Dwork's congruences

Frits Beukers

May 16, 2019

p-adic cycles

Consider $E_{t}: y^{2}=x(x-1)(x-t)$. A period,

$$
\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-t)}}=\sum_{k=0}^{\infty}\binom{2 k}{k}^{2}(t / 16)^{k}
$$

p-adic cycles

Consider $E_{t}: y^{2}=x(x-1)(x-t)$. A period,

$$
\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-t)}}=\sum_{k=0}^{\infty}\binom{2 k}{k}^{2}(t / 16)^{k}
$$

Define truncated sums

$$
F_{m}(t)=\sum_{k=0}^{m-1}\binom{2 k}{k}^{2}(t / 16)^{k}
$$

p-adic cycles

Consider $E_{t}: y^{2}=x(x-1)(x-t)$. A period,

$$
\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-t)}}=\sum_{k=0}^{\infty}\binom{2 k}{k}^{2}(t / 16)^{k}
$$

Define truncated sums

$$
F_{m}(t)=\sum_{k=0}^{m-1}\binom{2 k}{k}^{2}(t / 16)^{k}
$$

Theorem (B.Dwork, 1969)

Let p be a prime and $t_{0} \in \mathbb{Z}_{p}$. Suppose $F_{p}\left(t_{0}\right)$ is not divisible by p. Then the p-adic limit

$$
\lambda=(-1)^{(p-1) / 2} \lim _{s \rightarrow \infty} F_{p^{s+1}}\left(t_{0}\right) / F_{p^{s}}\left(t_{0}\right)
$$

exists and equals a root of the zeta-function of $E\left(t_{0}\right)(\bmod p)$.

A variation

Define $f(x, y)=y^{2}-x(x-1)\left(x-t_{0}\right)$. Define for every positive integer m,

$$
\beta_{m}=\text { coefficient of }(x y)^{m-1} \text { of } f(x, y)^{m-1}
$$

Explicitly (for those interested),

$$
\beta_{m}=\binom{m-1}{(m-1) / 2} \sum_{k=0}^{(m-1) / 2}\binom{(m-1) / 2}{k}^{2} t_{0}^{k} \text { when } m \text { odd. }
$$

A variation

Define $f(x, y)=y^{2}-x(x-1)\left(x-t_{0}\right)$. Define for every positive integer m,

$$
\beta_{m}=\text { coefficient of }(x y)^{m-1} \text { of } f(x, y)^{m-1}
$$

Explicitly (for those interested),

$$
\beta_{m}=\binom{m-1}{(m-1) / 2} \sum_{k=0}^{(m-1) / 2}\binom{(m-1) / 2}{k}^{2} t_{0}^{k} \text { when } m \text { odd. }
$$

Theorem (formal group theory)
Suppose p does not divide β_{p}. Then

$$
\beta_{p^{s+1}} \equiv \lambda \beta_{p^{s}}\left(\bmod p^{s+1}\right)
$$

for all $s \geq 0$.

Newton polytope

> Let $f(\mathbf{x})=\sum_{i=1}^{N} f_{i} \mathbf{x}^{\mathbf{a}_{i}}$ be a Laurent polynomial in $\mathbf{x}=x_{1}, \ldots, x_{n}$ with coefficients $f_{i} \in \mathbb{Z}_{p}$.

Newton polytope

Let $f(\mathbf{x})=\sum_{i=1}^{N} f_{i} \mathbf{x}^{\mathbf{a}_{i}}$ be a Laurent polynomial in $\mathbf{x}=x_{1}, \ldots, x_{n}$ with coefficients $f_{i} \in \mathbb{Z}_{p}$.
Let Δ be the Newton polytope of f, i.e convex hull of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$ Let Δ° be its interior and $\Delta_{\mathbb{Z}}^{\circ}=\Delta^{\circ} \cap \mathbb{Z}$.

Newton polytope

Let $f(\mathbf{x})=\sum_{i=1}^{N} f_{i} \mathbf{x}^{\mathbf{a}_{i}}$ be a Laurent polynomial in $\mathbf{x}=x_{1}, \ldots, x_{n}$ with coefficients $f_{i} \in \mathbb{Z}_{p}$.
Let Δ be the Newton polytope of f, i.e convex hull of $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$ Let Δ° be its interior and $\Delta_{\mathbb{Z}}^{\circ}=\Delta^{\circ} \cap \mathbb{Z}$.
Example for $f(x, y)=y^{2}-x(x-1)(x-t)$,

with $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1)\}$.

A generalization

Let $g=\left|\Delta_{\mathbb{Z}}^{\circ}\right|$. Define the $g \times g$-matrix β_{m} by

$$
\left(\beta_{m}\right)_{\mathbf{u}, \mathbf{v}}=\text { coefficient of } \mathbf{x}^{m \mathbf{v}-\mathbf{u}} \text { in } f(\mathbf{x})^{m-1}
$$

indexed by $\mathbf{u}, \mathbf{v} \in \Delta_{\mathbb{Z}}^{\circ}$.

A generalization

Let $g=\left|\Delta_{\mathbb{Z}}^{\circ}\right|$. Define the $g \times g$-matrix β_{m} by

$$
\left(\beta_{m}\right)_{\mathbf{u}, \mathbf{v}}=\text { coefficient of } \mathbf{x}^{m \mathbf{v}-\mathbf{u}} \text { in } f(\mathbf{x})^{m-1}
$$

indexed by $\mathbf{u}, \mathbf{v} \in \Delta_{\mathbb{Z}}^{\circ}$.
Theorem (M.Vlasenko, 2016)
Let p be a prime and suppose that $\operatorname{det}\left(\beta_{p}\right)$ is not divisible by p. Then there exists a $g \times g$-matrix Λ such that

$$
\beta_{p^{s+1}} \equiv \Lambda \beta_{p^{s}}\left(\bmod p^{s+1}\right)
$$

for all $s \geq 0$.

An example

Let us take $f(x)=x^{3}-x+2$ (discriminant is -104$)$. Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{1,2\}$.

An example

Let us take $f(x)=x^{3}-x+2$ (discriminant is -104$)$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{1,2\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} & x^{2 m-1} \\
x^{m-2} & x^{2 m-2}
\end{array}\right) \text { in } f(x)^{m-1}
$$

An example

Let us take $f(x)=x^{3}-x+2$ (discriminant is -104$)$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{1,2\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} & x^{2 m-1} \\
x^{m-2} & x^{2 m-2}
\end{array}\right) \text { in } f(x)^{m-1}
$$

$$
\begin{aligned}
\text { We get } \beta_{147} & \equiv\left(\begin{array}{cc}
52 & 132 \\
32 & 96
\end{array}\right)(\bmod 147) \text { and } \\
& \operatorname{det}\left(\beta_{147}-\lambda\right) \equiv \lambda^{2}-2 \lambda+1(\bmod 147)
\end{aligned}
$$

An example

Let us take $f(x)=x^{3}-x+2$ (discriminant is -104$)$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{1,2\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} & x^{2 m-1} \\
x^{m-2} & x^{2 m-2}
\end{array}\right) \text { in } f(x)^{m-1}
$$

$$
\begin{aligned}
\text { We get } \beta_{147} \equiv & \equiv\left(\begin{array}{cc}
52 & 132 \\
32 & 96
\end{array}\right)(\bmod 147) \text { and } \\
& \operatorname{det}\left(\beta_{147}-\lambda\right) \equiv \lambda^{2}-2 \lambda+1(\bmod 147)
\end{aligned}
$$

Similarly,

- $\operatorname{det}\left(\beta_{163}-\lambda\right) \equiv \lambda^{2}-1(\bmod 163)$
- $\operatorname{det}\left(\beta_{151}-\lambda\right) \equiv \lambda^{2}+\lambda+1(\bmod 151)$

Another example

Let us take $f(x, y)=y^{2}+x^{5}+x^{2}+x$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1),(2,1)\}$.

Another example

Let us take $f(x, y)=y^{2}+x^{5}+x^{2}+x$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1),(2,1)\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} y^{m-1} & x^{2 m-1} y^{m-1} \\
x^{m-2} y^{m-1} & x^{2 m-2} y^{m-1}
\end{array}\right) \text { in } f(x, y)^{m-1} .
$$

Another example

Let us take $f(x, y)=y^{2}+x^{5}+x^{2}+x$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1),(2,1)\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} y^{m-1} & x^{2 m-1} y^{m-1} \\
x^{m-2} y^{m-1} & x^{2 m-2} y^{m-1}
\end{array}\right) \text { in } f(x, y)^{m-1} .
$$

We get

$$
\beta_{47^{2}} \equiv\left(\begin{array}{cc}
476 & 194 \\
341 & 1782
\end{array}\right) \beta_{47}\left(\bmod 47^{2}\right)
$$

and characteristic polynomial: $Q(\lambda)=\lambda^{2}+2160 \lambda+92\left(\bmod 47^{2}\right)$.

Another example

Let us take $f(x, y)=y^{2}+x^{5}+x^{2}+x$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1),(2,1)\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} y^{m-1} & x^{2 m-1} y^{m-1} \\
x^{m-2} y^{m-1} & x^{2 m-2} y^{m-1}
\end{array}\right) \text { in } f(x, y)^{m-1} .
$$

We get

$$
\beta_{47^{2}} \equiv\left(\begin{array}{cc}
476 & 194 \\
341 & 1782
\end{array}\right) \beta_{47}\left(\bmod 47^{2}\right)
$$

and characteristic polynomial: $Q(\lambda)=\lambda^{2}+2160 \lambda+92\left(\bmod 47^{2}\right)$. Times its reciprocal $Q(47 / \lambda)$ gives

$$
\lambda^{4}-2 \lambda^{3}-2 \lambda^{2}-47 \cdot 2 \lambda\left(\bmod 47^{2}\right)
$$

Another example

Let us take $f(x, y)=y^{2}+x^{5}+x^{2}+x$.
Notice: $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1),(2,1)\}$. Let

$$
\beta_{m}=\text { coefficient of }\left(\begin{array}{ll}
x^{m-1} y^{m-1} & x^{2 m-1} y^{m-1} \\
x^{m-2} y^{m-1} & x^{2 m-2} y^{m-1}
\end{array}\right) \text { in } f(x, y)^{m-1} .
$$

We get

$$
\beta_{47^{2}} \equiv\left(\begin{array}{cc}
476 & 194 \\
341 & 1782
\end{array}\right) \beta_{47}\left(\bmod 47^{2}\right)
$$

and characteristic polynomial: $Q(\lambda)=\lambda^{2}+2160 \lambda+92\left(\bmod 47^{2}\right)$. Times its reciprocal $Q(47 / \lambda)$ gives

$$
\lambda^{4}-2 \lambda^{3}-2 \lambda^{2}-47 \cdot 2 \lambda\left(\bmod 47^{2}\right)
$$

Similarly, for $p=59$ we get

$$
\lambda^{4}+2 \lambda^{3}+2 \lambda^{2}+59 \cdot 2 \lambda\left(\bmod 59^{2}\right)
$$

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$.

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$. Consider the \mathbb{Z}_{p}-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with }(r, s) \in k \Delta^{\circ}
$$

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$.
Consider the \mathbb{Z}_{p}-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with }(r, s) \in k \Delta^{\circ}
$$

Define the derivatives by

$$
d \Omega_{f}=x \frac{\partial}{\partial x} \Omega_{f}+y \frac{\partial}{\partial y} \Omega_{f}
$$

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$.
Consider the \mathbb{Z}_{p}-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with }(r, s) \in k \Delta^{\circ}
$$

Define the derivatives by

$$
d \Omega_{f}=x \frac{\partial}{\partial x} \Omega_{f}+y \frac{\partial}{\partial y} \Omega_{f}
$$

Side remark: when we work over \mathbb{C},

$$
\Omega_{f} / d \Omega_{f} \cong H_{\mathrm{DR}}^{2}\left(\mathbb{T}^{2} \backslash E\right)
$$

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$.
Consider the \mathbb{Z}_{p}-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with }(r, s) \in k \Delta^{\circ}
$$

Define the derivatives by

$$
d \Omega_{f}=x \frac{\partial}{\partial x} \Omega_{f}+y \frac{\partial}{\partial y} \Omega_{f}
$$

Side remark: when we work over \mathbb{C},

$$
\Omega_{f} / d \Omega_{f} \cong H_{\mathrm{DR}}^{2}\left(\mathbb{T}^{2} \backslash E\right) \cong H_{\mathrm{DR}}^{1}(E)
$$

Regular functions

Sketch of a proof of Vlasenko's result for $f(x, y)=y^{2}-x(x-1)(x-t)$ and β_{m} the 1×1-matrix with element the coefficient of $(x y)^{m-1}$ in $f(x, y)^{m-1}$.
Consider the \mathbb{Z}_{p}-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with }(r, s) \in k \Delta^{\circ}
$$

Define the derivatives by

$$
d \Omega_{f}=x \frac{\partial}{\partial x} \Omega_{f}+y \frac{\partial}{\partial y} \Omega_{f}
$$

Side remark: when we work over \mathbb{C},

$$
\Omega_{f} / d \Omega_{f} \cong H_{\mathrm{DR}}^{2}\left(\mathbb{T}^{2} \backslash E\right) \cong H_{\mathrm{DR}}^{1}(E) \cong \mathbb{C} \frac{d x}{y}+\mathbb{C} \frac{x d x}{y}
$$

Formal expansions

We expand

$$
\frac{x^{r} y^{s}}{\left(y^{2}-x(x-1)(x-16 t)\right)^{k}}
$$

formally as

$$
\frac{x^{r} y^{s}}{y^{2 k}}\left(1-\frac{x(x-1)(x-16 t)}{y^{2}}\right)^{-k}
$$

and then as geometric expansion

$$
\sum_{m \geq 0}\binom{m+k-1}{m} \times \frac{x^{r} y^{s}}{y^{2 k}} \times \frac{x^{m}(x-1)^{m}(x-16 t)^{m}}{y^{2 m}}
$$

Formal expansions

We expand

$$
\frac{x^{r} y^{s}}{\left(y^{2}-x(x-1)(x-16 t)\right)^{k}}
$$

formally as

$$
\frac{x^{r} y^{s}}{y^{2 k}}\left(1-\frac{x(x-1)(x-16 t)}{y^{2}}\right)^{-k}
$$

and then as geometric expansion

$$
\sum_{m \geq 0}\binom{m+k-1}{m} \times \frac{x^{r} y^{s}}{y^{2 k}} \times \frac{x^{m}(x-1)^{m}(x-16 t)^{m}}{y^{2 m}}
$$

This is contained in set of Laurent series $\Omega_{\text {formal }}$ of the form

$$
\sum_{n / 2<m<3 n / 2} a_{m n} \frac{x^{m}}{y^{n}}
$$

It gives embedding of Ω_{f} into $\Omega_{\text {formal }}$.

Formal derivatives

We define the formal derivatives

$$
d \Omega_{\text {formal }}=x \frac{\partial}{\partial x} \Omega_{\text {formal }}+y \frac{\partial}{\partial y} \Omega_{\text {formal }} .
$$

Notice that $d \Omega_{f} \subset d \Omega_{\text {formal }}$.

Formal derivatives

We define the formal derivatives

$$
d \Omega_{\text {formal }}=x \frac{\partial}{\partial x} \Omega_{\text {formal }}+y \frac{\partial}{\partial y} \Omega_{\text {formal }} .
$$

Notice that $d \Omega_{f} \subset d \Omega_{\text {formal }}$.
Lemma (Katz)
$\sum_{m, n} a_{m, n} x^{m} y^{n} \in d \Omega_{\text {formal }} \Longleftrightarrow p^{\min \left(\operatorname{ord}_{\rho}(m), \operatorname{ord}_{\rho}(n)\right)} \mid a_{m, n}$ for all m, n.

Formal derivatives

We define the formal derivatives

$$
d \Omega_{\text {formal }}=x \frac{\partial}{\partial x} \Omega_{\text {formal }}+y \frac{\partial}{\partial y} \Omega_{\text {formal }} .
$$

Notice that $d \Omega_{f} \subset d \Omega_{\text {formal }}$.
Lemma (Katz)

$$
\sum_{m, n} a_{m, n} x^{m} y^{n} \in d \Omega_{\text {formal }} \Longleftrightarrow p^{\min \left(\operatorname{ord}_{\rho}(m), \operatorname{ord}_{\rho}(n)\right)} \mid a_{m, n} \text { for all } m, n .
$$

Indication of proof:

$$
x \frac{\partial}{\partial x} \sum a_{m, n} x^{m} y^{n}=\sum m a_{m, n} x^{m} y^{n}
$$

Clearly $m a_{m, n}$ is divisible by $p^{\operatorname{ord}_{p}(m)}$.

Finiteness

Theorem (Be-Vlasenko, 2018)
Suppose β_{p} is not divisible by p. Then the quotient module $\Omega_{f} / d \Omega_{\text {formal }}$ is generated over \mathbb{Z}_{p} by

$$
\frac{x y}{f(x, y)} .
$$

Finiteness

Theorem (Be-Vlasenko, 2018)

Suppose β_{p} is not divisible by p. Then the quotient module $\Omega_{f} / d \Omega_{\text {formal }}$ is generated over \mathbb{Z}_{p} by

$$
\frac{x y}{f(x, y)}
$$

So, for any $(k-1)!\frac{x^{r} y^{s}}{f^{k}} \in \Omega_{f}$ there exists $\alpha \in \mathbb{Z}_{p}$ such that

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}}-\alpha \frac{x y}{f} \in d \Omega_{f}
$$

Cartier operator

We define the Cartier operator $\mathscr{C}_{p}: \Omega_{\text {formal }} \rightarrow \Omega_{\text {formal }}$ by

$$
\mathscr{C}_{p}: \sum_{m, n} a_{m, n} x^{m} y^{n} \mapsto \sum_{m, n} a_{p m, p n} x^{m} y^{n} .
$$

Cartier operator

We define the Cartier operator $\mathscr{C}_{p}: \Omega_{\text {formal }} \rightarrow \Omega_{\text {formal }}$ by

$$
\mathscr{C}_{p}: \sum_{m, n} a_{m, n} x^{m} y^{n} \mapsto \sum_{m, n} a_{p m, p n} x^{m} y^{n}
$$

Lemma

We have

- $\mathscr{C}_{p} \circ x \frac{\partial}{\partial x}=p x \frac{\partial}{\partial x} \circ \mathscr{C}_{p}$ and similar for $y \frac{\partial}{\partial y}$.
- $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow p d \Omega_{\text {formal }}$.

Cartier operator

We define the Cartier operator $\mathscr{C}_{p}: \Omega_{\text {formal }} \rightarrow \Omega_{\text {formal }}$ by

$$
\mathscr{C}_{p}: \sum_{m, n} a_{m, n} x^{m} y^{n} \mapsto \sum_{m, n} a_{p m, p n} x^{m} y^{n} .
$$

Lemma

We have

- $\mathscr{C}_{p} \circ x \frac{\partial}{\partial x}=p x \frac{\partial}{\partial x} \circ \mathscr{C}_{p}$ and similar for $y \frac{\partial}{\partial y}$.
- $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow p d \Omega_{\text {formal }}$.
- $\mathscr{C}_{p}\left(g\left(x^{p}, y^{p}\right) h(x, y)\right)=g(x, y) \mathscr{C}_{p}(h(x, y))$.

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$?

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$?As example:

$$
\mathscr{C}_{p}\left(\frac{x y}{f(x, y)}\right)=\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f(x, y)^{p}}\right)
$$

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$?As example:

$$
\begin{aligned}
\mathscr{C}_{p}\left(\frac{x y}{f(x, y)}\right) & =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f(x, y)^{p}}\right) \\
& =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f\left(x^{p}, y^{p}\right)-p G(x, y)}\right)
\end{aligned}
$$

where $p G(x, y)=f\left(x^{p}, y^{p}\right)-f(x, y)^{p}$.

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$?As example:

$$
\begin{aligned}
\mathscr{C}_{p}\left(\frac{x y}{f(x, y)}\right) & =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f(x, y)^{p}}\right) \\
& =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f\left(x^{p}, y^{p}\right)-p G(x, y)}\right)
\end{aligned}
$$

where $p G(x, y)=f\left(x^{p}, y^{p}\right)-f(x, y)^{p}$. Expand in geometric series

$$
\begin{aligned}
& \mathscr{C}_{p}\left(\sum_{r=0}^{\infty} p^{r} \frac{x y f(x, y)^{p-1} G(x, y)^{r}}{f\left(x^{p}, y^{p}\right)^{r+1}}\right) \\
= & \sum_{r=0}^{\infty} \frac{p^{r}}{r!} \frac{r!}{f(x, y)^{r+1}} \mathscr{C}_{p}\left(x y f(x, y)^{p-1} G(x, y)^{r}\right)
\end{aligned}
$$

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$?As example:

$$
\begin{aligned}
\mathscr{C}_{p}\left(\frac{x y}{f(x, y)}\right) & =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f(x, y)^{p}}\right) \\
& =\mathscr{C}_{p}\left(\frac{x y f(x, y)^{p-1}}{f\left(x^{p}, y^{p}\right)-p G(x, y)}\right)
\end{aligned}
$$

where $p G(x, y)=f\left(x^{p}, y^{p}\right)-f(x, y)^{p}$. Expand in geometric series

$$
\begin{aligned}
& \mathscr{C}_{p}\left(\sum_{r=0}^{\infty} p^{r} \frac{x y f(x, y)^{p-1} G(x, y)^{r}}{f\left(x^{p}, y^{p}\right)^{r+1}}\right) \\
= & \sum_{r=0}^{\infty} \frac{p^{r}}{r!} \frac{r!}{f(x, y)^{r+1}} \mathscr{C}_{p}\left(x y f(x, y)^{p-1} G(x, y)^{r}\right)
\end{aligned}
$$

The latter sum is in $\widehat{\Omega}_{f}=\lim _{\leftarrow} \Omega_{f} / p^{s} \Omega_{f}$, the p-adic completion of Ω_{f}.

Cartier matrix

So $\mathscr{C}_{p}: \hat{\Omega}_{f} \rightarrow \hat{\Omega}_{f}$.

Cartier matrix

So $\mathscr{C}_{p}: \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f}$.
Also $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow d \Omega_{\text {formal }}$.

Cartier matrix

So $\mathscr{C}_{p}: \widehat{\Omega}_{f} \rightarrow \hat{\Omega}_{f}$.
Also $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow d \Omega_{\text {formal }}$.
We have (by Be-Vlasenko)

$$
\widehat{\Omega}_{f} / d \Omega_{\text {formal }} \cong \mathbb{Z}_{p} \frac{x y}{f} .
$$

Cartier matrix

So $\mathscr{C}_{p}: \hat{\Omega}_{f} \rightarrow \hat{\Omega}_{f}$.
Also $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow d \Omega_{\text {formal }}$.
We have (by Be-Vlasenko)

$$
\widehat{\Omega}_{f} / d \Omega_{\text {formal }} \cong \mathbb{Z}_{p} \frac{x y}{f} .
$$

Hence

$$
\mathscr{C}_{P}\left(\frac{x y}{f}\right) \equiv \lambda \frac{x y}{f}\left(\bmod d \Omega_{\text {formal }}\right)
$$

for some $\lambda \in \mathbb{Z}_{p}$.

Cartier matrix

So $\mathscr{C}_{p}: \hat{\Omega}_{f} \rightarrow \hat{\Omega}_{f}$.
Also $\mathscr{C}_{p}: d \Omega_{\text {formal }} \rightarrow d \Omega_{\text {formal }}$.
We have (by Be-Vlasenko)

$$
\widehat{\Omega}_{f} / d \Omega_{\text {formal }} \cong \mathbb{Z}_{p} \frac{x y}{f}
$$

Hence

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right) \equiv \lambda \frac{x y}{f}\left(\bmod d \Omega_{\text {formal }}\right)
$$

for some $\lambda \in \mathbb{Z}_{p}$.
Some more careful analysis shows that

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta
$$

with $d \eta$ is a derivative in $d \Omega_{\text {formal }}$

Katz's theorem

From previous slide:

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta .
$$

Choose integers u, v such that $u / 2<v<3 u / 2$ and $s \geq 0$. Take coefficient of $x^{u p^{s}} y^{-v p^{s}}$ on both sides. Recall that

$$
\frac{x y}{f}=\sum_{n / 2<m<3 n / 2} a_{m, n} x^{m} y^{-n}
$$

Katz's theorem

From previous slide:

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta .
$$

Choose integers u, v such that $u / 2<v<3 u / 2$ and $s \geq 0$. Take coefficient of $x^{u p^{s}} y^{-v p^{s}}$ on both sides. Recall that

$$
\frac{x y}{f}=\sum_{n / 2<m<3 n / 2} a_{m, n} x^{m} y^{-n} .
$$

The $u p^{s}, v p^{s}$ coefficient of $d \eta$ is divisible by p^{s}.

Katz's theorem

From previous slide:

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta .
$$

Choose integers u, v such that $u / 2<v<3 u / 2$ and $s \geq 0$. Take coefficient of $x^{u p^{s}} y^{-v p^{s}}$ on both sides. Recall that

$$
\frac{x y}{f}=\sum_{n / 2<m<3 n / 2} a_{m, n} x^{m} y^{-n}
$$

The $u p^{s}, v p^{s}$ coefficient of $d \eta$ is divisible by p^{s}. We get
Theorem (Katz,1985), case $g=1$

$$
a_{u p^{s+1}, v p^{s+1}} \equiv \lambda a_{u p^{s}, v p^{s}}\left(\bmod p^{s+1}\right)
$$

Final step

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta
$$

with $d \eta$ is a derivative in $d \Omega_{\text {formal }}$.
Multiply on both sides by $\frac{f^{\rho^{s}}}{(x y)^{\rho^{s}}}$ and take the constant term.

Final step

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta
$$

with $d \eta$ is a derivative in $d \Omega_{\text {formal }}$.
Multiply on both sides by $\frac{f^{p^{s}}}{(x y)^{s^{s}}}$ and take the constant term.
Middle term: const $\frac{f^{p^{s}-1}}{(x y)^{p^{s}-1}}=\beta_{p^{s}}$.

Final step

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta
$$

with $d \eta$ is a derivative in $d \Omega_{\text {formal }}$.
Multiply on both sides by $\frac{f^{p^{s}}}{(x y)^{p^{s}}}$ and take the constant term.
Middle term: const $\frac{f^{p^{s}-1}}{(x y)^{\rho^{s}-1}}=\beta_{p^{s}}$.
For the left hand term observe that

$$
\text { const } \frac{f(x, y)^{p^{s}}}{(x y)^{p^{s}}} \mathscr{C}_{p}\left(\frac{x y}{f}\right)=\text { const } \mathscr{C}_{p}\left(\frac{f\left(x^{p}, y^{p}\right)^{p^{s}}}{(x y)^{p^{s+1}}} \frac{x y}{f(x, y)}\right)
$$

Final step

$$
\mathscr{C}_{p}\left(\frac{x y}{f}\right)=\lambda \frac{x y}{f}+p d \eta
$$

with $d \eta$ is a derivative in $d \Omega_{\text {formal }}$.
Multiply on both sides by $\frac{f^{p^{s}}}{(x y)^{p^{s}}}$ and take the constant term.
Middle term: const $\frac{f^{p^{s}-1}}{(x y)^{p^{s}-1}}=\beta_{p^{s}}$.
For the left hand term observe that

$$
\text { const } \frac{f(x, y)^{p^{s}}}{(x y)^{p^{s}}} \mathscr{C}_{p}\left(\frac{x y}{f}\right)=\text { const } \mathscr{C}_{p}\left(\frac{f\left(x^{p}, y^{p}\right)^{p^{s}}}{(x y)^{p^{s+1}}} \frac{x y}{f(x, y)}\right)
$$

Modulo p^{s+1} this equals

$$
\text { const }\left(\frac{f(x, y)^{p^{s+1}}}{(x y)^{p^{s+1}}} \frac{x y}{f(x, y)}\right) \equiv \beta_{p^{s+1}}\left(\bmod p^{s+1}\right)
$$

Final step ct'd

For the last term we get

$$
p \frac{f^{p^{s}}}{(x y)^{p^{s}}} d \eta \equiv p \cdot d\left(\frac{f^{p^{s}}}{(x y)^{p^{s}}} \eta\right)\left(\bmod p^{s+1}\right)
$$

The constant term of a derivative is 0 .

Final step ct'd

For the last term we get

$$
p \frac{f^{p^{s}}}{(x y)^{p^{s}}} d \eta \equiv p \cdot d\left(\frac{f p^{p^{s}}}{(x y)^{p^{s}}} \eta\right)\left(\bmod p^{s+1}\right)
$$

The constant term of a derivative is 0 .
Result,

$$
\beta_{p^{s+1}} \equiv \lambda \beta_{p^{s}}\left(\bmod p^{s+1}\right)
$$

Conclusion

Recall

Theorem (M.Vlasenko, 2016)
Let p be a prime and suppose that $\operatorname{det}\left(\beta_{p}\right)$ is not divisible by p. Then there exists a $g \times g$-matrix Λ such that

$$
\beta_{p^{s+1}} \equiv \Lambda \beta_{p^{s}}\left(\bmod p^{s+1}\right)
$$

for all $s \geq 0$.

Conclusion

Recall

Theorem (M.Vlasenko, 2016)
Let p be a prime and suppose that $\operatorname{det}\left(\beta_{p}\right)$ is not divisible by p. Then there exists a $g \times g$-matrix Λ such that

$$
\beta_{p^{s+1}} \equiv \Lambda \beta_{p^{s}}\left(\bmod p^{s+1}\right)
$$

for all $s \geq 0$.

Conclusion

With the analysis given above we conclude that Λ is the matrix of the action of \mathscr{C}_{p} on the rank g module $\Omega_{f} / d \Omega_{\text {formal }}$.

