→ u ◦ `

in the dual basis Ω̂ is the transposed of the matrix of multiplication by u in the basis Ω.

Proof. Let ω be in Ω. The value (u ◦ `)(ω) is `(ωu). It is given by the product between the
row-vector of the coefficients of ωu on the basis Ω and the vector representing ` on the dual
basis. This implies that the vector representing u ◦ ` is the product Mt

u`, where Mt
u is the

transposed of the matrix Mu representing the multiplication by u in the basis Ω. ¤
This result has a strong consequence in terms of complexity, based on the transposition
principle, or Tellegen’s principle. This principle is actually a theorem about arithmetic
circuits, which originates from linear circuit design and analysis [239, 29, 192, 8] and was
introduced in computer algebra in [80, 81, 119, 128]. The proof can be found in [47, Theorem
13.20], see also [124, Problem 6] for more comments.

Transposition principle. Let M be a n × n matrix, with no zero row nor column, and
suppose that the product v 7→Mv can be computed by an arithmetic circuit of size C. Then
there exists an arithmetic circuit of size C that computes the transposed product w 7→Mtw.

In most applications, the multiplication matrix Mu is not known, and its determination
might be quite costly. Nevertheless, the transposition principle implies that, whatever the
algorithm used for multiplication, there exists an algorithm for transposed multiplication
with the same cost, as long as arithmetic circuits are used.

Yet, the algorithms used for (fast) multiplication may not be given by arithmetic circuits.
Moreover, even if the proof of the transposition principle is constructive, it is far from obvious
how to put it to practice in a computer algebra environment. Therefore, particular attention
must be given to design explicit versions of transposed algorithms. In [35], the transposes
of some basic algorithms for univariate polynomials are described. In what follows, we will
give algorithms for the transposed product in the algebra A.

170



Generating series.

We associate to every element ` of Â a multivariate formal power series, denoted S(`). For
a subset F ⊂ Nn we also define a truncated series S(`, F ). These series are given by:

S(`) :=
∑

α∈Nn

`(xα)Xα, S(`, F ) :=
∑
α∈F

`(xα)Xα.

Since E is the set of exponents of the monomial basis Ω, a linear form ` in Â is uniquely
determined by S(`, E). Given u in A and ` in Â, we also introduce the univariate Laurent
series

R(u, `) :=
∑
i≥0

`(ui)

U i+1
.

The series S(`) and particularly R(u, `) are used repeatedly in this chapter. Similar rep-
resentations appear in [227, 174, 175], and in [204] for specific linear forms. The following
proposition gathers the results we will need when using these generating series. The first
point is folklore, similar arguments can be found in [174, 175] and [227]. Let us also mention
that results very similar to the second point below can be found in [158], which describes
the use of duality-based techniques in coding theory.

Proposition 9 Let ` be in Â.

• Let u =
∑

α∈E uαx
α be in A, let F be a subset of Nn and let T be the Laurent series

T =
∑

α∈Zn

tαX
α :=

(∑
α∈E

uα

Xα

)
· S(`, E + F ).

Then the series S(u ◦ `, F ) is
∑

α∈F tαX
α.

• For i in 1, . . . , n, let mi ∈ k[Xi] be the minimal polynomial of xi, and let δi be its
degree. Then there exists a polynomial H` ∈ k[X1, . . . , Xn] of partial degree in each
variable Xi less than δi, such that the following holds:

S(`) =
H`

rec(m1) · · · rec(mn)
.

• Let u be in A, with minimal polynomial mu ∈ k[U ] of degree δu. Then there exists a
polynomial Gu,` ∈ k[U ] of degree less than δu such that the following holds:

R(u, `) =
Gu,`

mu

.

Moreover, Gu,` is the quotient of mu

δu−1∑
i=0

`(ui)U δu−i−1 by U δu.

171



• There exists a nonzero polynomial ru ∈ k[L1, . . . , LD] of total degree at most δu, such
that Gu,` is coprime to mu if and only if ru(`1, . . . , `D) 6= 0, where (`1, . . . , `D) are the

coordinates of ` on the dual basis Ω̂.

Proof. For α′ in F , the value (u ◦ `)(xα′) is `(uxα′) =
∑

α∈E uα`(x
α+α′). The series T can be

written

T =

(∑
α∈E

uαX
−α

) ( ∑

β∈E+F

`(xβ)Xβ

)
=

∑

α′∈E+F−E

(∑
α∈E

uα`(x
α+α′)

)
Xα′ .

The coefficient of Xα′ in T coincides with `(uxα′), which proves the first point.

We turn to the second point. Taking F = Nn shows that for any u in A, the series S(u ◦ `)
is the restriction of u(1/X1, . . . , 1/Xn)S(`) to the set of monomials with exponent in Nn.
Let i be in 1, . . . , n. Since mi(Xi) is zero in A, the series S(mi(xi) ◦ `) is zero. Consequently,
all the monomials in mi(1/Xi)S(`) have degree in Xi between −δi and −1. This means
that all monomials in rec(mi)(Xi)S(`) = Xδi

i mi(1/Xi)S(`) have degree in Xi between 0 and
δi − 1. Taking all i into account shows that the series rec(m1)(X1) · · · rec(mn)(Xn)S(`) is a
polynomial, whose partial degree in each variable Xi is less than δi.

Next, we prove the third part. The linear form ` induces a linear form on the algebra
k[U ]/mu. The previous point shows that rec(mu)

∑
i≥0 `(u

i)U i is a polynomial of de-

gree less than δu. Evaluating it at 1/U and multiplying the result by U δu−1 shows that
muR(u, `) = mu

∑
i≥0 `(u

i)/U i+1 is also a polynomial of degree less than δu, denoted by
Gu,`. For degree reasons, only a finite number of terms in R(u, `) contribute at the product
muR(u, `) defining Gu,`. More exactly, the polynomial Gu,` equals the polynomial part of the

series mu

∑δu−1
i=0 `(ui)/U i+1 containing only nonnegative powers of U ; on the other hand, this

polynomial part is obviously the quotient of the division of mu

∑δu−1
i=0 `(ui)U δu−i−1 by U δu .

Let us finally prove the last point. For ωi in Ω, we let Gu,i ∈ k[U ] be muR(u, ω̂i). If
`1, . . . , `D are the coordinates of ` on the dual basis, then Gu,` is

∑
1≤i≤D `iGu,i. Let now

ru ∈ k[L1, . . . , LD] be the resultant of
∑

1≤i≤D LiGu,i and mu with respect to U . Then,
using [255, Lemma 6.25], we see thatGu,` andmu are coprime if and only if ru(`1, . . . , `D) 6= 0.

For any polynomial G of degree less than δu, we now prove that there exists ` ∈ Â such that
G = Gu,`. This suffices to show that ru is a nonzero polynomial. Since ru has total degree
at most δu, this will prove the proposition.

The system muR(u, `) = G is linear in (`(1), . . . , `(uδu−1)), of triangular form with diagonal
entries equal to 1 as mu is monic. Since (1, . . . , uδu−1) are linearly independent, it is always
possible to find ` which takes prescribed values on these powers of u. ¤
This proposition shows that for a generic choice of `, the irreducible form of the rational
series R(u, `) has the minimal polynomial mu for denominator. This will be used repeatedly
in the rest of this chapter.

172



An algorithm for the transposed product.

The first point in the previous proposition suggests the following algorithm for the transposed
product: given ` and u, first compute S(`, 2E), taking F = E; then perform a power series
multiplication, and read off the coefficients of S(u ◦ `, E).

The main difficulty lies in determining the truncated series S(`, 2E) from its first terms
S(`, E). The second point of Proposition 9 shows that the series S(`) is rational. When
there is only one variable, the quotient A is given as k[X]/(f), so the denominator of S(`) is
known a priori, as it is the reciprocal polynomial of f . It is then straightforward to recover
the numerator from the first terms S(`, E), which in turns gives the next terms of S(`, 2E)
by Taylor expansion. This is the basis of Shoup’s algorithm for the univariate transposed
product [227].

In the general case, the denominator is not known in advance. At the moment, we are unable
to make an algorithmic use of the rationality of the series S(`) with good complexity, or even
of the stronger form given in the second part of Proposition 9.

8.3 Computing Minimal Polynomials and Rational

Parametrizations

We now describe our first algorithms solving the questions mentioned in the introduction:
computing the minimal polynomial of an element u in A, and the corresponding parametriza-
tion, if u is separating. These algorithms are derived from the study of the generating series
introduced in the previous section, and yield the first parts of Theorems 9 and 10.

Similar considerations to those presented in Subsection 8.3.1 can be found in the literature,
for instance in [258, 224, 227, 123]. The main new result is Theorem 11 in Subsection 8.3.2:
it provides a generalization of Rouillier’s formulæ [204], which does not require the use of
a specific linear form to compute parametrizations. In [204], this specific form, the trace,
is computed from the multiplication table of A. Here, we avoid this precomputation, as
we show that almost any form can be used. Consequently, the algorithms presented in
Subsection 8.3.3 only require multiplication matrices as input.

All these algorithms are based on the same basic subroutine, the evaluation of a linear form on
the successive powers of an element in A. Thus their complexity is fundamentally dependent
on the cost of this particular task; reducing this cost will be the object of Section 8.4.

8.3.1 Computing a minimal polynomial

Our method to compute a minimal polynomial in A is based on the following property: if `
is an arbitrary linear form on A, then the scalar sequence (`(ui))i≥0 is linearly recurrent, that
is, it can be defined by a linear recurrence relation with constant coefficients. The relation
of minimal degree is called its minimal polynomial ; if ` is a “generic” linear form, then this
polynomial equals the the minimal polynomial of u.

173



This principle has been used in a variety of settings. It underlies Wiedemann’s algorithm [258]
for solving sparse — or rather, easy-to-evaluate — linear systems, and is the basis of Li’s
and Shoup’s algorithms [240, 224, 227] to compute minimal polynomials in the univariate
case A = k[X]/(f).

Given an upper bound δ on its degree, the minimal polynomial of a sequence of scalars L
satisfying a linear recurrence can be computed by Berlekamp-Massey’s algorithm, see [20,
165] and [255, Section 12.3]. This algorithm requires the first 2δ values of L, and amounts
to the computation of a (δ, δ) Padé approximant for the generating series

∑
i≥0 LiU

i. This
is denoted by MinimalPolynomial(L) in the algorithm below.

Computing the minimal polynomial

Input: u in A, ` in Â, a bound δ on the degree of mu.
Output: a polynomial mu,` in k[U ].

L ← [`(1), `(u), . . . , `(u2δ−1)];
mu,` ← MinimalPolynomial(L);
return(mu,`);

The next proposition encapsulates the cost and correctness analysis of this algorithm. Similar
considerations for Wiedemann’s algorithm can be found in [123].

Proposition 10 Let u be in A and let mu be its minimal polynomial. If δ is a bound on
the degree of mu, then besides the evaluation of the sequence [`(1), `(u), . . . , `(u2δ−1)], the
previous algorithm requires O(δ2) operations in k. Its output is the polynomial mu if and
only if the polynomial Gu,` from Proposition 12 and mu are coprime. Otherwise, the output
mu,` is a strict divisor of mu.

Proof. Using a naive version of the extended Euclidean algorithm, the running time of
Berlekamp-Massey’s algorithm is quadratic in δ. This proves the complexity estimate.

Let mu,` be the (monic) minimal polynomial of the sequence (`(ui))i≥0. The polynomial mu

cancels this sequence, since
∑

i aiu
i = 0 implies that the equality

∑
i ai`(u

i+j) = 0 holds
for all j. Consequently, mu,` divides mu. Let us show that they coincide if and only if the
polynomials Gu,` and mu are coprime, where Gu,` is defined in Proposition 12:

R(u, `) :=
∑
i≥0

`(ui)

U i+1
=
Gu,`

mu

. (8.1)

To this effect, we recall the following result from [110, Lemma 1]: the generating series
R(u, `) has the rational form

R(u, `) =
Hu,`

mu,`

, (8.2)

the polynomials Hu,` and mu,` being coprime.

174



The two rational expressions of R(u, `) in equations (8.1) and (8.2) show that if mu,` and
mu coincide, then Gu,` and Hu,` coincide, so Gu,` and mu are coprime. For the converse
direction, we first notice that, by equations (8.1) and (8.2), mu divides mu,`Gu,`. Therefore,
if Gu,` and mu are coprime, then mu divides mu,`. Since mu,` always divides mu, it follows
that mu,` and mu coincide. This finishes the proof. ¤

Using a fast extended Euclidean algorithm [255, Section 11.1], the complexity of Berlekamp-
Massey’s algorithm drops to O(δ log2 δ log log δ). The polynomial Gu,` can be computed as a
byproduct without affecting the complexity. In any case, the limiting factor in this algorithm
is the computation of the sequence [`(1), `(u), . . . , `(u2δ−1)].

If the degree of the output coincides with the known upper bound for degmu, the output is
necessarily correct. A trivial upper bound is the dimension of A: if the degree of the output
reaches this upper bound, then u is primitive for k → A, and the result of the algorithm
is correct. Otherwise, Proposition 10 states that the output mu,` is correct if and only if
mu,`(u) is zero.

8.3.2 Computing parametrizations

If u is a separating element for I, we want to compute parametrizations giving the values
of the variables Xj on V(I) as functions of u, that is, rational functions fj(u) such that
the relations xj = fj(u) hold in the reduced algebra Ared = k[X1, . . . , Xn]/

√I. Following
the ideas of Kronecker [137] and Macaulay [160], we propose a method to compute rational
parametrizations of the form

xj =
gj(u)

g(u)
.

Our method requires the following assumptions:

1. the characteristic of k is zero or larger than min{s,√I s ⊂ I};
2. the degree of the minimal polynomial mu of u is the degree of the minimal polynomial

of a generic element in A.

A generic element in A is defined as
∑D

i=1 Tiωi in A⊗k k(T1, . . . , TD). This element depends
on the choice of the basis Ω, but the degree of its minimal polynomial over k(T1, . . . , TD)
depends only on A, as a standard linear algebra fact [140, Section 62] ensures that two
similar matrices have the same minimal polynomial. As an illustration, consider the case
A = Q[X1, X2]/(X

2
1 , X

2
2 ). The minimal polynomial of a generic element has degree 3, but

x1, even though separating, has U2 for minimal polynomial. The possible defects can be
measured using the nil-indices of the local factors of A, see Section 8.6.

If I is a radical ideal, assumption 1 is obviously satisfied. Since k is perfect, a separating
element is also primitive, so assumption 2 is also satisfied in this case.

Taking the above assumptions for granted, our main result is the following theorem:

175



Theorem 11 Let u in A be a separating element of I, such that the above assumptions are
satisfied. Let v be in A, ` in Â, and let Gu,` and Gu,v◦` be the polynomials in k[U ] of degree
less than that of mu such that

R(u, `) =
Gu,`

mu

, R(u, v ◦ `) =
Gu,v◦`
mu

.

Then if mu and Gu,` are coprime, the following equality holds:

v =
Gu,v◦`(u)
Gu,`(u)

in Ared.

This proposition requires a few comments:

• If the condition on the degree of mu is not satisfied, then the conclusion may become
false for a generic linear form. Consider again A = Q[X1, X2]/(X

2
1 , X

2
2 ) with basis

(1, x1, x2, x1x2), u = x1, v = x2, and let `1, `x1 , `x2 , `x1x2 be the coordinates of ` on the
dual basis. A short calculation shows that

mu = U2, R(x1, `) =
`1U + `x1

U2
, R(x1, x2 ◦ `) =

`x2U + `x1x2

U2
;

so our formulæ would wrongly give the value `x1x2/`x2 for x2 instead of 0.

• In [204, Theorem 3.1], a similar result is proved for a particular linear form, the trace,
which associates to any element v in A the trace of the multiplication map by v. For
this particular form, the hypothesis on the degree of mu is not required.

• If I is a radical ideal, a direct proof of Theorem 11 is the following: since k is a perfect
field, the trace form generates Â as a A-module [15, 206]. The conclusion follows
from [204, Theorem 3.1].

We defer the somewhat lengthy proof of Theorem 11 to the last section of the chapter and
we directly present our algorithm for computing rational parametrizations. It takes as input
a linear form ` on A, an element u in A, its minimal polynomial mu of degree δu, as well as
the polynomial Gu,` defined in Proposition 9.

Computing the parametrizations

Input: u in A, ` in Â, mu and Gu,` in k[U ].
Output: a rational parametrization of the coordinates.

for j in 1, . . . , n do

c(j) ← [(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)];

Cj ←
∑δu−1

i=0 c
(j)
i U δu−i−1;

Gu,xj◦` ← mu · Cj div U δu ;

return [
Gu,x1◦`

Gu,`
, . . . ,

Gu,xn◦`

Gu,`
];

176



Proposition 11 Under the hypotheses of Theorem 11, the output of the previous algorithm
is a rational parametrization of the points in V(I). Besides the evaluation of the sequences

[(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)], j ∈ {1, . . . , n},

this algorithm requires at most O(nD2) additional operations in k.

Proof. We begin by recalling that the polynomial Gu,xj◦` can be obtained as the quotient

of mu

∑δu−1
i=0 (xj ◦ `)(ui)U δu−i−1 by U δu , where δu is the degree of mu. We proved this fact

in the third part of Proposition 9. The correctness of the above algorithm then follows
from the formulæ in Theorem 11, applied to v = xj, for j = 1, . . . , n. The cost analysis is
straightforward, since each polynomial multiplication has complexity at most quadratic in
the degree δu ≤ D. ¤
We point out that fast algorithms for polynomial multiplication would yield a linear complex-
ity in D, up to logarithmic factors, but the bottleneck of this algorithm is the computation
of the sequences [(xj ◦`)(1), (xj ◦`)(u), . . . , (xj ◦`)(uδu−1)]. We stress the fact that the proba-
bilistic aspect of the output relies only on the correct computation of the minimal polynomial
of u; see the previous subsection for more comments on this point.

8.3.3 Complexity estimates for the first approach

To put the algorithms of the previous subsections to practice, we must specify the operations
in A. In this subsection, we assume that the matrices of multiplication by u and x1, . . . , xn

are known and prove the first parts of Theorems 9 and 10.

The algorithm for a minimal polynomial is given in Subsection 8.3.1. The main task lies in
computing the values

[`(1), `(u), . . . , `(u2δ−1)],

δ being an a priori bound on the degree of mu and ` a linear form on A. To compute
the parametrizations corresponding to a separating element u, we first compute its minimal
polynomial as above, then evaluate

[(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)], j = 1, . . . , n,

where δu ≤ δ is the degree of the minimal polynomial of u.

The other necessary operations and their complexity are given in Propositions 10 and 11,
so we just need to detail the cost of the successive evaluations of respectively ` and x1 ◦
`, . . . , xn ◦ `. For the moment, we follow a direct approach. All powers of u are computed,
then the linear forms are evaluated on all of them. A more refined method is introduced in
the next section.

• Using its multiplication matrix, one multiplication by u has cost O(D2) operations
in k. Consequently, all the requested powers of u can be computed within O(δD2)
operations in k.

177



• Given the linear form `, each linear form xj ◦ ` can be computed using Lemma 12 since
the matrix of multiplication by xj is known. The total cost is thus within O(nD2)
operations in k.

• The evaluation of a single linear form takes O(D) operations in k. Evaluating all the
linear forms on the powers of u requires respectively O(δD) or O(nδuD) operations in
k.

This gives respectivelyO(δD2) operations in k for the minimal polynomial, andO(δD2+nD2)
for the parametrizations. The additional costs are given in Propositions 10 and 11. They
fit into the complexity bounds O(δD2) and O(δD2 + nD2). This concludes the complexity
analysis.

Propositions 10 and 11 show that the output is correct whenever the polynomials Gu,` and
mu are coprime. The last point in Proposition 9 shows that this is the case if and only if
the coefficients of ` on the dual basis cancel a nonzero polynomial ru of degree at most δu.
Zippel-Schwartz’s lemma (see [266, 218] and [255, Lemma 6.44]) concludes the probability
analysis.

8.4 Speeding up the Power Projection

The algorithms presented in the previous section share the same basic subroutine: the eval-
uation of a linear form on the successive powers of an element in A. Their complexity
fundamentally relies on the cost of this particular operation, called power projection.

Power Projection Problem. Let u be in A, ` in Â and N > 0. Compute the sequence
[`(1), `(u), . . . , `(uN−1)].

The naive solution to this question used in the previous section requires to evaluate all the
powers of u. In this section, we present a result given by Shoup in the univariate case [224,
227], which shows how to avoid the computations of all those powers, by a “transposition” of
Paterson and Stockmeyer’s fast evaluation algorithm [190]. This brings a speed-up of order√
N over the naive version.

This approach requires other operations than mere multiplications by u or xi. Thus, we first
state the complexity results in terms of the cost of product and transposed product in A,
denoted respectively by M(A) and Mt(A). Next, we put these ideas to practice. For the
time being, our effective version of the transposed product requires the whole multiplication
table of the algebra A.

8.4.1 Baby step / giant step techniques

It is noted in [224, 227, 124] that the power projection problem itself is a transposition of
the question of polynomial evaluation in A:

Polynomial Evaluation Problem. Let p be a polynomial in k[T ] of degree N − 1, and u
in A. Compute p(u).

178



For both questions, the point is to avoid the computation of all powers ui, which would lead
to a complexity of O(NM(A)) operations in k. In [190], Paterson and Stockmeyer propose
an algorithm for the polynomial evaluation problem (see also [43]) which saves a factor

√
N

using a baby step / giant step technique.

The idea underlying this process also applies to the power projection problem and yields the
following algorithm, initially presented in [227] for the case A = k[X]/(f). As in Paterson
and Stockmeyer’s, this algorithm takes as input two parameters k and k′, which must satisfy
kk′ ≥ N .

Power projection

Input: u in A, ` in Â, N , k, k′.
Output: the sequence [`(1), `(u), . . . , `(uN−1)].

ui ← ui, i = 0, . . . , k
for i← 0, . . . , k′ − 1 do

cik+j ← `(uj), j = 0, . . . , k − 1
`← uk ◦ `

return [c0, . . . , cN−1];

We encapsulate the complexity of this algorithm in the following proposition. A similar
result is presented in [227].

Proposition 12 Let u be in A, let ` be in Â and let N > 0. Then, the sequence

[`(1), `(u), . . . , `(uN−1)]

can be computed within O
(
N1/2(M(A) +Mt(A)) +ND

)
operations in k.

Proof. We take k and k′ of the same magnitude, that is

k = b
√
Nc, k′ = dN/ke,

where bxc and dxe respectively denote the largest integer less than or equal to x, and the
smallest integer larger than or equal to x.

The precomputation of the first k powers of u requires O(N1/2) multiplications in A. Each
of the k′ passes through the for loop requires the evaluation of k linear forms, plus a
transposed multiplication. Since kk′ = O(N), the overall cost is thus O(ND) operations for
the evaluation of the linear forms and O(N1/2) transposed multiplications. This proves the
proposition. ¤

Corollary 5 Let D be the dimension of A as a k-vector space, and let u be in A. Let δ be
a bound on the degree of the minimal polynomial of u. Then:

• The minimal polynomial of u can be computed by a probabilistic algorithm in
O

(
δ1/2(M(A) +Mt(A)) + δD

)
operations in k.

179



• If u is a separating element of V(I) such that the assumptions of Subsection 8.3.2 are
satisfied, a parametrization of the algebraic variables can be computed in

O
(
nδ1/2(M(A) +Mt(A)) + nD2

)

operations in k.

In both cases, the algorithm chooses D values in k. If these values are chosen in a finite
subset Γ of k, all choices except at most δ|Γ|D−1 assure success.

Proof. The proof is similar to that of Subsection 8.3.3, the difference lies in the complexity
analysis of the power projection. Proposition 12 brings the result, taking respectively N = 2δ
for the minimal polynomial computation, and N = δu ≤ δ for the parametrizations. ¤
Using the transposition principle, these complexity results could be rewritten in terms of
M(A) only, but our explicit version reflects the underlying algorithm more closely.

8.4.2 Complexity estimates for the second approach

To put such algorithms to practice, we need an effective version of the transposed product.
To this effect we suppose that the structure of the algebra A is given by a monomial basis
and the corresponding multiplication tensor. This makes it possible to estimate the cost of
the product and transposed product, which will conclude the proofs of Theorems 9 and 10.

More precisely, in the following paragraphs, we show that the costs of multiplication and
transposed multiplication, denoted byM(A) andMt(A) up to now, are in O(2nD2) opera-
tions in k. With these results, the complexity estimates of Corollary 5 become respectively
O(2nδ1/2D2) and O(n2nδ1/2D2) operations in k, which concludes the proof of Theorems 9
and 10.

A note on Rouillier’s algorithm.

The input is now the same as that of [204]. Yet, Rouillier’s algorithm uses a particular linear
form, the trace. In the present context, computing the trace is straightforward, since we
have precomputed the whole multiplication table. Thus, we can apply our baby step/giant
step techniques to speed up the deterministic algorithm of [204]. Still, using random linear
forms has its benefits; for instance, we may choose forms with many coefficients equal to
zero.

To prove the estimates on the complexity of the operations in A and Â, we recall and
introduce some notation.

• We recall that Ω = {ωi}i=1,...,D is a monomial basis of A, and that E ⊂ Nn is the
corresponding set of exponents, so that Ω = xE.

• We denote by Ω ·Ω the set of products {ωiωj | ωi ∈ Ω, ωj ∈ Ω}. The corresponding set
of exponents is denoted by 2E, and is the Minkowski sum E+E ⊂ Nn. Its cardinality
is bounded by 2n|E| = 2nD.

180



• We assume that the sets Ω and Ω · Ω are ordered; the elements of A will be given
by their coefficients on the basis Ω. The multiplication tensor in A is given by a
|E|× |2E| matrix M, with rows indexed by the elements in Ω and columns indexed by
the elements of Ω · Ω. The columns of M give the coordinates of the element in Ω · Ω
on the basis Ω.

Introducing the matrix M is a convenient way to describe the operations in A and Â and
bound their complexity.

Multiplication in the quotient.

We first give the cost of the multiplication in A. This operation is done in a straightforward
manner. Two elements u and v in A are multiplied as polynomials in k[X1, . . . , Xn], then
reduced using the matrix M.

In the algorithm below, u and v are given by the vectors u and v of their coefficients on
the basis Ω. Given a vector u of size D and a monomial ω in Ω, u[ω] denotes the entry
of u corresponding to ω. The function Coefficients(W,Ω · Ω) returns the vector of the
coefficients of W on the monomial family Ω · Ω.

Multiplication in the quotient

Input: the coefficients of u, v in A, the matrix M.
Output: the coefficients of the product uv in A.

U ←∑
ω∈Ω u[ω]ω;

V ←∑
ω∈Ω v[ω]ω;

R← UV ; # the multiplication is done in k[X1, . . . , Xn]
cW ← Coefficients(W,Ω · Ω);
return McW ;

Given u and v in A, the previous algorithm computes the product uv in A within O(2nD2)
operations in k. Indeed, the naive multiplication of two polynomials with support in E
requires O(D2) operations. The reduction of the product is done by the matrix-vector
product, which requires |E||2E| ≤ 2n|E|2 = 2nD2 operations in k.

Transposed multiplication.

Our effective version of the transposed product was described at the end of Section 8.2.
There, we reduced the transposed multiplication u◦` to two steps. First computing S(`, 2E),
that is, the values of ` on the elements of Ω · Ω, then performing a multivariate series
multiplication and extracting the required coefficients.

For any η in Ω · Ω, the value `(η) is the product between the row c` of the coefficients of `
on the dual basis and the column of the coefficients of η on the basis Ω. In other words, the
coefficients of S(`, 2E) are the entries of the product c`M.

181



This property yields the following algorithm for the transposed product. The linear form `
is given as the row-vector c` of its coefficients on the dual basis. The other notation was
introduced above.

Transposed multiplication in the quotient

Input: u in A, ` in Â, the matrix M.
Output: u ◦ ` in Â.

d` ← c`M;
S ←∑

η∈Ω·Ω d`[η]X
η;

T ← u(1/X1, . . . , 1/Xn) · S;
return Coefficients(T,Ω);

Given u in A and ` in Â, the previous algorithm computes the transposed product u ◦ `
within O(2nD2) operations in k. Indeed, the matrix-vector product requires |E||2E| ≤ 2nD2

operations in k. Using a naive series multiplication routine, the Laurent series product also
requires 2nD2 operations in k.

8.5 Experimental Results

The algorithms underlying Theorems 9 and 10 have been implemented in the Magma com-
puter algebra system [32]. In this section, we compare the methods presented respectively
in Subsections 8.3.3 and 8.4.2, for the computation of a parametrization of the solutions of
a polynomial system. Recall that the two methods differ by their input, respectively some
multiplication matrices or the whole multiplication table, and by the computation of the
power projection.

Since our complexity estimates are stated in terms of operations in the base field, we insist
on computations on a finite field, where such operations have almost constant cost. Our
base field is thus the finite field with 9001 elements.

The systems we have chosen are presented in Figure 8.1. All of them are complete intersection
zero-dimensional systems. Systems 1 and 2 were proposed by S. Mallat for the design of foveal
wavelets [161]. Systems 3 and 4 are the Cyclic systems [26] for n = 6 and n = 7. Systems 5
and 6 are sparse systems, with about 10 monomials of degree at most 4 per equation, and
a single higher-degree monomial. Systems 7 and 8 are obtained by applying a linear change
of variables on the previous systems.

• The first lines indicate the number of variables and the maximum degree of the input
equations, then the dimension of the quotient algebra, that is the number of solutions
counted with multiplicities.

182



System 1 2 3 4 5 6 7 8

Variables 3 4 6 7 3 4 3 4

Max. Degree 12 12 6 7 12 6 12 6

Solutions 30 192 156 962 1728 1296 1728 1296

Gröbner basis 1 4 4.5 309 0.2 0.2 6.2 170

Reconstruction 0.2 0.1 0.1 0.5 4 6 7 8

Algorithms of Section 8.3.3:

Mult. Matrices 0.1 2 1 6 3 4 5 30

Power Projection 0.4 3.6 3 57 695 763 700 1220

Total 0.5 5.6 4 63 698 767 705 1250

Algorithms of Section 8.4.2:

Mult. Table 0.2 2.5 1.5 80 24 54 403 1330

Power Projection 0.3 2.1 2.2 20 164 250 290 370

Total 0.5 4.6 3.7 100 188 304 693 1700

Figure 8.1: Experimental Data; times are given in seconds

• For all systems, the separating element is a randomly chosen linear combination of the
variables, and the linear form has only 5 nonzero coefficients on the dual basis. In all
cases, we find a minimal polynomial of degree the dimension of the quotient, so the
output is correct.

• A basis for the quotient algebra is computed using Magma’s GroebnerBasis function
for a Graded Reverse Lexicographical order. Its computation time is given in the line
labelled “Gröbner Basis”. The line labelled “Reconstruction” gives the time necessary
to perform all reconstruction operations, that is, Berlekamp Massey’s algorithm and
univariate polynomial multiplications. Their cost is detailed in Propositions 10 and 11,
and is the same for both approaches.

• The computation times are next given for both approaches. For the algorithm of
Section 8.3.3, this includes the computation of some multiplication matrices (using
Magma’s RepresentationMatrix function), then the naive version of the power pro-
jection. For the algorithm of Section 8.4.2, this includes the computation of the whole
multiplication table, which enables a faster version of the power projection.

As was to be expected, the baby steps/giant steps techniques bring a consequent speed up

183



over the naive version of the power projection. On the other hand, the precomputation of
the whole multiplication table obviously affects this speed-up.

Systems 5 and 6 were chosen such that the Gröbner basis and the multiplication table were
fast to compute. The advantage of using baby step/giant step techniques appears clearly for
such examples.

Remark that the algorithm in [204] first requires to compute the whole multiplication table,
then computes a power projection using the slower technique, i.e. without using the baby
steps / giant steps techniques. The solutions we present here are certainly competitive with
this approach.

8.6 Proof of Theorem 11

In this section, we prove Theorem 11. The data is a finite dimensional quotient algebra
A = k[X1, . . . , Xn]/I over a perfect field k, a separating element u in A and a linear form `

in Â. Our assumptions are as follows:

Assumption 1 The following conditions hold:

• the characteristic of k is zero or greater than min{s,√I s ⊂ I};
• the degree of the minimal polynomial mu of u equals the degree of the minimal polyno-

mial of a generic element in A (see definition below);

• ` and u are such that

R(u, `) :=
∑
i≥0

`(ui)

U i+1
=
Gu,`

mu

,

with Gu,` and mu coprime (the definitions of the series R and the polynomial Gu,` are
given in Section 8.2).

Note that if I is a radical ideal, then the first two assumptions are satisfied as soon as u is a
separating element, since in this case the degree of the minimal polynomial of u equals the
dimension D of A. The number min{s,√I s ⊂ I} is called the exponent of I; it equals 1 if
I is radical.

Our goal is to show that for every v in A and for every α ∈ V(I),
(
Gu,v◦`
Gu,`

)
(u(α)) = v(α).

Recall the in the particular case when I is radical, we indicated, in the comments following
Theorem 11, a quick proof of these formulæ. The rest of the chapter is devoted to the proof
in the general case. Since the arguments are a little involved, we divide their exposition
in three parts. In Subsection 8.6.1 we relate the factorization of mu and the exponents of
the primary components of I; the main result is Proposition 13, which is an analogue for

184



minimal polynomials of a classical result on characteristic polynomials, sometimes referred
to as Stickelberger’s theorem [70, Proposition 2.7].

In Subsection 8.6.2 we rewrite the series R(u, v ◦ `) using a description of Â by differential
conditions on the local factors of A. Finally, our knowledge of the factorization of mu will
make it possible to read out the required result on the new expression of R(u, v ◦ `) and to
conclude in Subsection 8.6.3 the proof of Theorem 11.

8.6.1 Minimal polynomials of generic elements and local factors

Given the k-algebra A = k[X1, . . . , Xn]/I and its basis Ω = (ω1, . . . , ωD), we recall that we
call the generic element in A the element T :=

∑D
i=1 Tiωi in A⊗k k(T1, . . . , TD). We denote

by mT the minimal polynomial of T and by δ(A) the degree of mT . The polynomial mT

depends on the choice of the basis Ω, but its degree depends only on A. The numbers δ(Aα)
will be used in the next paragraph, for some algebras Aα to be introduced. They are defined
in the same manner.

Reduction to the case k algebraically closed.

This first section encloses a result on transfer properties of ideals in polynomial algebras
under extension from k to its algebraic closure k. This result will serve to reduce the proof
of Theorem 11 to the case when k algebraically closed. In the lemma below, if J is an ideal
in k[X1, . . . , Xn], we denote by J the ideal it generates in k[X1, . . . , Xn], that is, the set of
all finite sums

∑
aifi, where ai ∈ k[X1, . . . , Xn] and fi ∈ J . We will particularly focus on

the ideal I, and we will denote A = k[X1, . . . , Xn]/I.

Lemma 13 The following results hold:

• The ideal I is zero-dimensional in k[X1, . . . , Xn] and dimk A equals dimk A.

• The minimal polynomial over k of an element u in A coincides with the minimal
polynomial of u as an element of A over k.

• The degree of the minimal polynomial of a generic element in A equals the degree of
the minimal polynomial of a generic element in A.

• The exponent of I equals the exponent of I.

Before starting the proof, we stress the fact that the first three points do not require that k is
a perfect field, while for the last point, this hypothesis is crucial, as showed by the following
example. Let k be the field Fp(Y ) of rational functions over the finite field with p elements;
then the polynomial Xp − Y is square-free over k but not over k, therefore the ideal it
generates in k[X] is radical, while its extension to k[X] is not.

Proof. The first assertion is a classical one, we refer to [136, Corollary 3.7.3] for a proof. The
second and the third assertions are direct consequences of the fact that minimal polynomials
are invariant under change of base ring, see for instance [143, Chapter XIV, Corollary 2.2].

185



It remains to prove the last assertion. We begin by showing that the operations of extending

an ideal and taking the radical of an ideal commute, that is the ideals
√I and

√
I are equal.

Since
√I contains I and extending ideals preserves inclusion, we have that I ⊂ √I. Since

k is a perfect field, and
√I is radical, [136, Proposition 3.7.18] shows that its extension

√I
is also radical, so taking again radicals in I ⊂ √I, we obtain the first inclusion

√
I ⊂ √I.

Let us now justify the converse inclusion
√I ⊂

√
I. Since I contains I and taking radicals

preserves inclusion, we have that
√I ⊂

√
I. Thus any element y in

√I may be written as
a finite sum

∑
i aifi, for some polynomials ai with coefficients in k and some fi belonging to√

I, so y ∈
√
I. Thus, the equality of

√I and
√
I is proved.

We finally prove the last assertion concerning the exponent preservation under extension to

k. By definition of the exponent, it is enough to show that
√I s ⊂ I if and only if

√
I s ⊂ I.

For the direct assertion, suppose that
√I s ⊂ I. Taking extensions and using the property

proved in the previous paragraph, we deduce
√
I s ⊂ I.

Conversely, suppose that
√
I s ⊂ I. Intersecting both sides with k[X1, . . . , Xn] (this oper-

ation is called contraction), we assert that we recover
√I s ⊂ I. In order to justify this,

we use the fact that in polynomial algebras, extension followed by contraction of an ideal
returns the initial ideal, see for instance [142, Chapter III, Proposition 7]. Indeed, this fact,
in conjunction with the previous arguments implies the equalities I = k[X1, . . . , Xn]∩I and√I s

=
√
I s ∩ k[X1, . . . , Xn], and this concludes the proof of our lemma. ¤

Minimal polynomials of generic elements.

The following lemma shows that over an algebraically closed field, the degree of the minimal
polynomial of a generic element in A equals the maximal degree of all minimal polynomials
of elements in A. We point out that this result applies to any algebra of finite dimension,
and will be used for the algebras Aα introduced in the next paragraph.

Lemma 14 For every t in A, degmt ≤ δ(A), and there exists t in A such that degmt = δ(A).
In other words, δ(A) = maxt∈A(degmt).

Proof. Let B be A⊗k k(T1, . . . , TD) and let T ∈ B be
∑D

i=1 Tiωi. The k-basis Ω of A is also
a k(T1, . . . , TD)-basis of B. We define MT as the matrix of multiplication by T in this basis;
then mT (MT ) = 0.

Let t be in A; t can be written
∑D

i=1 tiωi. Both MT and mT have their coefficients in
k[T1, . . . , TD], so the equality mT (MT ) = 0 can be specialized at (t1, . . . , tD). The matrix MT

specializes into the multiplication matrix of t in A, which shows that degmt ≤ degmT = δ(A).

Consider now the D× δ(A) matrix whose columns contain the coefficients of T 0, . . . , T δ(A)−1

on the basis Ω. This matrix has entries that are polynomial in (T1, . . . , TD), and has maximal
rank, so admits a δ(A)× δ(A) submatrix with nonzero determinant D ∈ k[T1, . . . , TD].

Since k is algebraically closed, there exists a D-tuple (t1, . . . , tD) which does not cancel D.
Then the first δ(A) − 1 powers of t =

∑D
i=1 tiωi are independent over k, so the minimal

polynomial of t has degree δ(A). ¤

186



Minimal polynomials and local factors.

Let u ∈ A be an element of A, whose minimal polynomial mu has degree δ(A), the degree
of the minimal polynomial of a generic element in A. The aim of the rest of this section is
to describe the factorization properties of the polynomial mu.

Since k is algebraically closed, each zero α of I is in kn. Moreover, if we let mα ⊂
k[X1, . . . , Xn] be the maximal ideal at α, then the primary decomposition of the zero-
dimensional ideal I has the form:

I =
⋂

α∈V(I)

Iα,

where Iα is a mα-primary ideal.

We write Aα for the local algebra k[X1, . . . , Xn]/Iα and denote by Nα the exponent of Iα,
that is the minimal s such that ms

α ⊂ Iα. This is also the nil-index of the local algebra Aα.

The main result of this section shows that under Assumption 1, the minimal polynomial of u
equals

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

This fact is crucial in proving Theorem 11; we divide its proof into several lemmas.

Lemma 15 Suppose u ∈ A has minimal polynomial mu of degree δ(A). Then the minimal
polynomial of u is given by

mu =
∏

α∈V(I)

(
U − u(α)

)δ(Aα)
.

Proof. By the Chinese Remainder Theorem, A is isomorphic to the product
∏

αAα. We
denote by uα the images of u in Aα under this isomorphism. Let us show that the minimal
polynomial of u equals the least common multiple of the minimal polynomials muα .

For any polynomial P , the image in Aα of the element P (u) under the Chinese isomorphism is
P (uα). Since mu(u) = 0, this implies that mu(uα) = 0 for all α, therefore all muα divide mu.
Conversely, let m be a polynomial divisible by all muα . It follows that m(uα) = 0 for all α, so
m(u) = 0. Thus, mu divides m and this proves that mu is the lcm of muα . As a consequence,
we have the inequality

δ(A) ≤
∑

α

degmuα ≤
∑

α

δ(Aα). (8.3)

We next show that for all α, the polynomial muα has the form
(
T −u(α)

)sα
, for some integer

1 ≤ sα ≤ Nα. Since it vanishes on α, the element uα − u(α) belongs to the radical mα of

Iα. It follows that the element
(
uα−u(α)

)Nα
belongs to Iα, thus is zero in the quotient Aα.

Therefore, muα divides
(
T − u(α)

)Nα
, hence it has the form

(
U − u(α)

)sα
. Since mu equals

their lcm, it has the form mu =
∏

α

(
U − u(α)

)rα
.

We show now that rα = δ(Aα), for all α. Using Lemma 14 for each α in V(I), we choose
elements tα in Aα such that the degree of the minimal polynomial of tα is δ(Aα). The

187



previous paragraph shows that, up to adding well-chosen constants to the tα, we can assure
that their minimal polynomials are pairwise coprime. Let t ∈ A be such that its images in
the local algebras Aα are the elements tα. Then the minimal polynomial of t is the product∏

αmtα , so its degree is
∑

α δ(Aα). Thus:

∑
α

δ(Aα) ≤ δ(A). (8.4)

Combining the inequalities (8.3) and (8.4) with the fact that δ(A) = degmu equals
∑

α rα,
we conclude that rα = δ(Aα), for all α, so mu has the desired form. ¤
The next lemma relates the degree δ(Aα) to the local exponents Nα. We point out that this
result depends on the characteristic of the base field k.

Lemma 16 Let a = (a1, . . . , an) ∈ kn, let J be a (X1 − a1, . . . , Xn − an)-primary ideal of
k[X1, . . . , Xn], let NJ be the exponent of J and let AJ be k[X1, . . . , Xn]/J . If the charac-
teristic of k is zero or greater than NJ − 1 then δ(AJ ) = NJ .

Proof. Up to a translation, we may assume that the point a is the origin of kn and that the
ideal J is (X1, . . . , Xn)-primary.

Let DJ be the dimension of AJ and β1, . . . , βDJ be a monomial basis of AJ . We suppose

that β1 = 1. By Lemma 14, we can choose t :=
∑DJ

i=1 tiβi such that degmt = δ(AJ ). Then
t − t1 is in (X1, . . . , Xn), so (t − t1)

NJ = 0. This shows that the degree of the minimal
polynomial of t is at most NJ , i.e. δ(AJ ) ≤ NJ .

By assumption, there exists a monomial M of total degree NJ−1 which is not in J . Without
loss of generality, M can be written

∏d
i=1X

αi
i for some integer 1 ≤ d ≤ DJ and some positive

integers αi, of sum NJ − 1. We let t be
∑d

i=1Xi. The coefficient of M in tNJ−1 is

(NJ − 1)!

α1! · · ·αd!
,

which is well-defined and nonzero since the characteristic of k is either zero or greater than
NJ − 1. Consequently, tNJ−1 is not zero, so the minimal polynomial of t is TNJ . This shows
that NJ ≤ δ(AJ ). The converse inequality follows from the first part of Lemma 15. This
concludes the proof. ¤
To apply this result to each local factor, we need to ensure that the characteristic of k is
indeed greater than the exponents of the local factors. This is the objective of the next
lemma.

Lemma 17 The exponent of I equals maxα∈V(I)Nα.

Proof. Let S be the exponent of I and N be maxα∈V(I)Nα. Then
√IN

is
∏

α mN
α , which is

contained in
∏

α Iα = I, so S ≤ N . Conversely, for any α in V(I), we have

Iα +
∏

α′ 6=α

mS
α′ = (1).

188



Multiplying both sides by mS
α yields

mS
αIα +

∏

α′∈V(I)

mS
α′ = mS

α.

Now S is such that
√IS ⊂ I, so

∏
α′∈V(I) mS

α′ ⊂ I ⊂ Iα. The previous equality then shows

that mS
α ⊂ Iα, for each α, hence S ≥ N . ¤

The following proposition summarizes the results of this section.

Proposition 13 Let u be in A, such that the degree of its minimal polynomial mu equals the
degree of the minimal polynomial of a generic element in A. If furthermore the characteristic
of k is zero or greater than the exponent of I, then the polynomial mu factorizes as

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

Proof. By assumption and using Lemma 17, we are in position to apply Lemma 16 on each
local factor Aα. Together with Lemma 15, this gives the result. ¤

8.6.2 High order derivations, dual spaces and generating series

In this section, we recall the notion of high order derivations and exhibit their connection
with the dual spaces of quotient algebras. We also give a description of some generating
series of the type R(u, `) which are built upon such derivations.

Basic facts.

We start by recalling the notion of high order derivation over an algebra, introduced in [181,
178]. Let k be an arbitrary field and R be a k-algebra. A k-linear map d : R→ R is called a
k-derivation of order 1 if d(xy) = xd(y)+ yd(x), for all x and y in R. High order derivations
are defined recursively. A k-linear map d : R→ R is called a k-derivation of order N > 1 if
the map [d, x] : y 7→ d(xy) − xd(y) − yd(x) is a k-derivation of order N − 1 for all x ∈ R.
For N ≥ 1, we write DerN

k (R) for the k-vector space of all k-derivations of order N , and we
take Der0

k(R) = k · 1R. One can easily show that d(1) = 0 for any derivation d of order at
least 1 and that DerN

k (R) ⊂ DerN+1
k (R) for all N ≥ 1, see [28, Section 1]. These two basic

properties will be implicitly used in the proofs below.

In the particular case R = k[X1, . . . , Xn], the k-linear map δv : R → R defined on the
monomial basis by:

δv : Xµ1

1 · · ·Xµn
n 7→

(
µ1

v1

)
· · ·

(
µn

vn

)
Xµ1−v1

1 · · ·Xµn−vn
n

is a k-derivation in Der|v|(R), with |v| = v1 + · · ·+ vn. Remark that the binomial coefficient(
β
α

)
is defined over any field, for instance as the coefficient of Y α in (1 + Y )β. If k has

characteristic zero, then we recover the well-known definition of differential operators:

δv(P ) =
1

v1! · · · vn!

∂v1+···+vn(P )

∂v1
X1
· · · ∂vn

Xn

.

189



Dual spaces and high order derivations.

We next exhibit the connection between high order derivations and dual spaces of quotient
algebras. The idea to characterize primary ideals by differential conditions in characteristic
zero is due to Gröbner [114]. Similar or more general treatment can be found in [164, 172,
28, 180]. For the sake of completeness, we gather in the following lemma the needed facts,
in arbitrary characteristic. Our proof is inspired by that of [28, Proposition 3.2].

Lemma 18 Let a = (a1, . . . , an) ∈ kn, let J be a (X1 − a1, . . . , Xn − an)-primary ideal of
R = k[X1, . . . , Xn] and let NJ be the exponent of J . Then there exists a k-basis of the dual

R̂/J consisting of elements
Li : P + J 7−→ (DiP )(a),

where D1 is the identity map and with Di in Der
NJ−1
k (R) for i > 1.

Proof. Up to a translation, we assume, without loss of generality, that the point a is the origin
of kn and that the ideal J is (X1, . . . , Xn)-primary. If v is a multi-index with |v| < NJ , the k-
linear map R→ k given by P 7→ (δvP )(0) factors to a k-linear map δv

∗ : R/(X1, . . . , Xn)NJ →
k and the induced maps {δv

∗}|v|<NJ form the dual k-basis of the monomial basis {xµ}|µ|<NJ
of R/(X1, . . . , Xn)NJ .

The dual of R/J is a k-linear subspace of the dual of R/(X1, . . . , Xn)NJ , which contains δ0
∗.

Thus, it admits a k-basis whose elements are of the form L1 = δ0
∗ and Li =

∑
0<|v|<NJ b

(i)
v δv

∗
for i > 1. We take D1 as the identity map and, for i > 1, Di =

∑
0<|v|<NJ b

(i)
v δv, so that

Di ∈ Der
NJ−1
k (R). This proves the lemma. ¤

High order derivations and generating series.

The following result makes a link between the poles of the rational series R(u, `) introduced
in Proposition 12 and the order of a derivation.

Lemma 19 Let N ≥ 0, R be a k-algebra, u ∈ R and D in DerN(R). Then there exists c in
R such that, for every v ∈ R, there exist N elements cj in R such that the following equality
holds in R[[U−1]]:

∑
i≥0

D(vui)

U i+1
=

cv

(U − u)N+1
+

N∑
j=1

cj
(U − u)j

.

Proof. We proceed by induction on N . We begin by considering the case N = 0, that is, D
is the multiplication map by a certain element r in R. We have that

∑
i≥0

D(vui)

U i+1
= rv

∑
i≥0

ui

U i+1
=

rv

U − u,

so this series has the desired form.

We treat now the inductive step. Let N ≥ 1; we suppose the lemma is true for index
N − 1 and we prove it for index N . Let thus D be an arbitrary derivation in DerN(R). By
definition, we have the formula D(vui) = [D, v](ui) + vD(ui) + uiD(v), so

190



∑
i≥0

D(vui)

U i+1
=

∑
i≥0

[D, v](ui)

U i+1
+ v

∑
i≥0

D(ui)

U i+1
+D(v)

∑
i≥0

ui

U i+1
. (8.5)

We analyze each term in this sum separately. Since [D, v] belongs to DerN−1(R), the induc-
tion hypothesis shows that

∑
i≥0

[D, v](ui)

U i+1
=

c′

(U − u)N
+

N−1∑
j=1

c′j
(U − u)j

for some elements c′ and c′j in R. Using the fact that D(ui) = [D, u](ui−1) + uD(ui−1) +
ui−1D(u), it is easy to derive the formula

∑
i≥0

D(ui)

U i+1
=

1

U − u
∑
i≥0

[D, u](ui)

U i+1
+

D(u)

(U − u)2
.

By the inductive hypothesis, the second term in the sum (8.5) is thus equal to

v

U − u

(
c′′

(U − u)N
+

N−1∑
j=1

c′′j
(U − u)j

+
D(u)

(U − u)

)
,

for some elements c′′ and c′′j in R depending only on D and u. Finally, the third term in the
sum (8.5) obviously equals

D(v)
∑
i≥0

ui

U i+1
=

D(v)

U − u.

Putting these pieces all together in sum (8.5) completes the proof. ¤

8.6.3 Conclusion

The final step of the proof consists in rewriting the series R(u, v ◦ `) so as to exhibit its
dependence with respect to v. Lemma 18 shows that for each α ∈ V(I) there exists a family
of derivations ∆α = {Dα

j }j=1,...,dimk(Aα), such that the functionals

Lα
j : P + Iα 7→ Dα

j (P )(α)

form a k-basis of Âα. Furthermore, Dα
1 = 1 and for j > 1, Dα

j belongs in

DerNα−1(k[X1, . . . , Xn]). Using Lemma 19 and evaluating at α, we see that there exist
cαj in k, and, for every v ∈ k[X1, . . . , Xn], some elements (cαj,i)1≤i<N in k such that

R(u, v ◦ Lα
1 ) =

∑
i≥0

(vui)(α)

U i+1
=

v(α)

U − u(α)
(8.6)

and, for j > 1,

R(u, v ◦ Lα
j ) =

∑
i≥0

Dα
j (vui)(α)

U i+1
=

v(α)cαj
(U − u(α))Nα

+
Nα−1∑
i=1

cαj,i
(U − u(α))j

(8.7)

191



hold in k[[U−1]].

Let now ` be in Â. Since the union ∪α∆α forms a k-basis of Â, and using the linearity of
R(u, v ◦ `) with respect to `, equations (8.6) and (8.7) show that for every v the equality

R(u, v ◦ `) =
∑

α∈V(I)

v(α)cα
(U − u(α))Nα

+
∑

α∈V(I)

Nα−1∑
j=1

cαj
(U − u(α))j

(8.8)

holds, where cα and cαj belong to k, and cα does not depend on v. If one of the coefficients
cα were zero, then for any v, R(u, v ◦ `) could be written with a denominator of degree less
than

∑
αNα, that is, of degree less than degmu, by Proposition 13. In particular, for v = 1,

R(u, `) would admit a denominator of degree less than degmu. Since, by Assumption 1, ` is
such that

R(u, `) =
Gu,`

mu

,

with Gu,` and mu coprime, none of the coefficients cα can be zero.

Recall that by Proposition 13, the polynomial mu writes as

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

Let Qα be the quotient of mu by (U − u(α))Nα , so that Qα takes a nonzero value on u(α).
Using equation (8.8), we deduce that for any v, there exists a polynomial Vv ∈ k[U ] such
that

Gu,v◦` = muR(u, v ◦ `) =
∑

α∈V(I)

v(α)cαQα(U) + Vv(U)
∏

α∈V(I)

(U − u(α)).

This implies that Gu,v◦`(u(α)) equals v(α)cαQα(u(α)). Since cαQα(u(α)) is not zero and is

independent from v, this shows that
Gu,v◦`

Gu,`
takes the value v(α) at u(α). This proves the

proposition.

192



Part IV

Fast Algorithms for Linear
Recurrences and Linear Differential

Operators

193



194



Chapter 9

Linear Recurrences with Polynomial
Coefficients

We improve an algorithm originally due to Chudnovsky and Chudnovsky for computing one
selected term in a linear recurrent sequence with polynomial coefficients. Using baby-steps /
giant-steps techniques, the nth term in such a sequence can be computed in time proportional
to
√
n, instead of n for a naive approach.

As an intermediate result, we give a fast algorithm for computing the values taken by an
univariate polynomial P on an arithmetic progression, taking as input the values of P on a
translate on this progression.

We apply these results to the computation of the Cartier-Manin operator of a hyperelliptic
curve. If the base field has characteristic p, this enables us to reduce the complexity of this
computation by a factor of order

√
p. We treat a practical example, where the base field is

an extension of degree 3 of the prime field with p = 232 − 5 elements.

This chapter is joint work with É. Schost and P. Gaudry [34].

Contents

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.2 Shifting evaluation values . . . . . . . . . . . . . . . . . . . . . . 198

9.3 Computing one selected term of a linear sequence . . . . . . . 202

9.4 The Cartier-Manin operator on hyperelliptic curves . . . . . . 206

9.5 Point-counting numerical example . . . . . . . . . . . . . . . . . 210

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

195



9.1 Introduction

In this chapter, we investigate some complexity questions related to linear recurrent se-
quences. Specifically, we concentrate on recurrences with polynomial coefficients; our main
focus is on the complexity of computing one selected term in such a recurrence.

A well-known particular case is that of recurrences with constant coefficients, where the nth
term can be computed with a complexity that is logarithmic in n, using binary powering
techniques.

In the general case, there is a significant gap, as for the time being no algorithm with com-
plexity polynomial in log(n) is known. Yet, in [59], Chudnovsky and Chudnovsky proposed
an algorithm that allows to compute one selected term in such a sequence without computing
all intermediate ones. This algorithm appears as a generalization of those of Pollard [195]
and Strassen [237] for integer factorization; using baby-steps / giant-steps techniques, it re-
quires a number of operations which is roughly linear in

√
n to compute the nth term in the

sequence.

Our main contribution is an improvement of the algorithm of [59]; for simplicity, we only
give the details in the case when all coefficients are polynomials of degree 1, as the study in
the general case would follow in the same manner. The complexity of our algorithm is still
(roughly) linear in

√
n; Chudnovsky and Chudnovsky actually suggested that this bound

might be essentially optimal. We improve the time and space complexities by factors that
are logarithmic in n; in practice, this is far from negligible, since in the application detailed
below, n has order 232. A precise comparison with Chudnovsky and Chudnovsky’s algorithm
is made in Section 9.3.

Along the way, we also consider a question of basic polynomial arithmetic: given the values
taken by a univariate polynomial P on a set of points, how fast can we compute the values
taken by P on a translate of this set of points? An obvious solution is to make use of
fast interpolation and evaluation techniques, but we show that one can do better when the
evaluation points form an arithmetic sequence.

Computing the Cartier-Manin operator.

Our initial motivation is an application to point-counting procedures in hyperelliptic curve
cryptography, related to the computation of the Cartier-Manin operator of curves over finite
fields. We now present these matters in more detail.

The Cartier-Manin operator of a curve defined over a finite field, together with the Hasse-
Witt matrix, are useful tools to study the arithmetic properties of the Jacobian of that
curve. Indeed, the supersingularity, and more generally the p-rank, can be read from the
invariants of the Hasse-Witt matrix. In the case of hyperelliptic curves, this matrix was used
in [88, 166] as part of a point-counting procedure for cryptographic-oriented applications.

Indeed, thanks to a result of Manin, computing the Cartier-Manin operator gives the coeffi-
cients of the Zeta function modulo p; this partial information can then be completed by some
other algorithms. However, in [88] and [166], the method used to compute the Hasse-Witt
matrix has a complexity which is essentially linear in p.

196



It turns out that one can do better. The entries of the Hasse-Witt matrix of a hyperelliptic
curve y2 = f(x) defined over a finite field of characteristic p are coefficients of the polynomial
h = f (p−1)/2, so they satisfy a linear recurrence with rational function coefficients. Using
our results on linear recurrences, this remark yields an algorithm to compute the Hasse-Witt
matrix whose complexity now grows like

√
p, up to logarithmic factors, instead of p.

We demonstrate the interest of these techniques by a point-counting example, for a curve of
genus 2 defined over a finite field whose characteristic just fits in one 32-bit machine word;
this kind of fields have an interest for efficiency reasons [10].

Note finally that other point-counting algorithms, such as the p-adic methods used in Ked-
laya’s algorithm [131], also provide efficient point-counting procedures in small characteristic,
but their complexity remains at least linear in p [87]. On the other hand, Kedlaya’s algo-
rithm outputs the whole Zeta function and should be preferred if available. Therefore, the
range of application of our algorithm is when the characteristic is too large for Kedlaya’s
algorithm to be run.

Organization of the chapter.

We start in Section 9.2 with our algorithm for shifting a polynomial given by its values on
some evaluation points. This building block is used in Section 9.3 to describe our improve-
ment on Chudnovsky and Chudnovsky’s algorithm. In Section 9.4 we apply these results
to the computation of the Cartier-Manin operator of a hyperelliptic curve. We conclude in
Section 9.5 with a numerical example.

Notation.

In what follows, we give complexity estimates in terms of number of base ring operations
(additions, subtractions, multiplications and inversions of unit elements) and of storage
requirements; this last quantity is measured in terms of number of elements in the ring.
We pay particular attention to polynomial and matrix multiplications and use the following
notation.

• Let R be a commutative ring; we suppose that R is unitary, its unit element being
denoted by 1R, or simply 1. Let ϕ be the map N→ R sending n to n·1R = 1R+· · ·+1R

(n times); the map ϕ extends to a map Z→ R. When the context is clear, we simply
denote the ring element ϕ(n) by n.

• We denote by M : N → N a function that represents the complexity of univariate
polynomial multiplication, i.e. such that over any ring R, the product of two degree d
polynomials can be computed within M(d) base ring operations. Using the algorithms
of [214, 210, 50], M(d) can be taken in O(d log(d) log(log(d))).

We suppose that the function M verifies the inequality M(d1)+M(d2) ≤ M(d1 +d2) for
all positive integers d1 and d2; in particular, the inequality M(d) ≤ 1

2
M(2d) holds for

197



all d ≥ 1. On the other hand, we make the (natural) hypothesis that M(cd) ∈ O(M(d))
for all c ≥ 1.

We also assume that the product of two degree d polynomials can be computed in
space O(d); this is the case for all classical algorithms, such as naive, Karatsuba and
Schönhage-Strassen multiplications.

• We let ω be a real number such that for every commutative ring R, all n× n matrices
over R can be multiplied within O(nω) operations in R. The classical multiplication
algorithm gives ω = 3. Using Strassen’s algorithm [234], we can take ω = log2(7) '
2.81. We assume that the product of two n × n matrices can be computed in space
O(n2), which is the case for classical as well as Strassen’s multiplications.

In the sequel, we need the following classical result on polynomial arithmetic over R. The
earliest references we are aware of are [169, 30], see [255] for a detailed account. We also refer
to [35] for a solution that is in the same complexity class, but where the constant hidden in
the O( ) notation is actually smaller than that in [255].

Multipoint evaluation. If P is a polynomial of degree d inR[X] and r0, . . . , rd are points in
R, then the values P (r0), . . . , P (rd) can be computed using O(M(d) log(d)) operations
in R and O(d log(d)) space.

9.2 Shifting evaluation values

In this section, we address a particular case of the question of shifting evaluation values of
a polynomial. The question reads as follows: Let P be a polynomial of degree d in R[X],
where R is a commutative unitary ring. Let a and r0, . . . , rd be in R. Given P (r0), . . . , P (rd),
how fast can we compute P (r0 + a), . . . , P (rd + a)?

A reasonable condition for this question to make sense is that all differences ri − rj, i 6= j,
are units in R; otherwise, uniqueness of the answer might be lost. Under this assumption,
using fast interpolation and fast multipoint evaluation, the problem can be answered within
O(M(d) log(d)) operations in R. We now show that the cost reduces to M(2d) + O(d) oper-
ations in R, in the particular case when r0, . . . , rd are in arithmetic progression, so we gain
a logarithmic factor.

Our solution reduces to the multiplication of two suitable polynomials of degree at most 2d;
O(d) additional operations come from additional pre- and post-processing operations. As
mentioned in Section 9.1, all operations made below on integer values actually take place
in R.

The algorithm underlying Proposition 14 is given in Figure 9.1; we use the notation
coeff(Q, k) to denote the coefficient of degree k of a polynomial Q. We stress the fact
that the polynomial P is not part of the input of our algorithm.

198



Input P (0), . . . , P (d) and a in R
Output P (a), . . . , P (a+ d)

• Compute

δ(0, d) =
d∏

j=1

(−j), δ(i, d) =
i

i− d− 1
δ(i− 1, d) i = 1, . . . , d

∆(a, 0, d) =
d∏

j=0

(a− j), ∆(a, k, d) =
a+ k

a+ k − d− 1
∆(a, k − 1, d) k = 1, . . . , d

• Let

P̃ =
d∑

i=0

P (i)

δ(i, d)
X i, S =

2d∑
i=0

1

a+ i− dX
i, Q = P̃S.

• Return the sequence ∆(a, 0, d)·coeff(Q, d), . . . ,∆(a, d, d)·coeff(Q, 2d).

Figure 9.1: Shifting evaluation values

Proposition 14 Let R be a commutative ring with unity, and d ∈ N such that 1, . . . , d are
units in R. Let P be in R[X] of degree d, such that the sequence

P (0), . . . , P (d)

is known. Let a be in R, such that a− d, . . . , a+ d are units in R. Then the sequence

P (a), . . . , P (a+ d)

can be computed within M(2d) +O(d) base ring operations, using space O(d).

Proof. Our assumption on R enables to write the Lagrange interpolation formula:

P =
d∑

i=0

P (i)

∏d
j=0,j 6=i(X − j)∏d
j=0,j 6=i(i− j)

.

From now on, we denote by δ(i, d) the denominator
∏d

j=0,j 6=i(i − j) and by P̃i the ratio
P (i)/δ(i, d).

First note that all δ(i, d), i = 0, . . . , d, can be computed in O(d) operations in R. Indeed,
computing the first value δ(0, d) =

∏d
j=1(−j) takes d multiplications. Then for i = 1, . . . , d,

δ(i, d) can be deduced from δ(i− 1, d) for two ring operations using the formula

δ(i, d) =
i

i− d− 1
δ(i− 1, d),

199



so their inductive computation requires O(d) multiplications as well. Thus the sequence

P̃i, i = 0, . . . , d, can be computed in admissible time and space O(d) from the input sequence
P (i). Accordingly, we rewrite the above formula as

P =
d∑

i=0

P̃i

d∏

j=0,j 6=i

(X − j).

For k in 0, . . . , d, let us evaluate P at a+ k:

P (a+ k) =
d∑

i=0

P̃i

d∏

j=0,j 6=i

(a+ k − j).

Using our assumption on a, we can complete each product by the missing factor a+ k − i:

P (a+ k) =
d∑

i=0

P̃i

∏d
j=0(a+ k − j)
a+ k − i =

(
d∏

j=0

(a+ k − j)
)
·
(

d∑
i=0

P̃i
1

a+ k − i

)
. (9.1)

Just as we introduced the sequence δ(i, d) above, we now introduce the sequence ∆(a, k, d)
defined by ∆(a, k, d) =

∏d
j=0(a + k − j). In a parallel manner, we deduce that all

∆(a, k, d), k = 0, . . . , d can be computed in time and space O(d), using the formulas:

∆(a, 0, d) =
d∏

j=0

(a− j), ∆(a, k, d) =
a+ k

a+ k − d− 1
∆(a, k − 1, d).

Let us denote Qk = P (a+ k)/∆(a, k, d). We now show that knowing P̃i, i = 0, . . . , d, we can
compute Qk, k = 0, . . . , d in M(2d) base ring operations and space O(d); this is enough to
conclude, by the above reasoning.

Using the coefficients ∆(a, k, d), Equation (9.1) reads

Qk =
d∑

i=0

P̃i
1

a+ k − i . (9.2)

Let P̃ and S be the polynomials:

P̃ =
d∑

i=0

P̃iX
i, S =

2d∑
i=0

1

a+ i− dX
i;

then by Equation (9.2), for k = 0, . . . , d, Qk is the coefficient of degree k + d in the product

P̃S. This concludes the proof. ¤

We will conclude this section by an immediate corollary of this proposition; we first give a
few comments.

200



• An alternative O(M(d)) algorithm which does not require any inversibility hypotheses
can be designed in the special case when a = d+1. The key fact is that for any degree
d polynomial P , the sequence P (0), P (1), . . . is linearly recurrent, of characteristic
polynomial Q(X) = (1 − X)d+1. Thus, if the first terms P (0), . . . , P (d) are known,
the next d + 1 terms P (d + 1), . . . , P (2d + 1) can be recovered in O(M(d)) using the
algorithm in [223, Theorem 3.1].

• The general case when the evaluation points form an arbitrary arithmetic progression
reduces to the case treated in the above proposition. Indeed, suppose that r0, . . . , rd

form an arithmetic progression of difference δ, that P (r0), . . . , P (rd) are known and
that we want to compute the values P (r0 + a), . . . , P (rd + a), where a ∈ R is divisible
by δ. Introducing the polynomial Q(X) = P (δX + r0), we are under the hypotheses
of the above proposition, and it suffices to determine the shifted evaluation values of
Q by a/δ.

• The reader may note the similarity of our problem with the question of computing the
Taylor expansion of a given polynomial P at a given point in R. The algorithm of [5]
solves this question with a complexity of M(d)+O(d) operations in R and space O(d).
The complexity results are thus quite similar; it turns out that analogous generating
series techniques are used in that algorithm.

• In [115], an operation called middle product is defined: Given a ring R, and A,B in
R[X] of respective degrees d and 2d, write AB = C0 +C1X

d+1 +C2X
2d+2, with all Ci

of degree at most d; then the middle product of A and B is the polynomial C1. This
is precisely what is needed in the above algorithm.

Up to considering the reciprocal polynomial of A, the middle product by A can be seen
as the transpose of the map of multiplication by A. General program transformation
techniques [47, 115] then show that it can be computed in time M(d) +O(d), but with
a possible loss in space complexity. In [35], it is shown how to keep the same space
complexity, at the cost of a constant increase in time complexity. Managing both
requirements remains an open question, already stated in [124, Problem 6].

Corollary 6 Let R be a commutative ring with unity, and d ∈ N such that 1, . . . , 2d+ 1 are
units in R. Let P be a degree d polynomial in R[X] such that the sequence

P (0), . . . , P (d)

is known. For any s in N, the sequence

P (0), P (2s), . . . , P (2sd)

can be computed in time sM(2d) +O(sd) ∈ O(sM(d)) and space O(d).

201



Proof. For any s ∈ N, let us denote by Ps(X) the polynomial P (2sX). We prove by induction
that all values Ps(0), . . . , Ps(d) can be computed in time sM(2d) + O(sd) and space O(d),
which is enough to conclude. The case s = 0 is obvious, as there is nothing to compute.
Suppose then that Ps(0), . . . , Ps(d) can be computed in time sM(2d)+O(sd) and using O(d)
temporary space allocation.

Under our assumption on R, Proposition 14 shows that the values Ps(d+ 1), . . . , Ps(2d+ 1)
can be computed in time M(2d) + O(d), using again O(d) temporary space allocation. The
values Ps(0), Ps(2), . . . , Ps(2d) coincide with Ps+1(0), Ps+1(1), . . . , Ps+1(d), so the corollary is
proved. ¤

9.3 Computing one selected term of a linear sequence

In this section, we recall and improve the complexity of an algorithm due to Chudnovsky and
Chudnovsky [59] for computing selected terms of linear recurrent sequences with polynomial
coefficients. The results of the previous section are used as a basic subroutine for these
questions.

As in the previous section, R is a commutative ring with unity. Let A be a n × n matrix
of polynomials in R[X]. For simplicity, in what follows, we only treat the case of degree 1
polynomials, since this is what is needed in the sequel. Nevertheless, all results extend
mutatis mutandis to arbitrary degree.

For r in R, we denote by A(r) the matrix over R obtained by specializing all coefficients of A
at r. In particular, for k in N, A(k · 1R) is simply denoted by A(k), following the convention
used up to now. Given a vector of initial conditions U0 = [u1, . . . , un]t ∈ Rn and given k
in N, we consider the question of computing the kth term of the linear sequence defined by
the relation Ui = A(i)Ui−1 for i > 0, that is, the product

Uk = A(k)A(k − 1) · · ·A(1)U0.

For simplicity, we write

Uk =

(
k∏

i=1

A(i)

)
U0,

performing all successive matrix products, i = 1, . . . , k, on the left side. We use this conven-
tion hereafter.

In the particular case when A is a matrix of constant polynomials, and taking only the
dependence on k into account, the binary powering method gives a time complexity of order
O(log(k)) base ring operations.

In the general case, the naive solution consists in evaluating all matrices A(i) and performing
all products. With respect to k only, the complexity of this approach is of order O(k) base
ring operations. In [59], Chudnovsky and Chudnovsky propose an algorithm that reduces
this cost to essentially O

(√
k
)
. We first recall the main lines of this algorithm; we then

present some improvements in both time and space complexities.

202



The algorithm of Chudnovsky and Chudnovsky.

The original algorithm uses baby-step / giant-step techniques, so for simplicity we assume
that k is a square in N. Let C be the n× n matrix over R[X] defined by

C =

√
k∏

i=1

A(X + i),

where A(X+i) denotes the matrix A with all polynomials evaluated at X+i. By assumption
on A, the entries of C have degree at most

√
k. For r in R, we denote by C(r) the matrix

C with all entries evaluated at r. Then the requested output Uk can be obtained by the
equation

Uk =



√

k−1∏
j=0

C(j
√
k)


U0. (9.3)

Here are the main steps of the algorithm underlying Equation (9.3), originally due to [59].

Baby steps. The “baby steps” part of the algorithm consists in computing the polynomial
matrix C. In [59], this is done within O(nωM(

√
k)) base ring operations, as products

of polynomial matrices with entries of degree O(
√
k) are required.

Giant steps. In the second part the matrix C is evaluated on the arithmetic progression
0,
√
k, 2
√
k, . . . , (

√
k − 1)

√
k and the value of Uk is obtained using Equation (9.3).

Using fast evaluation techniques, all evaluations are done within O(n2 M(
√
k) log(k))

base ring operations, while performing the
√
k successive matrix-vector products in

Equation (9.3) adds a negligible cost of O(n2
√
k) operations in R.

Summing all the above costs gives an overall complexity bound of

O
(
nωM

(√
k
)

+ n2 M
(√

k
)
log(k)

)

base ring operations for computing a selected term of a linear sequence. Due to the use of
fast evaluation algorithms in degree

√
k, the space complexity is O(n2

√
k +
√
k log(k)).

In the particular case when A is the 1×1 matrix [X], the question reduces to the computation
of

∏k
j=1 j in the ring R. For this specific problem, note that the ideas presented above were

already used in [195, 237], for the purpose of factoring integers.

Avoiding multiplications of polynomial matrices.

In what follows, we show how to avoid the multiplication of polynomial matrices, and reduce
the cost of the above algorithm to O(nω

√
k+n2 M(

√
k) log(k)) base ring operations, storing

only O(n2
√
k) elements of R.

Our improvements are obtained through a modification of the baby steps phase; the un-
derlying idea is to work with the values taken by the polynomial matrices instead of their
representation on the monomial basis. This idea is encapsulated in the following proposition.

203



Proposition 15 Let A be a n × n matrix with entries in R[X], of degree at most 1. Let
N ≥ 1 be an integer and let C be the n× n matrix over R[X] defined by

C =
N∏

i=1

A(X + i).

Then one can compute all scalar matrices C(0), C(1), . . . , C(N) within O(nωN) operations
in R and with a memory requirement of O(n2N) elements in R.

Proof. We first compute the scalar matrices [A(1), A(2), . . . , A(2N)] . Since all entries of A
are linear in X, the complexity of this preliminary step is O(n2N), both in time and space.
Then, we construct the matrices (C ′j)0≤j≤N and (C ′′j )0≤j≤N , which are defined as follows: we
let C ′0 and C ′′0 equal the identity matrix In and we recursively define

C ′j = A(N + j)C ′j−1 for 1 ≤ j ≤ N,
C ′′j = C ′′j−1A(N − j + 1) for 1 ≤ j ≤ N.

Explicitly, for 0 ≤ j ≤ N , we have

C ′j = A(N + j) · · ·A(N + 1)

and
C ′′j = A(N) · · ·A(N − j + 1),

thus
C ′′N−j = A(N) · · ·A(j + 1).

Computing all the scalar matrices (C ′j) and (C ′′j ) requires 2N matrix multiplications with
entries in R; their cost is bounded by O(nωN) in time and by O(n2N) in space. Lastly, the
formula

C(j) = A(N + j) · · ·A(N + 1)A(N) · · ·A(j + 1) = C ′jC
′′
N−j, 0 ≤ j ≤ N

enables to recover C(0), C(1), . . . , C(N) in time O(nωN) and space O(n2N). ¤

From this proposition, we deduce the following corollary, which shows how to compute the
scalar matrices used in the giant steps.

Corollary 7 Let A and C be polynomial matrices as in Proposition 15. If the elements
1, . . . , 2N + 1 are units in R, then for any integer s ≥ 1, the sequence

C(0), C(2s), . . . , C(2s(N − 1))

can be computed using O(nωN + n2sM(N)) operations in R and O(n2N) memory space.

Proof. This is an immediate consequence of Proposition 15 and Corollary 6. ¤

The above corollary enables us to perform the “giant steps” phase of Chudnovsky and
Chudnovsky’s algorithm in the special case when N = 2s; this yields the 4sth term in
the recurrent sequence. Using this intermediate result, the following theorem shows how to
compute the kth term, for arbitrary k, using the 4-adic expansion of k.

204



Theorem 12 Let A be a n × n matrix with linear entries in R[X] and let U0 be in Rn.
Suppose that (Ui) is the sequence of elements in Rn defined by the linear recurrence

Ui+1 = A(i+ 1)Ui, for all i ≥ 0.

Let k > 0 be an integer and suppose that 1, . . . , 2d
√
ke+1 are units in R. Then the vector Uk

can be computed within O
(
nω
√
k+n2 M

(√
k
)
log(k)

)
operations in R and using memory space

O(n2
√
k).

The proof of Theorem 12 is divided in two steps. We begin by proving the proposition in
the particular case when k is a power of 4, then we treat the general case.

The case k is a power of 4.

Let us suppose that N = 2s and k = N2, so that k = 4s. With this choice of k, Corollary 7
shows that the values C(0), C(N), . . . , C((N − 1)N) can be computed within the required
time and space complexities. Then we go on to the giant step phase described at the
beginning of the section, and summarized in Equation (9.3). It consists in performing

√
k

successive matrix-vector products, which has a cost in both time and space of O(n2
√
k).

The general case.

We now consider the general case. Let k =
∑s

i=0 ki4
i be the 4-adic expansion of k, with

ki ∈ {0, 1, 2, 3} for all i. Given any t, we will denote by dket the integer
∑t−1

i=0 4iki. Using
this notation, we define a sequence (Vt)0≤t≤s as follows: we let V0 = U0 and, for 0 ≤ t ≤ s
we set

Vt+1 = A(dket + 4tkt) · · ·A(dket + 1)Vt. (9.4)

It is easy to verify that Vs+1 = Uk. Therefore, it suffices to compute the sequence (Vt) within
the desired complexities.

Supposing that the term Vt has been determined, we estimate the cost of computing the
next term Vt+1. If kt is zero, we have nothing to do. Otherwise, we let V

(0)
t+1 = Vt, and, for

1 ≤ j ≤ kt, we let A(j)(X) = A (X + dket + 4t(j − 1)). Then we define V
(j)
t+1 by

V
(j)
t+1 = A(j)(4t) · · ·A(j)(1)V

(j−1)
t+1 , j = 1, . . . , kt.

By Equation (9.4), we have V
(kt)
t+1 = Vt+1. Thus, passing from Vt to Vt+1 amounts to com-

puting kt selected terms of a linear recurrence of the special form treated in the previous
paragraph. Using the complexity result therein and the fact that all kt are bounded by 3,
the total cost of the general case is thus

O

(
s∑

t=0

(
nω2t + n2tM(2t)

))
= O

(
nω2s + n2s

(
s∑

t=0

M(2t)

))
.

Using the fact that 2s ≤
√
k ≤ 2s+1 and the assumptions on the function M, we easily deduce

that the whole complexity fits into the bound O
(
nω
√
k + n2 M

(√
k
)
log(k)

)
, as claimed.

Similar considerations also yield the bound concerning the memory requirements. This
concludes the proof of Theorem 12.

205



Comments.

The question of a lower time bound for computing Uk is still open. The simpler question of
reducing the cost to O

(
nω
√
k+n2 M

(√
k
))

base ring operations, that is gaining a logarithmic
factor, already raises challenging problems.

As the above paragraphs reveal, this improvement could be obtained by answering the fol-
lowing question: Let P be a polynomial of degree d in R[X]. Given r in R, how fast can
we compute P (0), P (r), . . . , P (rd) from the data of P (0), P (1), . . . , P (d)? A complexity of
order O(M(d)) would immediately give the improved bound mentioned above. We leave it
as an open question.

9.4 The Cartier-Manin operator on hyperelliptic

curves

We finally show how to apply the above results to the computation of the Cartier-Manin
operator, and start by reviewing some known facts on this operator.

Let C be a hyperelliptic curve of genus g defined over the finite field Fpd with pd elements,
where p is the characteristic of Fpd . We suppose that p > 2 and that the equation of C is of
the form y2 = f(x), where f ∈ Fpd [X] is a monic squarefree polynomial of degree 2g+1. The
generalization to hyperelliptic curves of the Hasse invariant for elliptic curves is the so-called
Hasse-Witt matrix, which is defined as follows:

Definition 2 Let hk be the coefficient of degree k in the polynomial f (p−1)/2. The Hasse-Witt
matrix is the g × g matrix with coefficients in Fpd given by

H = (hip−j)1≤i,j≤g.

This matrix was introduced in [116]; in a suitable basis, it represents the operator on differ-
ential forms that was introduced by Cartier in [52]. Manin then showed in [163] that this
matrix is strongly related to the action of the Frobenius endomorphism on the p-torsion part
of the Jacobian of C. The article [264] provides a complete survey about those facts; they
can be summarized by the following theorem:

Theorem 13 (Manin) Let C be a hyperelliptic curve of genus g defined over Fpd. Let H

be the Hasse-Witt matrix of C and let Hπ = HH(p) · · ·H(pd−1), where the notation H(q)

means element-wise raising to the power q. Let κ(t) be the characteristic polynomial of the
matrix Hπ and let χ(t) be the characteristic polynomial of the Frobenius endomorphism of
the Jacobian of C. Then

χ(t) ≡ (−1)gtgκ(t) mod p.

This result provides a quick method to compute the characteristic polynomial of the Frobe-
nius endomorphism and hence the group order of the Jacobian of C modulo p, when p is
not too large. Combined with a Schoof-like algorithm and / or a baby-step / giant-step

206



algorithm, it can lead to a full point-counting algorithm, in particular for genus 2 curves, as
was demonstrated in [88, 166].

The obvious solution consists in expanding the product f (p−1)/2. Using balanced multiplica-
tions, and taking all products moduloXgp this can be done in O(M(gp)) base field operations,
whence a time complexity within O(M(p)), if g is kept constant. In what follows, regarding
the dependence in p only, we show how to obtain a complexity of O(M(

√
p) log(p)) base field

operations, using the results of the previous sections.

We will make the assumption that the constant term of f is not zero. Note that if it is zero,
the problem is actually simpler: writing f = Xf1, the coefficient of degree ip−j in f (p−1)/2 is
the coefficient of degree ip− j− (p− 1)/2 in f

(p−1)/2
1 . Hence we can work with a polynomial

of degree 2g instead of 2g + 1 and the required degrees are slightly less.

Furthermore, for technical reasons, we assume that g < p. This is not a true restriction
since for g ≥ p, all the coefficients of f (p−1)/2 up to degree g(p− 1) are needed to fill in the
matrix H.

Introduction of a linear recurrent sequence.

In [85], Flajolet and Salvy already treat the question of computing a selected coefficient in
a high power of some given polynomial, as an answer to a SIGSAM challenge. The key
point of their approach is that h = f (p−1)/2 satisfies the following first-order linear differential
equation

fh′ − p− 1

2
f ′h = 0.

From this, we deduce that the coefficients of h satisfy a linear recurrence of order 2g + 1,
with coefficients that are rational functions of degree 1.

Explicitly, let us denote by hk the coefficient of degree k of the polynomial h, and for
convenience, set hk = 0 for k < 0. Similarly, the coefficient of degree k of f is denoted by
fk. From the above differential equation, for all k in Z, we deduce that

2g+1∑
i=0

(
k + 1− (p+ 1)i

2

)
fi hk+1−i = 0.

We set Uk = [hk−2g, hk−2g+1, . . . , hk]
t, and let A(k) be the (2g + 1) × (2g + 1) companion

matrix:

A(k) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

((2g+1)(p+1)/2−k)f2g+1

kf0
· · · · · · · · · ((p+1)/2−k)f1

kf0



.

The initial vector U0 = [0, . . . , 0, f
(p−1)/2
0 ]t can be computed using binary powering techniques

in O(log(p)) base field operations; then for k ≥ 0, we have Uk+1 = A(k + 1)Uk. Thus, to

207



answer our specific question, it suffices to note that the vector Uip−j gives the coefficients
hip−j for j = 1, . . . , g that form the ith row of the Hasse-Witt matrix of C.
Yet, Theorem 12 cannot be directly applied to this sequence, because A(k) has entries that
are rational functions, not polynomials. Though the algorithm could be adapted to handle
the case of rational functions, we rather use the very specific form of the matrix A(k), so
only a small modification is necessary. Let us define a new sequence Vk by the relation

Vk = fk
0 k!Uk.

Then, this sequence is linearly generated and we have Vk+1 = B(k + 1)Vk, where

B(k) = f0kA(k).

Therefore, the entries of the matrix B(k) are polynomials of degree at most 1. Note also
that the denominators fk

0 k! satisfy the recurrence relation

fk+1
0 (k + 1)! = (f0(k + 1)) · (fk

0 k!).

Thus, we will compute separately, first Vp−1, V2p−1, . . . , Vgp−1 and then the denominators
fp−1

0 (p− 1)!, . . . , f gp−1
0 (gp− 1)!.

To this effect, we proceed iteratively. Let us for instance detail the computation of the
sequence Vp−1, V2p−1, . . . , Vgp−1. Knowing V0, we compute Vp−1 using Theorem 12. Then we
shift all entries of B by p, so another application of Theorem 12 yields V2p−1. Iterating g
times, we obtain Vp−1, V2p−1, . . . , Vgp−1 as requested; the same techniques are used to compute
fp−1

0 (p− 1)!, . . . , f gp−1
0 (gp− 1)!. Then the vectors Up−1, U2p−1, . . . , Ugp−1 are deduced from

Uk =
1

fk
0 k!

Vk.

Lifting to characteristic zero.

A difficulty arises from the fact that the characteristic is too small compared to the degrees
we are aiming to, so p! is zero in Fpd . The workaround is to do computations in the unramified
extension K of Qp of degree d, whose residue class field is Fpd . The ring of integers of K will
be denoted by OK ; any element of OK can be reduced modulo p to give an element of Fpd .
On the other hand, K has characteristic 0, so p is invertible in K.

We consider an arbitrary lift of f to OK [X]. The reformulation in terms of linear recurrent
sequence made in the above paragraph can be performed over K; the coefficients of f (p−1)/2

are computed as elements of K and then projected back onto Fpd . This is possible, as they
all belong to OK .

Using the iteration described above, we separately compute the values in K of the vectors
Vip−1 and the denominators f ip−1

0 (ip− 1)!, for i = 1, . . . , g. To this effect, we apply g times
the result given in Theorem 12; this requires to perform

O
(
gω+1√p+ g3M(

√
p) log(p)

)
,

operations in K and to store O(g2√p) elements of K.

208



Computing at fixed precision.

Of course, we do not want to compute in the field K at arbitrary precision: for our purposes,
it suffices to truncate all computations modulo a suitable power of p. To evaluate the required
precision of the computation, we need to check when the algorithm operates a division by p.

To compute the vectors Vip−1 and the denominators f ip−1
0 (ip − 1)!, for i = 1, . . . , g, we use

Theorem 12. This requires that all integers up to 2d√pe + 1 are invertible, which holds as
soon as p ≥ 11.

Then, for all i = 1, . . . , g, to deduce Uip−1 from Vip−1, we need to divide by f ip−1
0 (ip − 1)!.

The element f0 is a unit in OK , so the only problem comes from the factorial term. With
our assumption that g < p, we have i < p and then the p-adic valuation of (ip − 1)! is
exactly i− 1. Therefore the worst case is i = g, for which we have to divide by pg−1. Hence
computing the vectors Vip−1 modulo pg is enough to know the vectors Uip−1 modulo p, and
then to deduce the Hasse-Witt matrix.

Overall complexity.

Storing an element ofOK/p
gOK requiresO(dg log(p)) bits, and multiplying two such elements

can be done with O(M(dg log(p))) bit-operations. From the results of Section 9.3, we then
deduce the following theorem on the complexity of computing the Hasse-Witt matrix.

Theorem 14 Let p a prime, d ≥ 1 and C a hyperelliptic curve defined over Fpd by the
equation y2 = f(x), with f of degree 2g + 1. Then, assuming g < p, one can compute the
Hasse-Witt matrix of C with a complexity of

O
((
gω+1√p+ g3M(

√
p) log(p)

)
M(dg log(p))

)

bit-operations and O
(
dg3√p log(p)

)
storage.

The matrix H by itself gives some information on the curve C, for instance H is invertible
if and only if the Jacobian of C is ordinary [264, Corollary 2.3]. However, as stated in
Theorem 13, the matrix Hπ and in particular its characteristic polynomial χ(t) tell much
more and are required if the final goal is point-counting. Thus, we finally concentrate on the
cost of computing the characteristic polynomial of Hπ.

The matrix Hπ is the “norm” of H and as such can be computed with a binary powering
algorithm. For simplicity, we assume that d is a power of 2, then denoting

Hπ,i = HH(p) · · ·H
ş
p2i−1

ť
.

we have

Hπ,i+1 = Hπ,i · (Hπ,i)

ş
p2i

ť
.

Hence the computation of Hπ,i+1 from Hπ,i costs one matrix multiplication and 2i matrix
conjugations. A matrix conjugation consists in raising all the entries to the power p, therefore

209



it costs O(g2 log(p)) operations in Fpd . The matrix we need to compute is Hπ = Hπ,log2(d).
Hence the cost of computing Hπ is

O
(
dg2 log(p) + gω log(d)

)

operations in Fpd . The general case where d is not a power of 2 is handled by adjusting the
recursive step according to the binary expansion of d and yields the same complexity up to
a constant factor.

The cost of the characteristic polynomial computation is bounded by the cost of a matrix
multiplication [132] and is therefore negligible compared to the other costs.

If we are interested only in the complexity in p and d, i.e. if we assume that the genus is
fixed, we get a time complexity for computing χ(t) mod p in

O ((M(
√
p) + d) M(d log(p)) log(p)) .

Case of large genus.

In case of large genus, the algorithm of Theorem 12 is asymptotically not the fastest. In
this paragraph, we assume that the function M is essentially linear and we do not take into
account the logarithmic factors; adding appropriate epsilons in the exponents would yield a
rigorous analysis. The cost in bit-operations of Theorem 14 is at least g4√pd whereas the
cost of the naive algorithm is linear in gpd. If g > p1/6, then g4√p > gp, and therefore the
naive algorithm is faster.

9.5 Point-counting numerical example

We have implemented our algorithm using Shoup’s NTL C++ library [226]. NTL does not
provide any arithmetic of local fields or rings, but allows to work in finite extensions of rings
of the form Z/pgZ, as long as no division by p occur; the divisions by p are well isolated in the
algorithm, so we could handle them separately. Furthermore, NTL multiplies polynomials
defined over this kind of structure using an asymptotically fast FFT-based algorithm.

To illustrate that our method can be used as a tool in point-counting algorithms, we have
computed the Zeta function of a (randomly chosen) genus 2 curve defined over Fp3 , with
p = 232 − 5. Such a Jacobian has therefore about 2192 elements and should be suitable for
cryptographic use if the group order has a large prime factor. Note that previous computa-
tions were limited to p of order 223 [166].

The characteristic polynomial χ of the Frobenius endomorphism was computed modulo p in 3
hours and 41 minutes, using 1 GB of memory, on an AMD Athlon MP 2200+. Then we used
the Schoof-like algorithms of [88] and [89] to compute χ modulo 128× 9× 5× 7, and finally
we used the modified baby-step / giant-step algorithm of [166] to finish the computation.
These other parts were implemented in Magma [32] and were performed in about 15 days of
computation on an Alpha EV67 at 667 MHz. We stress that this computation was meant
as an illustration of the possible use of our method, so little time was spent optimizing our
code. In particular, the Schoof-like part and the final baby-step / giant-step computations
are done using a generic code that is not optimized for extension fields.

210



Numerical data.

The irreducible polynomial P (t) that was used to define Fp3 as Fp[t]/(P (t)) is

t3 + 1346614179t2 + 3515519304t+ 3426487663.

The curve C has equation y2 = f(x) where f is given by

f(x) = x5 + (2697017539t2 + 1482222818t+ 3214703725)x3+
(676673546t2 + 3607548185t+ 1833957986)x2+
(1596634951t2 + 3203023469t+ 2440208439)x+
2994361233t2 + 3327339023t+ 862341251.

Then the polynomial characteristic χ(T ) of the Frobenius endomorphism is given by T 4 −
s1T

3 + s2T
2 − p3s1T + p6, where

s1 = 332906835893875, s2 = 142011235215638946167187570235.

The group order of the Jacobian is then

6277101691541605395917785080771825883860189465813625993977
= 33 × 13× 67× 639679× 417268068727536370810010172344236025455933953139.

This number has a large prime factor of size 2158, therefore that curve is cryptographically
secure.

Measure of the complexity in p.

To check the practical asymptotic behaviour of our algorithm, we ran our implementation
on a genus 2 curve defined over Fp3 with p = 234−41. We performed only the Cartier-Manin
step, and not the full point-counting algorithm. As the characteristic is about 4 times larger
than in the previous example, a complexity linear in

√
p means a runtime multiplied by

about 2. On the same computer, the runtime is 8 hours and 48 minutes. Hence the ratio of
the runtimes is about 2.39. The defect of linearity can be explained by taking into account
the logarithmic factors. Assuming that M(n) is O(n log(n) log(log(n))), and neglecting the
multi-logarithmic factors, the complexity announced in Theorem 14 is in O(

√
p(log(p))3).

With this estimate, the expected ratio between the runtimes becomes about 2.40, that is
very close to the measure. This validates our analysis.

9.6 Conclusion

In this chapter, we have presented an improvement of an algorithm by Chudnovsky and
Chudnovsky to compute selected terms in a linear sequence with polynomial coefficients.
This algorithm is then applied to the computation of the Cartier-Manin operator of hyper-
elliptic curves, thus leading to improvements in the point-counting problems that occur in
cryptography.

211



This strategy extends readily to curves of the form yr = f(x) with r > 2, for which the
Hasse-Witt matrix has a similar form. For more general curves, Mike Zieve pointed to us
the work of Stöhr and Voloch [231] that gives formulas that still fit in our context in some
cases.

Finally, Mike Zieve pointed out to us the work of Wan [257] that relates Niederreiter’s
polynomial factorization algorithm to the computation of the Cartier-Manin operator of
some variety. The link with our work is not immediate, as that variety has dimension zero.
Nevertheless, this remains intriguing, especially if we think of Pollard-Strassen’s integer
factoring algorithm as a particular case of Chudnovsky and Chudnovsky’s algorithm.

212



Chapter 10

Fast Algorithms for Linear
Differential Operators

In this chapter we address the problem of fast computation with linear differential operators.
We propose a unified strategy, which can be viewed as the non-commutative analogue of
semi-numerical computations with algebraic numbers based on LLL [153] algorithm. Our
methods rely on a change of representation: instead of dealing with coefficients of differential
operators, we work with their (local) power series solutions. This allows to treat various
operations on linear differential operators including least common left multiples and tensor
products. This chapter is an extended abstract of an article in preparation.

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.2 From differential operators to power series solutions . . . . . . 215

10.3 Apparent singularities and bounds on the coefficients . . . . . 216

10.4 From power series solution to differential operators . . . . . . . 219

10.4.1 Pade-Hermite approximation . . . . . . . . . . . . . . . . . . . . . 219

10.4.2 Wronskians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10.5 Application to lclm and tensor product . . . . . . . . . . . . . . 221

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

213



10.1 Introduction

Suppose that we are given two linear differential operators L1 and L2, and that we want to
compute L1 ? L2, where ? is a certain linear algebra operation, defined in terms of (local)
solution spaces of L1 and L2. Classical examples of such operations are the least common
(left) multiple L1 ⊕ L2 and the tensor product L1 ⊗ L2; these are the linear differential
operators whose solution spaces are spanned by the sums y1+y2, respectively by the products
y1y2, of solutions of L1y1 = 0 and L2y2 = 0.

Specificity of our approach. The aim of this chapter is a feasibility study of a new
method for computing L = L1 ? L2, which extends the usual evaluation / interpolation
strategy to a non-commutative framework. The rôle of points of evaluation is played by
formal power series, on which differential operators are evaluated.

To compute L = L1 ? L2, our generic algorithm consists in performing the following stages:

1. compute truncated power series solutions S1 and S2 of both input operators L1 and L2;

2. combine S1 and S2 by means of the defining operation ? and deduce a (truncated)
solution S of the output operator L;

3. reconstruct the operator L from its truncated power series solution S.

Similarity with computations with algebraic numbers. One should notice the sim-
ilarity between this method and the classical semi-numerical approach for computing with
algebraic numbers, which uses the lattice reduction algorithm LLL [153]. If α and β are two
algebraic numbers represented by their minimal polynomials mα and mβ, the LLL-based
method computes the minimal polynomial of α + β as follows: first determine (sufficiently

accurate) numerical approximations α̃ of α and β̃ of β, then form γ̃ = α̃ + β̃ and search for
integers `0, `1, . . . , such that

∑
i `iγ̃

i be small enough.

In our present differential setting, (floating point) real numbers are replaced by (truncated)
power series (with exact coefficients), integers `i by polynomials and numerical approxima-
tions of real numbers by truncation of power series.

Linear operators with constant coefficients. This similarity is not fortuitous, since
operations on algebraic numbers can be viewed as operations on differential operators with
constant coefficients; for instance, the sum of two algebraic numbers corresponds to lclm of
differential operators with constant coefficients.

Indeed, if the operators are represented by polynomials P and Q, then {exp(αX)}P (α)=0

and {exp(βX)}Q(β)=0 are bases of their solution spaces, so {exp((α + β)X)}α,β is a basis
of the tensor product of P and Q, therefore the polynomial representing it is the minimal
polynomial of α+ β. Thus, our results in Chapter 7 yield nearly optimal algorithms for the
tensor product of operators with constant coefficients.

214



Efficiency issues. Stages (1) and (3) perform conversions between both representations of
differential operators. In stage (1), the input is the monomial representation of a differential
operator, while the output is its representation in terms of (local) solution spaces. Stage (3)
performs the converse direction: on input one or several truncated power series, it computes
the differential operator of smallest order that admits these power series as solutions.

Thus, the efficiency of the method depends on the ability of doing these conversions fast. In
the case of algebraic numbers, the equivalent of stage (1) is performed in a nearly-optimal
fashion using a Newton iterator. In our more general case, we are still able to perform nearly
optimally the conversion in stage (1): given an operator L with polynomial coefficients, we
show that the first σ terms of the power solution S at an ordinary point can be computed
using Olog(σ) operations.

In contrast, the fastest solution for stage (3) uses LLL algorithm, whose complexity is not
optimal. Similar difficulties occur for the operator reconstruction stage (3), which may be
viewed as a computation of differential Padé-Hermite approximants. Indeed, the coefficients
of the output operator L are given by a Padé-Hermite approximant of (y, y′, . . . , y(D)) of type
(N,N, . . . , N), where D is the order of L and N is a bound on the degrees of the coefficients
of L.

Bounds on the results. This suggests that the a priori knowledge of tight bounds on
the degree of the coefficients of L in terms of similar bounds on the input operators should
contribute to improve efficiency of our approach.

Since we consider only linear algebra constructions on differential operators with polynomial
coefficients, such bounds are available by means of Cramer’s rule. However, due to ana-
lytic phenomena like the appearance of apparent singularities during such constructions, the
bounds provided by Cramer’s rule are not tight. For this reason, different methods need
to be designed in order to yield more realistic bounds. We exemplify two methods based
respectively on differential resultants and (generalized) Fuchs relation, in the case of lclm
and tensor power.

10.2 From differential operators to power series solu-

tions

Let P be a linear differential operator of order n, with polynomial coefficients pi(x) =∑m
j=0 pijx

j of degree at most m. We suppose for simplicity that x = 0 is an ordinary point
for P , that is pn(0) 6= 0. Performing a generic translation of the coefficients of P ensures
that this hypothesis can be taken for granted.

We want to compute the first σ coefficients of a power series solution S =
∑

i≥0 six
i of P

at x = 0, with given initial conditions. We propose a method which makes use of fast poly-
nomial evaluation methods and which is faster by an order of magnitude than the classical
algorithm (obtained by identification of coefficients) which uses the one-to-one correspon-
dence xkS(x)↔ si−k, xS ′(x)↔ isi.

215



The sequence (si) satisfies a linear recurrence of order at most m+ n, whose coefficients are
polynomials in i of degree at most n 1. This recurrence writes

p̃0(i)si + · · ·+ p̃n+m(i)si−m−n = 0,

where p̃i are polynomials of degree at most n.

Determining the coefficients of the polynomials p̃i amounts to expressing P in terms of
the Euler operator δ = xD. This can be done efficiently using the method explained in
Chapter 5. This method requires O

(
M(n) max(m,n) log(n)

)
base field operations. Then,

we use the Equation (2.3) on page 56 of this thesis in the following way: we perform the
evaluation of the polynomials p̃i at the points in arithmetic progression 0, 1, . . . , σ, then we
compute iteratively the coefficients si.

Since the polynomials p̃i have degree at most n, each one of thesem+nmultipoint evaluations
can be done using our algorithms in Chapter 5, for a cost of

σ

n

(
M(n) log(n) +O

(
M(n)

))

operations. Then, each value si is obtained in an on-line manner using O(m+n) operations.

Putting these arguments together, we have proved

Theorem 15 Let P =
∑n

i=0 pi(x)D
i be a linear differential operator of order n, with polyno-

mial coefficients pi(x) =
∑m

j=0 pijx
j of degree at most m. Suppose that x = 0 is an ordinary

point for P, that is pn(0) 6= 0. Then, the first σ coefficients of a power series solution
S =

∑
i≥0 six

i of P at x = 0 can be computed using

O
(
M(n) max(m,n) log(n)

(
1 + σ/n

))

base field operations.

Remark. The same complexity estimates are valid for the problem of verifying that a
given power series S is a solution of PS = 0, or, more generally, to evaluate the differential
operator P on a given power series S at precision σ.

10.3 Apparent singularities and bounds on the coeffi-

cients

Given two linear differential homogeneous operators L1 et L2 of orders m, respectively n, we
address the problem of bounding the degrees of the coefficients of their tensor product L in
terms of the corresponding bounds for L1 and L2 and of the orders m and n.

By definition, the solution space of L consist of all the products y1y2 of solutions of L1,
respectively L2. Therefore, a singular point for one of its solutions is a singular point for a

1The exact order of the recurrence is maxai,j 6=0(j − i)−minai,j 6=0(j − i).

216



solution of either L1 or L2 and this has an impact on the leading coefficients of L, L1 and L2;
more precisely, if L1 = p0(x)D

m +p1(x)D
m−1 + · · ·+pm(x) and L2 = q0(x)D

n + q1(x)D
n−1 +

· · ·+ qn(x), then the leading coefficient of L is a multiple of p0(x)
nq0(x)

m.

The presence of an extra factor of this coefficient is due to the so-called apparent singularities
of L, which are by definition [122, 196], regular singular points of L where the general solution
is holomorphic.

Theorem 16 [196, 122] Suppose that the roots ρ1, . . . , ρn of the indicial equation of L at
x = 0 are distinct nonnegative integers and let N = ρn − ρ1 be the difference between the
largest and the smallest exponent. The following assertions are equivalent:

1. x = 0 is an apparent singularity of L.

2. the Wronskian determinant of L is an analytic function and vanishes at x = 0.

3. for all power series solution
∑

n cnx
n of L, the n coefficients of the powers xρi are

arbitrary.

4. the rank of the system expressing the compatibility of N+1 recurrence formulas satisfied
by the coefficients of (xρ1 , xρ1+1, . . . , xρn) is N − n+ 1.

5. arbitrary values cannot be assigned to y(0), y′(0), . . . , y(n−1)(0) for any power series
solution y of L.

6. there exists a nonzero power series solution y of L such that y(0) = · · · = y(n−1)(0) = 0.

Here is a simple example showing how apparent singularities can occur in a tensor product.
Let L1 = D2 + 2x− 1 and L2 = (x− 1)D2 + 1. Their tensor product L = L1 ⊗ L2 equals

L = x(x− 1)3(2x− 3)D4 − (x− 1)2(2x2 + 3− 4x)D3 + x(x− 1)2(2x− 3)(4x2 − 6x + 4)D2+

(x− 1)(−14x3 + 25x− 2x2 + 4x4 − 12)D + (43x3 − 85x4 − 44x6 − 20x2 + 90x5 + 10x− 3 + 8x7).

Thus, the points x = 0 and x = 3/2 are ordinary points for L1 and L2, but apparent
singularities for their tensor product L. Their presence is reflected in the leading coefficient
of L. A direct verification goes by simple inspection on the exponents of a basis of power
series solutions of L. Starting from the bases {f1, f2} of L1 and {g1, g2} of L2, where

f1 = −1− 1
2
x2 + 1

3
x3 − 1

24
x4 + 1

15
x5 − 17

720
x6 + 1

280
x7 +O(x8)

f2 = x+ 1
6
x3 − 1

6
x4 + 1

120
x5 − 1

60
x6 + 41

5040
x7 +O(x8),

g1 = −1− 1
2
x2 − 1

6
x3 − 1

8
x4 − 1

12
x5 − 43

720
x6 − 5

112
x7 +O(x8) and

g2 = x+ 1
6
x3 + 1

12
x4 + 7

120
x5 + 1

24
x6 + 157

5040
x7 +O(x8).

the following basis for the tensor product L at the origin is obtained

217



h1 = 1 + x2 − 1
6
x3 + 5

12
x4 − 1

15
x5 + 1

9
x6 + 37

2520
x7 +O(x8),

h2 = −x− 2
3
x3 + 1

4
x4 − 11

60
x5 + 7

180
x6 − 53

840
x7 +O(x8),

h3 = −x− 2
3
x3 − 13

60
x5 − 1

90
x6 − 41

630
x7 +O(x8) and

h4 = x2 + 1
3
x4 − 1

12
x5 + 17

180
x6 + 1

90
x7 +O(x8).

Since the exponents of the basis {h1, h2, h4, h2 − h3} are {0, 1, 2, 4}, the point x = 0 is an
apparent singularity of L. This example suggests a general way of verifying whether a given
point is an apparent singularity or not. One simply computes a local basis of solutions at
the given point and look for a linear combination of valuation greater than n− 1.

Computing apparent singularities of the tensor product L = L1 ⊗ L2 We now
consider the problem of finding the apparent singularities of the tensor product at x = 0,
supposed an ordinary point for both L1 and L2.

1. consider the shifted operator L1(a), obtained by replacing x by x+a in the coefficients
of L1. Similarly construct L2(a).

2. compute two bases f1(a), . . . , fm(a) and g1(a), . . . , gn(a) of power series solutions of
L1(a) and L2(a) at x = 0.

3. compute the first mn coefficients of the mn cross products hij(a) = fi(a)gj(a); form
the mn×mn matrix W (a) whose entries are these coefficients.

4. the desired points are the zeros of the rational function det(W (a)).

Continued example The translations of L1 and L2 are the operators

L1(a) = D2 + 2x+ 2a− 1 and L2(a) = (x+ a− 1)D2 + 1.

Bases of local solutions at x = 0 of L1(a) and L2(a) with initial conditions (1, 0) and (0, 1)
are formed respectively by the power series

1 +
(
−a +

1
2

)
x2 − 1

3
x3 + O(x4), x +

(
−1

3
a +

1
6

)
x3 + O(x4)

1− 1
2(a− 1)

x2 +
1

6(a− 1)2
x3 + O(x4), x− 1

6(a− 1)
x3 + O(x4)

Thus, the mobile wronskian of L at a is the following matrix

W (a) =




1 0 − (2a2−3a+2)
2(a−1)

− (2a2−4a+1)
6(a−1)2

0 1 0 − (6a2−9a+4)
6(a−1)

0 1 0 − (2a2−3a+4)
6(a−1)

0 0 1 0



.

The determinant det(W (a)) is the rational fraction −a(2a−3)
3(a−1)

; its zeros are the apparent
singularities of L and its pole is the the unique true singularity of L. This remark extends
to a general setting and yields the following result.

218



Theorem 17 det(W (a)) is a rational function; its zeros encode the apparent singularities
of L and its poles are the true singularities of L.

Theorem 18 Suppose L1 and L2 have orders d1 and d2 and polynomial coefficients of degrees
bounded by k1 and k2. Then

1. the tensor product of L1 and L2 has order at most d1d2 and coefficients of degree at
most (d1d2 − d1 − d2 + 2)(d2k1 + d1k2).

2. the least common left multiple of L1 and L2 has order at most d1 + d2 and coefficients
of degree at most k1(d2 + 1) + k2(d1 + 1).

10.4 From power series solution to differential opera-

tors

We show how to efficiently recover a linear differential operator L with polynomial coefficients
from the local information provided by the coefficients of a power-series solution of L at an
ordinary point.

10.4.1 Pade-Hermite approximation

Given F an (m+ 1)-tuple of formal power series (f0, . . . , fm), and given d an (m+ 1)-tuple
of integers (d0, . . . , dm), one classically defines a Padé-Hermite approximant for F of type d
as a nontrivial tuple P of polynomials Pj over K having degrees bounded by dj such that:

P(z) · F(z) =
∑

j

Pj(z)fj(z) = O
(
zσ

)
,

where σ := d0 + · · ·+ dm +m.

The Padé-Hermite approximation problem was introduced in 1873 by Hermite and has been
widely studied for several authors [245] [17], [18], [11], [12]. The case m = 1 corresponds to
the Padé approximation problem for a single power series, see also Section 3.3.4 of this thesis.
Padé-Hermite approximation includes as important sub-cases the algebraic approximants
(fj = f j) [219], [220], [148].

In recent years several matrix generalizations have also been studied; a uniform approach
to the various aspects of Padé-Hermite approximation is presented in [18] and in [245].
Beckermann and Labahn proposed a fast, as well as a “super-fast” algorithm for computing
Padé-Hermite approximates. Recently, an “ultra-fast” version of their algorithm has been
designed [148, 97]. For the sake of completeness, we recall the complexity result in [148, 97].

Theorem 19 Let F = (f0, . . . , fm) be a (m+ 1)-tuple of formal power series and let d ≥ 0.
Then one can compute a Padé-Hermite approximant for F of type (d, . . . , d) within

O
(
MM(m, d) log(d)

)
= Olog(m

ωd)

base field operations.

219



Let us notice that this algorithm computes a basis of approximants, whose size is O(m2d),
thus it is nearly optimal for this task. However, we use this algorithm in the very special case
where the input series are the successive derivatives of a fixed power series. For the moment
we are unable to adapt this result so as to exploit the special structure of the differential
approximant problem. However, we proceed with this approach, since we feel that such
efficient structured Padé-Hermite approximants should exist; the, the rest of our results will
yield very efficient algorithms.

Theorem 20 Suppose that P is an unknown linear differential operator, whose order p and
maximum degree k of coefficients are known. Then starting from a generic power series
solution given at precision (k+2)(p+1) around an ordinary point, P can be recovered using

Olog

(
pω(k + 1)

)

base field operations.

Continued example Suppose the bound d = 7 is apriori known for degree of the coeffi-
cients of L. We compute the first 5×9−1 = 44 terms of power series solutions y1, respectively
y2 for L1 and L2 at the ordinary point x = 0, then compute the product y = y1y2 and his
m = 4 successive derivatives and then apply the Padé-Hermite routine to it. The output of
this computation is, as expected, a vector collinear with that of the coefficients of L.




x7 − 11
2
x6 + 45

4
x5 − 85

8
x4 + 43

8
x3 − 5

2
x2 + 5

4
x− 3

8
1
2
x5 − 9

4
x4 + 3

2
x3 + 27

8
x2 − 37

8
x+ 3

2

x6 − 5x5 + 41
4
x4 − 11x3 + 25

4
x2 − 3

2
x

−1
4
x4 + x3 − 13

8
x2 + 5

4
x− 3

8
1
4
x5 − 9

8
x4 + 15

8
x3 − 11

8
x2 + 3

8
x



.

10.4.2 Wronskians

An alternative algorithm can be obtained if one is given as input a basis of power series
solutions at x = 0 of the shifted operator L(a). The complexity result is formulated in the
following theorem.

Theorem 21 Let P be an unknown linear differential operator, whose order p and maximum
degree k of coefficients are known. Suppose that a basis of local solutions at x = 0 of the
shifted operator P(a) is given at precision p+ 1:

yi =
∑
j≥0

ui,j(a)

vi,j(a)

xj

j!
+O(xp+1),

where the polynomials ui,j and vi,j have degrees bounded by N . Then, one can recover the
operator P using

Olog

(
pωN

)

base field operations.

220



Indeed, the mobile wronskian matrix W (a) containing the rational fraction coefficients yi,j

of solutions
yi =

∑
j≥0

yi,j(a)x
j +O(xp+1), (i = 1 . . . p)

verifies the equality:



y1(a) y′1(a) . . . y

(p−1)
1 (a)

...
...

...

yp(a) y′p(a) . . . y
(p−1)
p (a)


 ·




a0

ap
(a)
...

ap−1

ap
(a)


 =



−y(p)

1 (a)
...

−y(p)
p (a)


 .

This system can be solved using Storjohann’s algorithm described in Section 3.4.2 within
the announced running time bound.

Remark Storjohann’s result is nearly optimal for generic polynomial matrices. In our
case, we apply it to matrices W (a) which have particular structures. For such matrices, an
improved version of Storjohann’s algorithm has yet to be found. Typically, specific bounds
as those presented for the lclm or tensor product help to speed-up only half of Storjohann’s
algorithm, roughly by an order of magnitude. Unfortunately, this is not enough to improve
the complexity of the whole computation, since the high-order lifting step cannot take benefit
of tight bounds in a direct fashion, so it continues to work as in the generic case. We leave the
problem of designing efficient algorithms for structured polynomial matrices as an important
open question.

10.5 Application to lclm and tensor product

Let us summarize in the table below the complexity results for the computation of lclm and
of tensor products, corresponding to the conversion algorithms described in the preceding
sections. Since only the conversion from power series to operators may differ, we indicate
only the algorithm used for that conversion.

To simplify the notation, we assume that both L1 and L2 have orders n and polynomial
coefficients of degree at most n.

algorithm L1 ⊗ L2 LCLM(L1, L2)

Padé-Hermite Olog

(
n2ω+4

)
Olog

(
nω+2

)

mobile Wronskian Olog

(
n2ω+3

)
Olog

(
nω+2

)

size of output O(n6) O(n3)

Figure 10.1: Complexity results for lclm and tensor products.

221



10.6 Conclusions

In this chapter, we proposed a fast method for computing with linear differential operators.
This method is inspired by the usual evaluation / interpolation strategy in the commutative
polynomial case. It yields algorithms for lclm and tensor product, which are sub-quadratic in
the size of the output. However, these algorithms are not optimal, due to the reconstruction
step, performed using methods (like Padé-Hermite approximant algorithms or Storjohann’s
algorithm) which do not take into account the special (differential) structure of the problem.
We feel that fast, structure sensitive, versions of these methods should exist, and we leave
this as a direction of further research. With the notations in Table 10.1, such improved
structured versions would decrease the actual complexities by one order of magnitude, that
is, down to O(n2ω+2) for the tensor product and down to O(nω+1) for the lclm.

222



Au lieu de conclusion

Mise en contexte

L’un des aspects du travail de cette thèse a porté sur la conception d’algorithmes efficaces
pour le calcul des opérations de base avec les opérateurs différentiels linéaires à coefficients
polynomiaux. Ceci fait partie d’un programme plus vaste de recherche dans le cadre de la
théorie de l’élimination dans les D-modules et ses applications aux fonctions spéciales.

Mon intérêt pour le cadre différentiel linéaire a une motivation multiple. D’une part, les
opérateurs différentiels linéaires fournissent une structure de données très flexible pour
représenter de nombreuses fonctions spéciales ; ce point de vue est similaire à celui per-
mettant de manipuler des nombres algébriques via leurs polynômes minimaux. Par ailleurs,
le cadre différentiel linéaire suffit pour englober des applications algorithmiques importantes
à la sommation et à l’intégration définie des fonctions spéciales, domaine initié par D. Zeil-
berger au début des années ’90, [265].

Dans la lignée des travaux fondateurs de Zeilberger, F. Chyzak [61] a montré la possibilité
d’algorithmiser l’intégration et la sommation des fonctions spéciales définies par des systèmes
d’équations différentielles, via des calculs de bases de Gröbner dans des anneaux non-
commutatifs. Le sujet est cependant loin d’être clos car de nombreux problèmes d’efficacité,
tant théoriques que pratiques, demeurent. Ces problèmes sont liés à la structure de données
utilisée – la représentation développée des polynômes – et, a posteriori, à l’utilisation des
techniques de réécriture, dont la complexité est intrinsèquement élevée.

Par ailleurs, le même problème est présent dans les méthodes classiques de résolution
des systèmes polynomiaux. Or, depuis quelques années, une alternative aux méthodes
de réécriture a été proposée par G. Lecerf [149], dans la continuation de travaux récents
du groupe de recherche international TERA [1]. L’approche repose crucialement sur la
représentation en évaluation des polynômes. Ainsi, il a été montré que les problèmes
d’élimination en géométrie algébrique classique peuvent être ramenés dans une classe de
complexité polynomiale si on adopte la représentation en évaluation des polynômes.

Un objectif important est d’importer les techniques d’évaluation dans le cadre non-
commutatif des polynômes différentiels à plusieurs dérivations. Pour que cela puisse se
réaliser, il faudra :

• comprendre la géométrie du processus d’élimination sous-jacent aux méthodes de som-
mation et d’intégration symboliques, par exemple, dans la méthode du creative tele-
scoping [265].

• développer une algorithmique efficace adaptée à ce type d’élimination, en essayant
d’importer les techniques qui ont déjà permis de réduire la complexité de l’élimination
dans le cadre de la géométrie algébrique effective.

223



Détail de quelques perspectives de recherche

La complexité est à la frontière entre les mathématiques et l’informatique. En calcul formel
et en calcul numérique, les meilleurs résultats de complexité reposent souvent sur des algo-
rithmes dont la conception parvient à exploiter la géométrie du problème à résoudre.

En partant de résultats récents sur la complexité de la résolution géométrique de systèmes
polynomiaux [149] et des acquis algorithmiques décrits dans cette thèse, il est envisageable
de procéder au défrichage du champ algorithmique des opérateurs différentiels linéaires – du
point de vue de la complexité.

Dans ce mémoire, j’ai proposé des algorithmes efficaces concernant principalement les
polynômes commutatifs, à une ou plusieurs variables. La ressemblance formelle entre les
calculs sur les polynômes et les calculs sur les opérateurs différentiels linéaires est évidente.
Cependant, la mise en pratique d’idées exploitant cette ressemblance est difficile : la non-
commutativité du différentiel linéaire rend la traduction directe des algorithmes existants en
commutatif soit inopérante soit trop complexe.

Un petit nombre de principes méthodologiques (diviser pour régner, évaluation–interpolation,
pas de bébés–pas de géants) sont à la base de la plupart des algorithmes fondamentaux les plus
efficaces en calcul formel. Mon approche repose sur l’établissement de liens entre ces principes
et des notions géométriques ou algébriques (réductibilité, fibres, dualité), et l’exploitation de
ces liens pour la conception d’algorithmes efficaces.

Les résultats attendus sont de nature algorithmique et logicielle. En particulier, je vise la mise
au point de nouveaux algorithmes d’intégration définie et de sommation définie de fonctions
spéciales. La méthodologie que j’envisage consiste à importer dans l’univers non-commutatif
les progrès de complexité obtenus par une approche géométrique en commutatif.

Calculs rapides sur des opérateurs linéaires univariés. Dans le domaine univarié, la
mise en évidence d’un cadre commun pour les opérateurs linéaires et les polynômes remonte
à Ore dans les années 1930. En particulier, Ore a explicité un algorithme d’Euclide étendu
permettant de calculer le pgcd et le ppcm d’opérateurs linéaires. Dans le cadre commutatif
univarié, la complexité de ces calculs se réduit classiquement à celle du produit de polynômes,
elle-même essentiellement optimale via la transformée de Fourier rapide. Par comparaison,
le produit rapide d’opérateurs différentiels n’est connu que depuis peu [247] comme étant
équivalent au produit de matrices. En ce qui concerne le calcul du pgcd, le seul progrès
connu par rapport à l’algorithme d’Euclide näıf est une version non-commutative des sous-
résultants, dont la complexité est loin d’être optimale.

Dans le dernier chapitre de cette thèse, j’ai proposé une méthode de type évaluation-
interpolation pour certaines opérations usuelles sur les opérateurs différentiels linéaires à
coefficients polynomiaux, permettant d’aborder le ppcm et en même temps que le produit
symétrique. Le rôle des points d’évaluation est joué par des séries formelles sur lesquelles
on évalue des opérateurs différentiels, tandis que l’interpolation consiste à reconstruire un
opérateur à partir de ses solutions séries (tronquées).

Cependant, si pour l’étape d’évaluation on dispose maintenant d’algorithmes satisfaisants,
je ne connais pas d’algorithme optimal pour l’étape de reconstruction. Ainsi, pour l’instant,

224



la solution adoptée passe par l’emploi d’algorithmes généraux de calculs d’approximants de
Padé-Hermite, qui n’arrivent à exploiter que partiellement la structure spéciale du problème.
C’est pourquoi, je me propose comme objectif à court terme de chercher un algorithme
adapté à ce cadre. Je vise également un traitement de ces questions pour les opérateurs aux
(q–) différences, et plus généralement dans le cas des opérateurs de Ore.

Élimination multivariée non-commutative. Une extension naturelle de ces opérations
dans le cadre multivarié consiste à considérer des idéaux d’opérateurs linéaires (différentiels,
ou plus généralement, de Ore) dans des algèbres appropriées. Les idéaux pertinents sont dits
D-finis ; ils sont engendrés par des systèmes d’opérateurs dont les solutions forment un espace
vectoriel de dimension finie. Les mêmes questions qu’en univarié peuvent alors être abordées :
produit symétrique, somme ou union d’idéaux D-finis. F. Chyzak et B. Salvy [63, 61] ont
récemment développé une algorithmique de ces systèmes fondée sur des calculs de bases
de Gröbner non-commutatives. Un programme à moyen terme que je voudrais démarrer
consiste à améliorer l’efficacité de ces calculs, soit en exploitant les progrès récents de calculs
de bases de Gröbner commutatives [78], soit en amorçant une approche de type résolution
géométrique non-commutative.

Création téléscopique. Une opération d’élimination très importante, permettant le cal-
cul des intégrales définies, est la création télescopique (creative telescoping en anglais)
due à D. Zeilberger. Cette opération pose un problème d’élimination spécifique au non-
commutatif : il s’agit d’éliminer une variable dans la somme d’un idéal à gauche et d’un
idéal à droite (cette somme n’est pas un idéal). Plus généralement, une résolution algorith-
mique satisfaisante de cette question permettrait de traiter efficacement d’autres problèmes
importants comme : le calcul du polynôme de Bernstein-Sato en théorie des D-modules ;
la recherche de solutions particulières d’équations fonctionnelles linéaires inhomogènes ; les
calculs d’eigenring en théorie de Galois différentielle ou aux différences.

Dans le cadre purement différentiel, Zeilberger a proposé un algorithme qui repose sur le
calcul d’un sous-idéal de l’idéal cherché [265]. Cet algorithme ne fonctionne qu’à condition
de disposer d’une description d’un module holonome (au sens de la théorie des D-modules)
correspondant à l’idéal considéré. Par ailleurs, F. Chyzak a donné récemment un algorithme
rapide [62], généralisant un résultat de H. Wilf et D. Zeilberger [259], qui calcule également
un sous-idéal de l’idéal cherché, mais dont la terminaison n’est assurée qu’en cas d’holonomie.

D’ailleurs, l’hypothèse d’holonomie est à ce jour requise par tous les algorithmes connus
d’intégration définie de fonctions spéciales et cette limitation semble artificielle.

C’est pourquoi, il est naturel de rechercher des solutions algorithmiques permettant de cal-
culer la création télescopique indépendamment du caractère holonome de l’idéal considéré.
Je prévois d’attaquer cette question en appliquant et en étendant des résultats récents de
H. Tsai [243] aux algèbres de Ore.

225



List of Figures

1.1 Le schéma de Horner (à droite) obtenu en transposant l’algorithme qui résout
le problème dual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Dictionnaire de Tellegen pour les polynômes univariés. . . . . . . . . . . . . 20
1.3 L’évaluation multipoint et sa transposée, les sommes de Newton pondérées. . 22
1.4 Rapports de temps de calcul – algorithme direct et transposé. . . . . . . . . 23
1.5 Projection de V(I) sur l’axe X1. . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Projection de V(I) sur la droite (D) : X1 −X2 = 0. . . . . . . . . . . . . . . 31

4.1 Transposed/direct ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Transposed/direct ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 KarMul(a, b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 TKarMul(n, a, c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Polynomial evaluation at the points p0 = 1, p1 = q, . . . , pn−1 = qn−1. . . . . . 112
5.2 Polynomial interpolation at the points p0 = 1, p1 = q, . . . , pn−1 = qn−1. . . . . 113
5.3 Time ratios between classical and improved polynomial matrix multiplication

algorithms. Rows are indexed by the matrix size (20—110); columns are
indexed by the matrix degree (15–195). . . . . . . . . . . . . . . . . . . . . . 114

5.4 Speed-up between classical and improved polynomial matrix multiplication. . 115

7.1 Computing the Newton series of a polynomial . . . . . . . . . . . . . . . . . 137
7.2 Recovering a polynomial from its Newton series in characteristic zero . . . . 139
7.3 Recovering a monic polynomial from its Newton series in small characteristic 141
7.4 Our algorithm for the composed sum in small characteristic . . . . . . . . . 146
7.5 Composed product and sum. (Time in sec. vs output degree) . . . . . . . . . 147
7.6 Left: polynomial multiplication (Time in sec. vs output degree). Right:

(Composed product or sum time) / (Multiplication time) vs output degree. . 148
7.7 Composed sum and product by resultant computation. (Time in sec. vs

output degree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.8 Bivariate power projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.9 Bivariate modular multiplication . . . . . . . . . . . . . . . . . . . . . . . . 154
7.10 Bivariate transposed product . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.11 Diamond product. (Time in sec. vs output degree) . . . . . . . . . . . . . . 157
7.12 Respective times for polynomial multiplications & linear algebra. (Time in

sec. vs output degree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.13 Classical and Strassen’s matrix multiplications. (Time in sec. vs size) . . . . 158

226



8.1 Experimental Data; times are given in seconds . . . . . . . . . . . . . . . . . 183

9.1 Shifting evaluation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.1 Complexity results for lclm and tensor products. . . . . . . . . . . . . . . . . 221

227



Bibliography

[1] http://tera.medicis.polytechnique.fr/.

[2] Abramov, S. A. On the summation of rational functions. Ž. Vyčisl. Mat. i Mat. Fiz.
11, 4 (1971), 1071–1075. English translation in U.S.S.R. Comp. Maths. Math. Phys.,
324–330.

[3] Abramov, S. A. Rational solutions of linear differential and difference equations
with polynomial coefficients. Zh. Vychisl. Mat. i Mat. Fiz. 29, 11 (1989), 1611–1620,
1757. English translation in U.S.S.R. Comp. Maths. Math. Phys., 7–12.

[4] Abramowitz, M., and Stegun, I. A., Eds. Handbook of mathematical functions
with formulas, graphs, and mathematical tables. Dover Publications Inc., New York,
1992. Reprint of the 1972 edition.

[5] Aho, A. V., Steiglitz, K., and Ullman, J. D. Evaluating polynomials at fixed
sets of points. SIAM Journal on Computing 4, 4 (1975), 533–539.

[6] Alonso, M.-E., Becker, E., Roy, M.-F., and Wörmann, T. Zeros, multi-
plicities, and idempotents for zero-dimensional systems. In Algorithms in algebraic
geometry and applications (Santander, 1994). Birkhäuser, Basel, 1996, pp. 1–15.

[7] Andrews, G. E., Askey, R., and Roy, R. Special functions, vol. 71 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
1999.

[8] Antoniou, A. Digital Filters: Analysis and Design. McGraw-Hill Book Co., 1979.

[9] Arnaudiès, J.-M., and Valibouze, A. Lagrange resolvents. Journal of Pure and
Applied Algebra 117/118 (1997), 23–40. Algorithms for algebra (Eindhoven, 1996).

[10] Bailey, D., and Paar, C. Optimal extension fields for fast arithmetic in public-key
algorithms. In Advances in Cryptology – CRYPTO ’98 (1998), H. Krawczyk, Ed.,
vol. 1462 of LNCS, Springer-Verlag, pp. 472–485.

[11] Baker, Jr., G. A., and Graves-Morris, P. Padé approximants. Part I. Addison-
Wesley Publishing Co., Reading, Mass., 1981. Basic theory, With a foreword by Peter
A. Carruthers.

228



[12] Baker, Jr., G. A., and Graves-Morris, P. Padé approximants. Part II. Addison-
Wesley Publishing Co., Reading, Mass., 1981. Extensions and applications, With a
foreword by Peter A. Carruthers.

[13] Banderier, C., and Flajolet, P. Basic analytic combinatorics of directed lattice
paths. Theoretical Computer Science 281, 1-2 (2002), 37–80.

[14] Baur, W., and Strassen, V. The complexity of partial derivatives. Theoretical
Computer Science 22 (1983), 317–330.

[15] Becker, E., Cardinal, J. P., Roy, M.-F., and Szafraniec, Z. Multivariate
Bezoutians, Kronecker symbol and Eisenbud-Levine formula. In Algorithms in algebraic
geometry and applications (Santander, 1994). Birkhäuser, Basel, 1996, pp. 79–104.

[16] Becker, E., and Wörmann, T. Radical computations of zero-dimensional ideals
and real root counting. Mathematics and Computers in Simulation 42, 4-6 (1996),
561–569. Symbolic computation, new trends and developments (Lille, 1993).

[17] Beckermann, B., and Labahn, G. A uniform approach for Hermite Padé and
simultaneous Padé approximants and their matrix-type generalizations. Numerical
Algorithms 3, 1-4 (1992), 45–54.

[18] Beckermann, B., and Labahn, G. A uniform approach for the fast computation of
matrix-type Padé approximants. SIAM Journal on Matrix Analysis and Applications
15, 3 (1994), 804–823.

[19] Ben-Or, M., and Tiwari, P. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of STOC’88 (1988), ACM Press, pp. 301–
309.

[20] Berlekamp, E. R. Algebraic coding theory. McGraw-Hill Book Co., New York, 1968.

[21] Bernstein, D. J. Multidigit multiplication for mathematicians. Preprint, available
from http://cr.yp.to/papers.html.

[22] Bernstein, D. J. Removing redundancy in high precision Newton iteration. Preprint,
available from http://cr.yp.to/papers.html.

[23] Bernstein, D. J. Composing power series over a finite ring in essentially linear time.
Journal of Symbolic Computation 26, 3 (1998), 339–341.

[24] Berstel, J., and Mignotte, M. Deux propriétés décidables des suites récurrentes
linéaires. Bull. Soc. Math. France 104, 2 (1976), 175–184.

[25] Bini, D., and Pan, V. Y. Polynomial and matrix computations. Vol. 1. Birkhäuser
Boston Inc., Boston, MA, 1994. Fundamental algorithms.

229



[26] Björck, G. Functions of modulus 1 on Zn whose Fourier transforms have constant
modulus, and “cyclic n-roots”. In Recent advances in Fourier analysis and its ap-
plications (Il Ciocco, 1989), vol. 315 of NATO Advance Science Institutes Series C:
Mathematical and Physical Sciences. Kluwer Academic Publishers, Dordrecht, 1990,
pp. 131–140.

[27] Bluestein, L. I. A linear filtering approach to the computation of the discrete
Fourier transform. IEEE Trans. Electroacoustics AU-18 (1970), 451–455.

[28] Bommer, R. High order derivations and primary ideals to regular prime ideals. Archiv
der Mathematik 46, 6 (1986), 511–521.

[29] Bordewijk, J. L. Inter-reciprocity applied to electrical networks. Appl. Sci. Res. B.
6 (1956), 1–74.

[30] Borodin, A., and Moenck, R. T. Fast modular transforms. Comput. System Sci.
8, 3 (1974), 366–386.

[31] Borodin, A., and Munro, I. The computational complexity of algebraic and
numeric problems. American Elsevier Publishing Co., Inc., New York-London-
Amsterdam, 1975. Elsevier Computer Science Library; Theory of Computation Series,
No. 1.

[32] Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I. The
user language. Journal of Symbolic Computation 24, 3-4 (1997), 235–265. See also
http://www.maths.usyd.edu.au:8000/u/magma/.

[33] Bostan, A., Flajolet, P., Salvy, B., and Schost, É. Fast computation with
two algebraic numbers. Research Report 4579, Institut National de Recherche en
Informatique et en Automatique, Oct. 2002. 20 pages.

[34] Bostan, A., Gaudry, P., and Schost, É. Linear recurrences with polynomial
coefficients and computation of the Cartier-Manin operator on hyperelliptic curves.
In Finite fields and their applications (Toulouse, 2003) (2003), Springer–Verlag. To
appear.

[35] Bostan, A., Lecerf, G., and Schost, É. Tellegen’s principle into practice. In
Proceedings of ISSAC’03 (2003), ACM Press, pp. 37–44.

[36] Bostan, A., Salvy, B., and Schost, É. Fast algorithms for zero-dimensional
polynomial systems using duality. Applicable Algebra in Engineering, Communication
and Computing 14, 4 (2003), 239–272.

[37] Bostan, A., and Schost, É. On the complexities of multipoint evaluation and
interpolation. Tech. rep., École polytechnique, 2003.

[38] Bostan, A., and Schost, É. Polynomial evaluation and interpolation on special
sets of points. Tech. rep., École polytechnique, 2003.

230



[39] Brawley, J. V., and Carlitz, L. Irreducibles and the composed product for
polynomials over a finite field. Discrete Mathematics 65, 2 (1987), 115–139.

[40] Brawley, J. V., Gao, S., and Mills, D. Computing composed products of
polynomials. In Finite fields: theory, applications, and algorithms (Waterloo, ON,
1997). Amer. Math. Soc., Providence, RI, 1999, pp. 1–15.

[41] Brent, R. P. Algorithms for matrix multiplication. Tech. Rep. CS-157, Stanford
University, 1970.

[42] Brent, R. P. Multiple-precision zero-finding methods and the complexity of ele-
mentary function evaluation. In Analytic computational complexity (Proc. Sympos.,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1975). Academic Press, New York, 1976,
pp. 151–176.

[43] Brent, R. P., and Kung, H. T. Fast algorithms for manipulating formal power
series. J. Assoc. Comput. Mach. 25, 4 (1978), 581–595.

[44] Briand, E., and González-Vega, L. Multivariate Newton sums: identities and
generating functions. Communications in Algebra 30, 9 (2002), 4527–4547.

[45] Buchberger, B. Gröbner bases: An algorithmic method in polynomial ideal theory.
In Multidimensional System Theory. Reidel, Dordrecht, 1985, pp. 374–383.

[46] Bunch, J., and Hopcroft, J. Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation 28 (1974), 231–236.

[47] Bürgisser, P., Clausen, M., and Shokrollahi, M. A. Algebraic complexity
theory, vol. 315 of Grundlehren Math. Wiss. Springer-Verlag, 1997.

[48] Canny, J. Some algebraic and geometric problems in PSPACE. In Proceedings of
STOC’88 (1988), ACM Press, pp. 460–467.

[49] Canny, J., Kaltofen, E., and Yagati, L. Solving systems of non-linear polyno-
mial equations faster. In Proceedings of ISSAC’89 (1989), ACM Press, pp. 121–128.

[50] Cantor, D. G., and Kaltofen, E. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica 28, 7 (1991), 693–701.

[51] Capocelli, R. M., Cerbone, G., Cull, P., and Holloway, J. L. Fibonacci
facts and formulas. In Sequences (Naples/Positano, 1988). Springer, New York, 1990,
pp. 123–137.

[52] Cartier, P. Une nouvelle opération sur les formes différentielles. C. R. Acad. Sci.
Paris 244 (1957), 426–428.

[53] Casperson, D., and McKay, J. Symmetric functions, m-sets, and Galois groups.
Mathematics of Computation 63, 208 (1994), 749–757.

231



[54] Cerlienco, L., Mignotte, M., and Piras, F. Suites récurrentes linéaires: pro-
priétés algébriques et arithmétiques. Enseign. Math. (2) 33, 1-2 (1987), 67–108.

[55] Charlap, L. S., Coley, R., and Robbins, D. Enumeration of rational points on
elliptic curves over finite fields. Preprint, 1991.

[56] Chistov, A. L., and Grigoriev, D. Y. Polynomial-time factoring of multivariable
polynomials over a global field. LOMI preprint E-5-82, Steklov Institute, Leningrad,
1982.

[57] Chudnovsky, D. V., and Chudnovsky, G. V. On expansion of algebraic functions
in power and Puiseux series. I. J. Complexity 2, 4 (1986), 271–294.

[58] Chudnovsky, D. V., and Chudnovsky, G. V. On expansion of algebraic functions
in power and Puiseux series. II. J. Complexity 3, 1 (1987), 1–25.

[59] Chudnovsky, D. V., and Chudnovsky, G. V. Approximations and complex
multiplication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign,
Ill., 1987). Academic Press, Boston, MA, 1988, pp. 375–472.

[60] Chudnovsky, D. V., and Chudnovsky, G. V. Computer algebra in the service
of mathematical physics and number theory. In Computers in Mathematics (Stanford,
CA, 1986) (New York), vol. 125. Dekker, 1990, pp. 109–232.

[61] Chyzak, F. Gröbner bases, symbolic summation and symbolic integration. In
Gröbner bases and applications (Linz, 1998). Cambridge University Press, Cambridge,
1998, pp. 32–60.

[62] Chyzak, F. An extension of Zeilberger’s fast algorithm to general holonomic func-
tions. Discrete Mathematics 217, 1-3 (2000), 115–134. Formal power series and alge-
braic combinatorics (Vienna, 1997).

[63] Chyzak, F., and Salvy, B. Non-commutative elimination in Ore algebras proves
multivariate identities. Journal of Symbolic Computation 26, 2 (1998), 187–227.

[64] Cohen, H. A course in computational algebraic number theory. Springer-Verlag,
Berlin, 1993.

[65] Cook, S. A. On the minimum computation time of functions. PhD thesis, Harvard,
1966.

[66] Cooley, J. W. The re-discovery of the Fast Fourier Transform algorithm. Mikrochim-
ica Acta 3 (1987), 33–45.

[67] Cooley, J. W. How the FFT gained acceptance. In A history of scientific computing
(Princeton, NJ, 1987), ACM Press Hist. Ser. ACM Press, New York, 1990, pp. 133–
140.

232



[68] Coppersmith, D. Rectangular matrix multiplication revisited. Journal of Complexity
13, 1 (1997), 42–49.

[69] Coppersmith, D., and Winograd, S. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation 9, 3 (Mar. 1990), 251–280.

[70] Cox, D., Little, J., and O’Shea, D. Using algebraic geometry. Springer-Verlag,
New York, 1998.

[71] Cull, P., and Holloway, J. L. Computing Fibonacci numbers quickly. Information
Processing Letters 32, 3 (1989), 143–149.

[72] Dongarra, J., and Sullivan, F. Top Ten Algorithms. Computing in Science &
Engineering 2, 1 (2000).

[73] Dornstetter, J.-L. On the equivalence between Berlekamp’s and Euclid’s algo-
rithms. IEEE Trans. Inform. Theory 33, 3 (1987), 428–431.

[74] Dvornicich, R., and Traverso, C. Newton symmetric functions and the arith-
metic of algebraically closed fields. In Proceedings of AAECC-5, vol. 356 of LNCS.
Springer, Berlin, 1989, pp. 216–224.

[75] Edwards, A. W. F. A quick route to sums of powers. American Mathematical
Monthly 93 (1986), 451–455.

[76] Eisenbud, D. Commutative algebra, with a view toward algebraic geometry. Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

[77] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 1-3 (1999), 61–88. Proceedinds of MEGA’98.

[78] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of ISSAC’02 (2002), ACM Press.

[79] Faugère, J.-C., Gianni, P., Lazard, D., and Mora, T. Efficient computa-
tion of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation 16, 4 (1993), 329–344.

[80] Fiduccia, C. M. On obtaining upper bounds on the complexity of matrix multiplica-
tion. In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson
Res. Center, Yorktown Heights, N.Y., 1972). Plenum, New York, 1972, pp. 31–40.

[81] Fiduccia, C. M. On the algebraic complexity of matrix multiplication. PhD thesis,
Brown Univ., Providence, RI, Center Comput. Inform. Sci., Div. Engin., 1973.

[82] Fiduccia, C. M. An efficient formula for linear recurrences. SIAM Journal on
Computing 14, 1 (1985), 106–112.

233



[83] Finck, T., Heinig, G., and Rost, K. An inversion formula and fast algorithms
for Cauchy-Vandermonde matrices. Linear Algebra and its Applications 183 (1993),
179–191.

[84] Fischer, P. C. Further schemes for combining matrix algorithms. In LNCS (1974),
J. Loeck, Ed., vol. 14, pp. 428–436.

[85] Flajolet, P., and B. Salvy, B. The SIGSAM challenges: Symbolic asymptotics
in practice. SIGSAM Bull. 31, 4 (1997), 36–47.

[86] Gaudry, P. Algorithmique des courbes hyperelliptiques et applications à la cryptologie.
PhD thesis, École polytechnique, 2000.

[87] Gaudry, P., and Gürel, N. Counting points in medium characteristic using Ked-
laya’s algorithm. Preprint.

[88] Gaudry, P., and Harley, R. Counting points on hyperelliptic curves over finite
fields. In Proceedings of ANTS-IV (2000), W. Bosma, Ed., vol. 1838 of LNCS, Springer-
Verlag, pp. 313–332.

[89] Gaudry, P., and Schost, É. Cardinality of a genus 2 hyperelliptic curve over
GF(5 · 1024 + 41). e-mail to the NMBRTHRY mailing list. Sept. 2002.

[90] Gaudry, P., and Schost, É. Modular equations for hyperelliptic curves. Tech.
rep., École polytechnique, 2002.

[91] Gauss, C. F. Summatio quarundam serierum singularium. Opera, Vol. 2, Göttingen:
Gess. d. Wiss. (1863), 9–45.

[92] Gerhard, J. Modular algorithms for polynomial basis conversion and greatest fac-
torial factorization. In Proceedings of RWCA’00 (2000), pp. 125–141.

[93] Gerhard, J., Giesbrecht, M., Storjohann, A., and Zima, E. V. Shiftless
decomposition and polynomial-time rational summation. In Proceedings of ISSAC’03
(2003), ACM Press, pp. 119–126.

[94] Gianni, P., and Mora, T. Algebraic solution of systems of polynomial equations
using Gröbner bases. In Proceedings of AAECC-5 (1989), vol. 356 of LNCS, Springer-
Verlag, pp. 247–257.

[95] Giesbrecht, M. Nearly optimal algorithms for canonical matrix forms. SIAM Jour-
nal on Computing 24, 5 (1995), 948–969.

[96] Gilbert, J.-C., Le Vey, G., and Masse, J. La différentiation automatique de
fonctions représentées par des programmes. Tech. rep., RR INRIA 1557, 1991.

[97] Giorgi, P., Jeannerod, C.-P., and Villard, G. On the complexity of polynomial
matrix computations. In Proceedings of ISSAC’03 (2003), ACM Press, pp. 135–142.

234



[98] Giusti, M. Géométrie effective. Cours de DEA, 1999/2000. Université Paris 6.

[99] Giusti, M., and Heintz, J. La détermination des points isolés et de la dimension
d’une variété algébrique peut se faire en temps polynomial. In Computational Alge-
braic Geometry and Commutative Algebra (1993), D. Eisenbud and L. Robbiano, Eds.,
vol. XXXIV of Symposia Matematica, Cambridge University Press, pp. 216–256.

[100] Giusti, M., Heintz, J., Hägele, K., Morais, J. E., Pardo, L. M., and
Montaña, J. L. Lower bounds for Diophantine approximations. Journal of Pure
and Applied Algebra 117/118 (1997), 277–317. Algorithms for algebra (Eindhoven,
1996).

[101] Giusti, M., Heintz, J., Morais, J. E., Morgenstern, J., and Pardo, L. M.
Straight-line programs in geometric elimination theory. Journal of Pure and Applied
Algebra 124 (1998), 101–146.

[102] Giusti, M., Lazard, D., and Valibouze, A. Algebraic transformations of polyno-
mial equations, symmetric polynomials and elimination. In Proceedings of ISSAC’88,
P. Gianni, Ed., vol. 358 of LNCS. Springer-Verlag, 1989, pp. 309–314.

[103] Giusti, M., Lecerf, G., and Salvy, B. A Gröbner free alternative for polynomial
system solving. Journal of Complexity 17, 1 (2001), 154–211.

[104] Gohberg, I., and Olshevsky, V. Complexity of multiplication with vectors for
structured matrices. Linear Algebra and its Applications 202 (1994), 163–192.

[105] Gohberg, I., and Olshevsky, V. Fast algorithms with preprocessing for matrix-
vector multiplication problems. Journal of Complexity 10, 4 (1994), 411–427.

[106] González-López, M.-J., and González-Vega, L. Newton identities in the mul-
tivariate case: Pham systems. In Gröbner bases and applications (Linz, 1998), vol. 251
of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge, 1998,
pp. 351–366.

[107] González-Vega, L., and Trujillo, G. Implicitization of parametric curves and
surfaces by using symmetric functions. In Proceedings of ISSAC’95 (1995), ACM Press,
pp. 180–186.

[108] González-Vega, L., and Trujillo, G. Using symmetric functions to describe
the solution set of a zero-dimensional ideal. In Proceedings of AAECC-11, vol. 948 of
LNCS. Springer, Berlin, 1995, pp. 232–247.

[109] Gosper, Jr., R. W. Decision procedure for indefinite hypergeometric summation.
Proc. Nat. Acad. Sci. U.S.A. 75, 1 (1978), 40–42.

[110] Göttfert, R., and Niederreiter, H. On the minimal polynomial of the product
of linear recurring sequences. Finite Fields and their Applications 1, 2 (1995), 204–218.
Special issue dedicated to Leonard Carlitz.

235



[111] Gourdon, X., and Salvy, B. Effective asymptotics of linear recurrences with
rational coefficients. Discrete Mathematics 153, 1-3 (1996), 145–163.

[112] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete mathematics,
second ed. Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation
for computer science.

[113] Gries, D., and Levin, G. Computing Fibonacci numbers (and similarly defined
functions) in log time. Information Processing Letters 11, 2 (1980), 68–69.

[114] Gröbner, W. La théorie des idéaux et la géométrie algébrique. In Deuxième Colloque
de Géométrie Algébrique, Liège, 1952. Georges Thone, Liège, 1952, pp. 129–144.

[115] Hanrot, G., Quercia, M., and Zimmermann, P. The middle product algo-
rithm, I. Speeding up the division and square root of power series. Tech. rep., RR
INRIA 4664, 2002.

[116] Hasse, H., and Witt, E. Zyklische unverzweigte Erweiterungskörper vom
primzahlgrade p über einem algebraischen Funktionenkörper der Charakteristik p.
Monatsch. Math. Phys. 43 (1936), 477–492.

[117] Heine, E. Untersuchungen über die Reihe 1+ (1−qα)(1−qβ)
(1−q)(1−qγ)

·x+ (1−qα)(1−qα+1)(1−qβ)(1−qβ+1)
(1−q)(1−q2)(1−qγ)(1−qγ+1)

·
x2 + . . . . J. reine angew. Math. 34 (1847), 285–328.

[118] Henrici, P. Applied and computational complex analysis. Vol. 3. John Wiley & Sons
Inc., New York, 1986. Discrete Fourier analysis—Cauchy integrals—construction of
conformal maps—univalent functions, A Wiley-Interscience Publication.

[119] Hopcroft, J., and Musinski, J. Duality applied to the complexity of matrix
multiplication and other bilinear forms. SIAM Journal on Computing 2 (1973), 159–
173.

[120] Hopcroft, J. E., and Kerr, L. R. On minimizing the number of multiplications
necessary for matrix multiplication. SIAM Journal on Applied Mathematics 20, 1
(1971), 30–36.

[121] Huang, X., and Pan, V. Y. Fast rectangular matrix multiplication and applications.
J. Complexity 14, 2 (Jun 1998), 257–299.

[122] Ince, E. L. Ordinary Differential Equations. New York: Dover Publications, 1956.

[123] Kaltofen, E. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems. Mathematics of Computation 64, 210 (1995), 777–806.

[124] Kaltofen, E., Corless, R. M., and Jeffrey, D. J. Challenges of symbolic
computation: my favorite open problems. Journal of Symbolic Computation 29, 6
(2000), 891–919.

236



[125] Kaltofen, E., and Pan, V. Y. Parallel solution of Toeplitz and Toeplitz-like
linear systems over fields of small positive characteristic. In Proceedings of PASCO
’94, vol. 5 of Lecture Notes Ser. Comput. World Sci. Publishing, River Edge, NJ, 1994,
pp. 225–233.

[126] Kaltofen, E., and Shoup, V. Subquadratic-time factoring of polynomials over
finite fields. Mathematics of Computation 67, 223 (1998), 1179–1197.

[127] Kaltofen, E., and Yagati, L. Improved sparse multivariate polynomial inter-
polation algorithms. In Proceedings of ISSAC’88, P. Gianni, Ed., vol. 358 of LNCS.
Springer-Verlag, 1989, pp. 467–474.

[128] Kaminski, M., Kirkpatrick, D. G., and Bshouty, N. H. Addition requirements
for matrix and transposed matrix products. Journal of Algorithms 9, 3 (1988), 354–364.

[129] Karatsuba, A., and Offman, Y. Multiplication of multidigit numbers on au-
tomata. Soviet Physics Doklady 7 (1963), 595–596.

[130] Karp, A. H., and Markstein, P. High-precision division and square root. ACM
Transactions on Mathematical Software 23, 4 (1997), 561–589.

[131] Kedlaya, K. Countimg points on hyperelliptic curves using Monsky-Washnitzer. J.
Ramanujan Math. Soc. 16 (2001), 323–338.

[132] Keller-Gehrig, W. Fast algorithms for the characteristic polynomial. Theoretical
Computer Science 36, 2-3 (1985), 309–317.

[133] Knuth, D. E. The art of computer programming. Vol. 2: Seminumerical algorithms.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.

[134] Knuth, D. E. Johann Faulhaber and sums of powers. Mathematics of Computation
61 (1993), 277–294.

[135] Kobayashi, H., Moritsugu, S., and Hogan, R. W. On solving systems of
algebraic equations. In Proceedings of ISSAC 88 (1988), no. 358 in LNCS, Springer-
Verlag, pp. 139–149.

[136] Kreuzer, M., and Robbiano, L. Computational commutative algebra. 1. Springer-
Verlag, Berlin, 2000.

[137] Kronecker, L. Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J. Reine Angew. Math. 92 (1882), 1–122.

[138] Kung, H. T. On computing reciprocals of power series. Numerische Mathematik 22
(1974), 341–348.

[139] Kunz, E. Kähler differentials. Vieweg advanced lectures in Mathematics. Friedr.
Vieweg & Sohn, Braunschweig, 1986.

237



[140] Kurosh, A. Cours d’algèbre supérieure. Éditions Mir, Moscou, 1973.

[141] Lakshman, Y. N., and Lazard, D. On the complexity of zero-dimensional algebraic
systems. In Effective methods in algebraic geometry, vol. 94 of Progress in Mathematics.
Birkhäuser, 1991, pp. 217–225.

[142] Lang, S. Introduction to algebraic geometry. Interscience Publishers, New York, 1958.

[143] Lang, S. Algebra, third ed., vol. 211 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002.

[144] Lascoux, A. La résultante de deux polynômes. In Séminaire d’algèbre Paul Dubreil
et Marie-Paule Malliavin, 37ème année (Paris, 1985), vol. 1220 of LNM. Springer,
Berlin, 1986, pp. 56–72.

[145] Lazard, D. Solving zero-dimensional algebraic systems. Journal of Symbolic Com-
putation 13 (1992), 117–133.

[146] Lazard, D., and Valibouze, A. Computing subfields: reverse of the primitive ele-
ment problem. In Computational algebraic geometry (Nice, 1992). Birkhäuser Boston,
Boston, MA, 1993, pp. 163–176.

[147] Le Verrier, U. J. J. Sur les variations séculaires des éléments elliptiques des sept
planètes principales : Mercure, Venus, La Terre, Mars, Jupiter, Saturne et Uranus. J.
Math. Pures Appli. 4 (1840), 220–254.

[148] Lecerf, G. An ultrafast algorithm for Padé-Hermite approximants. Personal com-
munication, 2001.

[149] Lecerf, G. Une alternative aux méthodes de réécriture pour la résolution des systèmes
algébriques. PhD thesis, École polytechnique, 2001.

[150] Lecerf, G. Quadratic Newton iteration for systems with multiplicity. Journal of
FoCM 2, 3 (2002), 247–293.

[151] Lecerf, G. Computing the equidimensional decomposition of an algebraic closed set
by means of lifting fibers. Journal of Complexity 19 (2003), 564–596.

[152] Lecerf, G., and Schost, É. Fast multivariate power series multiplication in char-
acteristic zero. SADIO Electronic Journal on Informatics and Operations Research 5,
1 (2003), 1–10.

[153] Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with
rational coefficients. Mathematische Annalen 261 (1982), 515–534.

[154] Lickteig, T., and Roy, M.-F. Cauchy index computation. Calcolo 33, 3-4 (1996),
337–351. Toeplitz matrices: structures, algorithms and applications (Cortona, 1996).

[155] Lickteig, T., and Roy, M.-F. Sylvester-Habicht sequences and fast Cauchy index
computation. Journal of Symbolic Computation 31, 3 (2001), 315–341.

238



[156] Lipson, J. D. Chinese remainder algorithm and interpolation algorithms. In Pro-
ceedings 2nd ACM Symposium of Symbolic and Algebraic Manipulation (1971), S. R.
Petrick, Ed., ACM Press, pp. 372–391.

[157] Lipson, J. D. Newton’s Method: A Great Algebraic Algorithm. In Proceedings ACM
Symposium of Symbolic and Algebraic Computation (1976), ACM Press, pp. 260–270.

[158] Little, J. A key equation and the computation of error values for codes from order
domains. Available at http://arXiv.org/math.AC/0303299, 2003.

[159] Loos, R. Computing in algebraic extensions. In Computer algebra. Springer, Vienna,
1983, pp. 173–187.

[160] Macaulay, F. S. The Algebraic Theory of Modular Systems. Cambridge University
Press, 1916.

[161] Mallat, S. Foveal detection and approximation for singularities. Applied and Com-
putational Harmonic Analysis (2003). To appear.

[162] Man, Y.-K., and Wright, F. J. Fast polynomial dispersion computation and its
application to indefinite summation. In Proceedings of ISSAC’94 (1994), ACM Press,
pp. 175–180.

[163] Manin, J. I. The Hasse-Witt matrix of an algebraic curve. Trans. Amer. Math. Soc.
45 (1965), 245–264.

[164] Marinari, M. G., Mora, T., and Möller, H. M. Gröbner bases of ideals defined
by functionals with an application to ideals of projective points. Applicable Algebra in
Engineering, Communication and Computing 4, 103–145 (1993).

[165] Massey, J. L. Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory IT-15 (1969), 122–127.

[166] Matsuo, K., Chao, J., and Tsujii, S. An improved baby step giant step algorithm
for point counting of hyperelliptic curves over finite fields. In Proceedings of ANTS-V
(2002), C. Fiecker and D. Kohel, Eds., vol. 2369 of LNCS, Springer-Verlag, pp. 461–
474.

[167] Meunier, L., and Salvy, B. ESF: An automatically generated encyclopedia of
special functions. In Proceedings of ISSAC’03 (2003), ACM Press, pp. 199–205.

[168] Moenck, R., and Allen, J. Efficient division algorithms in Euclidean domains.
Tech. Rep. CS-75-18, Univ. of Waterloo, 1975.

[169] Moenck, R. T., and Borodin, A. Fast modular transforms via division. Thir-
teenth Annual IEEE Symposium on Switching and Automata Theory (Univ. Maryland,
College Park, Md., 1972) (1972), 90–96.

239



[170] Moenck, R. T., and Carter, J. H. Approximate algorithms to derive exact
solutions to systems of linear equations. In Symbolic and algebraic computation (EU-
ROSAM ’79, Internat. Sympos., Marseille, 1979), vol. 72 of LNCS. Springer, Berlin,
1979, pp. 65–73.

[171] Montgomery, P. L. An FFT extension of the elliptic curve method of factorization.
PhD thesis, University of California, Los Angeles CA, 1992.

[172] Mourrain, B. Isolated points, duality and residues. Journal of Pure and Applied
Algebra 117/118 (1997), 469–493. Algorithms for algebra (Eindhoven, 1996).

[173] Mourrain, B., and Pan, V. Y. Solving special polynomial systems by using struc-
tured matrices and algebraic residues. In Foundations of computational mathematics
(Rio de Janeiro, 1997). Springer, Berlin, 1997, pp. 287–304.

[174] Mourrain, B., and Pan, V. Y. Asymptotic acceleration of solving multivariate
polynomial systems of equations. In Proceedings of STOC’88 (1998), ACM Press,
pp. 488–496.

[175] Mourrain, B., and Pan, V. Y. Multivariate polynomials, duality, and structured
matrices. Journal of Complexity 16, 1 (2000), 110–180.

[176] Mourrain, B., Pan, V. Y., and Ruatta, O. Accelerated solution of multivariate
polynomial systems of equations. SIAM Journal on Computing 32, 2 (2003), 435–454.

[177] Munro, I. Problems related to matrix multiplication. In Courant Institute Symposium
on Computational Complexity (1973), R. Rustin, Ed., Algorithmics Press, New York,
pp. 137–152.

[178] Nakai, Y. High order derivations. I. Osaka Journal of Mathematics 7 (1970), 1–27.

[179] Newton, I. La méthode des fluxions et des suites infinies. Librairie Scientifique
Albert Blanchard, 1966. 150 p.

[180] Oberst, U. The construction of Noetherian operators. Journal of Algebra 222, 2
(1999), 595–620.

[181] Osborn, H. Modules of differentials. II. Mathematische Annalen 175 (1968), 146–158.

[182] Pan, V. Y. How to multiply matrices faster. No. 179 in LNCS. Springer, 1984.

[183] Pan, V. Y. Computing the determinant and the characteristic polynomial of a matrix
via solving linear systems of equations. Information Processing Letters 28 (1988), 71–
75.

[184] Pan, V. Y. On computations with dense structured matrices. In Proceedings of
ISSAC’89 (1989), ACM Press, pp. 34–42.

240



[185] Pan, V. Y. Parallel least-squares solution of general and Toeplitz-like linear systems.
In Proc. 2nd Ann. ACM Symp. on Parallel Algorithms and Architecture (1990), ACM
Press, pp. 244–253.

[186] Pan, V. Y. Parallel computation of polynomial GCD and some related parallel com-
putations over abstract fields. Theoretical Computer Science 162, 2 (1996), 173–223.

[187] Pan, V. Y. Faster solution of the key equation for decoding BCH error-corecting
codes. In Proceedings of STOC’97 (1997), ACM Press, pp. 168–175.

[188] Pan, V. Y. New techniques for the computation of linear recurrence coefficients.
Finite Fields and their Applications 6, 1 (2000), 93–118.

[189] Pan, V. Y. Structured matrices and polynomials. Birkhäuser Boston Inc., Boston,
MA, 2001. Unified superfast algorithms.

[190] Paterson, M. S., and Stockmeyer, L. J. On the number of nonscalar multipli-
cations necessary to evaluate polynomials. SIAM Journal on Computing 2, 1 (Mar.
1973), 60–66.

[191] Paule, P. Greatest factorial factorization and symbolic summation. Journal of Sym-
bolic Computation 20, 3 (1995), 235–268.

[192] Penfield, Jr., P., Spence, R., and Duinker, S. Tellegen’s theorem and electrical
networks. The M.I.T. Press, Cambridge, Mass.-London, 1970.

[193] Petkovšek, M. Hypergeometric solutions of linear recurrences with polynomial co-
efficients. Journal of Symbolic Computation 14, 2-3 (1992), 243–264.

[194] Pettorossi, A. Derivation of an O(k2log n) algorithm for computing order-k Fi-
bonacci numbers from the O(k3log n) matrix multiplication method. Information
Processing Letters 11, 4-5 (1980), 172–179.

[195] Pollard, J. M. Theorems on factorization and primality testing. Proc. Cambridge
Philos. Soc. 76 (1974), 521–528.

[196] Poole, E. G. C. Introduction to the Theory of Linear Differential Equations. New
York: Dover, 1960.

[197] Probert, R. On the complexity of matrix multiplication. Tech. Rep. CS-73-27, Univ.
of Waterloo, 1973.

[198] Rabiner, L. R., Schafer, R. W., and Rader, C. M. The chirp z-transform
algorithm and its application. Bell System Tech. J. 48 (1969), 1249–1292.

[199] Reischert, D. Asymptotically fast computation of subresultants. In Proceedings of
ISSAC’97 (1997), ACM Press, pp. 233–240.

241



[200] Rifà, J., and Borrell, J. Improving the time complexity of the computation
of irreducible and primitive polynomials in finite fields. In Proceedings of AAECC-9
(1991), vol. 539, pp. 352–359.

[201] Roman, S. The umbral calculus, vol. 111 of Pure and Applied Mathematics. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1984.

[202] Rothe, H. A. Formulae de serierum reversione demonstratio universalis signis local-
ibus combinatorico-analyticorum vicariis exhibita. Leipzig, 1793.

[203] Rouillier, F. Algorithmes efficaces pour l’étude des zéros réels des systèmes polyno-
miaux. PhD thesis, Université de Rennes I, may 1996.

[204] Rouillier, F. Solving zero-dimensional systems through the Rational Univariate
Representation. Applicable Algebra in Engineering, Communication and Computing 9,
5 (1999), 433–461.

[205] Saito, M., Sturmfels, B., and Takayama, N. Gröbner deformations of hyper-
geometric differential equations. Springer-Verlag, Berlin, 2000.

[206] Samuel, P. Théorie algébrique des nombres. Hermann, 1971.

[207] Scheja, G., and Storch, U. Über Spurfunktionen bei vollständigen Durchschnit-
ten. J. Reine Angew. Math. 278-279 (1975), 174–190.

[208] Schoenberg, I. J. On polynomial interpolation at the points of a geometric progres-
sion. Proc. Roy. Soc. Edinburgh Sect. A 90, 3-4 (1981), 195–207.

[209] Schönhage, A. Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2. Numerische Mathematik 20 (1973), 409–417.

[210] Schönhage, A. Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2. Acta Informatica 7 (1977), 395–398.

[211] Schönhage, A. Partial and total matrix multiplication. SIAM Journal on Computing
10 (1981), 434–455.

[212] Schönhage, A. The fundamental theorem of algebra in terms of computational
complexity. Tech. rep., Univ. Tübingen, 1982. 73 pages.

[213] Schönhage, A. Fast parallel computation of characteristic polynomials by Leverrier’s
power sum method adapted to fields of finite characteristic. In Automata, languages
and programming (Lund, 1993), vol. 700 of LNCS. Springer, Berlin, 1993, pp. 410–417.

[214] Schönhage, A., and Strassen, V. Schnelle Multiplikation großer Zahlen. Com-
puting 7 (1971), 281–292.

[215] Schoof, R. Elliptic curves over finite fields and the computation of square roots
mod p. Mathematics of Computation 44 (1985), 483–494.

242



[216] Schost, É. Sur la résolution des systèmes polynomiaux à paramètres. PhD thesis,
École polytechnique, 2000.

[217] Schost, É. Résolution des systèmes polynomiaux. École des Jeunes Chercheurs en
Algorithmique et Calcul formel, Université de Marne-la-Vallée, 2003, pp. 237–277.

[218] Schwartz, J. T. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the Association for Computing Machinery 27, 4 (1980), 701–717.

[219] Shafer, R. E. On quadratic approximation. SIAM J. Numer. Anal. 11 (1974),
447–460.

[220] Shafer, R. E. On quadratic approximation. II. Univ. Beograd. Publ. Elektrotehn.
Fak. Ser. Mat. Fiz., 602-633 (1978), 163–170 (1979).

[221] Shortt, J. An iterative program to calculate Fibonacci numbers in O(log n) arith-
metic operations. Information Processing Letters 7, 6 (1978), 299–303.

[222] Shoup, V. New algorithms for finding irreducible polynomials over finite fields. Math-
ematics of Computation 54, 189 (1990), 435–447.

[223] Shoup, V. A fast deterministic algorithm for factoring polynomials over finite fields
of small characteristic. In Proceedings of ISSAC’91 (1991), ACM Press, pp. 14–21.

[224] Shoup, V. Fast construction of irreducible polynomials over finite fields. Journal of
Symbolic Computation 17, 5 (1994), 371–391.

[225] Shoup, V. A new polynomial factorization algorithm and its implementation. Journal
of Symbolic Computation 20, 4 (1995), 363–397.

[226] Shoup, V. NTL: A library for doing number theory. http://www.shoup.net, 1996–
2003.

[227] Shoup, V. Efficient computation of minimal polynomials in algebraic extensions of
finite fields. In Proceedings of ISSAC’99 (New York, 1999), ACM Press, pp. 53–58.

[228] Sieveking, M. An algorithm for division of powerseries. Computing 10 (1972),
153–156.

[229] Spencer, M. Polynomial real root finding in Bernstein form. PhD thesis, Dept. Civil
Eng., Brigham Young University, 1994.

[230] Stirling, J. Methodus Differentialis: sive Tractatus de Summatione et Interpolatione
Serierum Infinitarum. Gul. Bowyer, London, 1730. English translation by Holliday, J.
The Differential Method: A Treatise of the Summation and Interpolation of Infinite
Series. 1749.

[231] Stöhr, K.-O., and Voloch, J. A formula for the Cartier operator on plane alge-
braic curves. J. Reine Angew. Math. 377 (1987), 49–64.

243



[232] Storjohann, A. Algorithms for matrix canonical forms. PhD thesis, Department of
Computer Science, ETH, Zurich, 2000.

[233] Storjohann, A. High-order lifting. In Proceedings of ISSAC’02 (2002), ACM Press,
pp. 246–254.

[234] Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik 13
(1969), 354–356.

[235] Strassen, V. Die Berechnungskomplexität von elementarsymmetrischen Funktionen
und von Interpolationskoeffizienten. Numerische Mathematik 20 (1972/73), 238–251.

[236] Strassen, V. Vermeidung von Divisionen. J. Reine Angew. Math. 264 (1973), 184–
202.

[237] Strassen, V. Einige Resultate über Berechnungskomplexität. Jber. Deutsch. Math.-
Verein. 78, 1 (1976/77), 1–8.

[238] Takahashi, D. A fast algorithm for computing large Fibonacci numbers. Information
Processing Letters 75, 6 (2000), 243–246.

[239] Tellegen, B. A general network theorem, with applications. Philips Research Reports
7 (1952), 259–269.

[240] Thiong Ly, J.-A. Note for computing the minimum polynomial of elements in large
finite fields. In Coding theory and applications (Toulon, 1988), vol. 388 of LNCS.
Springer, New York, 1989, pp. 185–192.

[241] Thomé, É. Fast computation of linear generators for matrix sequences and application
to the block Wiedemann algorithm. In Proceedings of ISSAC’01 (2001), ACM Press,
pp. 323–331.

[242] Thomé, É. Subquadratic computation of vector generating polynomials and im-
provement of the block Wiedemann algorithm. Journal of Symbolic Computation 33,
5 (2002), 757–775.

[243] Tsai, H. Algorithms for algebraic analysis. PhD thesis, University of California at
Berkeley, Spring 2000.

[244] Valibouze, A. Fonctions symétriques et changements de bases. In Proc. EUROCAL–
87 (1989), vol. 378 of LNCS, pp. 323–332.

[245] Van Barel, M., and Bultheel, A. A general module-theoretic framework for
vector M-Padé and matrix rational interpolation. Numerical Algorithms 3, 1-4 (1992),
451–461. Extrapolation and rational approximation (Puerto de la Cruz, 1992).

[246] van der Hoeven, J. Fast evaluation of holonomic functions near and in regular
singularities. Journal of Symbolic Computation 31, 6 (2001), 717–743.

244



[247] van der Hoeven, J. FFT-like multiplication of linear differential operators. Journal
of Symbolic Computation 33, 1 (2002), 123–127.

[248] van der Hoeven, J. Relax, but don’t be too lazy. Journal of Symbolic Computation
34, 6 (2002), 479–542.

[249] van der Poorten, A. J. Some facts that should be better known, especially about
rational functions. In Number theory and applications (Banff, AB, 1988), vol. 265 of
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Kluwer Acad. Publ., Dordrecht, 1989,
pp. 497–528.

[250] van Hoeij, M. Factoring polynomials and the knapsack problem. Journal of Number
Theory 95, 2 (2002), 167–189.

[251] Villard, G. Computing Popov and Hermite forms of polynomial matrices. In Pro-
ceedings of ISSAC’96 (1996), ACM Press, pp. 251–258.

[252] von Haeseler, F., and Jürgensen, W. Irreducible polynomials generated by
decimations. In Finite fields and their applications (Augsburg, 1999). Springer, Berlin,
2001, pp. 224–231.

[253] von zur Gathen, J. Functional decomposition of polynomials: the wild case. Journal
of Symbolic Computation 10, 5 (1990), 437–452.

[254] von zur Gathen, J., and Gerhard, J. Fast algorithms for Taylor shifts and
certain difference equations. In Proceedings of ISSAC’97 (New York, 1997), ACM
Press, pp. 40–47.

[255] von zur Gathen, J., and Gerhard, J. Modern computer algebra. Cambridge
University Press, New York, 1999.

[256] von zur Gathen, J., and Shoup, V. Computing Frobenius maps and factoring
polynomials. Computational Complexity 2, 3 (1992), 187–224.

[257] Wan, D. Computing zeta functions over finite fields. Contemp. Math. 225 (1999),
131–141.

[258] Wiedemann, D. Solving sparse linear equations over finite fields. IEEE Transactions
on informations theory IT-32 (1986), 54–62.

[259] Wilf, H. S., and Zeilberger, D. An algorithmic proof theory for hypergeometric
(ordinary and “q”) multisum/integral identities. Inventiones Mathematicae 108 (1992),
575–633.

[260] Wilson, T. C., and Shortt, J. An O(log n) algorithm for computing general
order-k Fibonacci numbers. Information Processing Letters 10, 2 (1980), 68–75.

[261] Winograd, S. A new algorithm for inner products. IEEE Trans. Comp. (1968),
693–694.

245



[262] Winograd, S. On multiplication of 2 × 2 matrices. Linear Algebra and Appl. 4
(1971), 381–388.

[263] Yokoyama, K., Li, Z., and Nemes, I. Finding roots of unity among quotients of
the roots of an integral polynomial. In Proceedings of ISSAC’95 (1995), ACM Press,
pp. 85–89.

[264] Yui, N. On the Jacobian varietes of hyperelliptic curves over fields of characteristic
p > 2. J. Algebra 52 (1978), 378–410.

[265] Zeilberger, D. A holonomic systems approach to special functions identities. Jour-
nal of Computational and Applied Mathematics 32, 3 (1990), 321–368.

[266] Zippel, R. Probabilistic algorithms for sparse polynomials. In Symbolic and alge-
braic computation (Berlin, 1979), no. 72 in LNCS, Springer, pp. 216–226. Proceedings
EUROSAM ’79, Marseille, 1979.

[267] Zippel, R. Interpolating polynomials from their values. Journal of Symbolic Compu-
tation 9, 3 (1990), 375–403.

246


