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Lattice Walks, Why?

Applications in many areas of science

discrete mathematics (permutations, trees, words, urns, . . . )

statistical physics (Ising model, . . . )

probability theory (branching processes, games of chance, . . . )

operations research (queueing theory, . . . )

Frédéric Chyzak Small-Step Walks



2 / 21

Lattice Walks, Why?

Applications in many areas of science

discrete mathematics (permutations, trees, words, urns, . . . )

statistical physics (Ising model, . . . )

probability theory (branching processes, games of chance, . . . )

operations research (queueing theory, . . . )

This talk:
Computer Algebra applied to Combinatorics

Frédéric Chyzak Small-Step Walks



3 / 21

Enumerative Combinatorics of Lattice Walks

. Nearest-neighbor walks in the quarter plane = walks in N2 starting at
(0, 0) and using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.
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Generating Series and Combinatorial Problems

. Complete generating series: F(x, y; t) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]].

. Specializations:

Walks returning to the origin (“excursions”): F(0, 0; t);
Walks with prescribed length: F(1, 1; t) = ∑

n≥0
fntn.

Combinatorial questions: Given S, what can be said about F(x, y; t),
resp. fn;i,j, and their variants?

Algebraic nature of F: algebraic? transcendental?

Explicit form: of F? of f ?

Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.
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Small-Step Models of Interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, too simple, intrinsic to the
half plane,

related by
symmetries.

One is left with 79 interesting distinct models.

Is any further classification possible?
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Classification of Univariate Power Series

algebraic

hypergeom

D-finite power series

. Algebraic: S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0.

. D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

. Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g., Gauss’

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1),

t(1− t)S′′(t) +
(
c− (a + b + 1)t

)
S′(t)− abS(t) = 0.
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Table of All Conjectured D-Finite F(1, 1; t) [Bostan & Kauers, 2009]

OEIS S alg ord equiv OEIS S alg ord equiv

1 A005566 N 3 4
π

4n

n 13 A151275 N 5 12
√

30
π

(2
√

6)n

n2

2 A018224 N 3 2
π

4n

n 14 A151314 N 5
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N 3
√

6
π

6n

n 15 A151255 N 5 24
√

2
π

(2
√

2)n

n2

4 A151331 N 3 8
3π

8n

n 16 A151287 N 5 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 5 1
2

√
3
π

3n

n1/2 17 A001006 Y 3 3
2

√
3
π

3n

n3/2

6 A151307 N 5 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3 3
2

√
3
π

6n

n3/2

7 A151291 N 5 4
3
√

π
4n

n1/2 19 A005558 N 4 8
π

4n

n2

8 A151326 N 5 2√
3π

6n

n1/2

9 A151302 N 5 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 5 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 5 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N 5
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Computerized discovery of ODE by enumeration + Hermite–Padé.
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√
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√
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√

6, µ =

√
4
√

6−1
19

. Computerized discovery of asymptotics by enumeration + LLL/PSLQ.
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Further Previous Work

Confirmation of D-finiteness

. Human proofs for cases 1–22 in [Bousquet-Mélou & Mishna, 2010],
but method not adapted to exhibit ODEs.

. Computer proof for case 23 in [Bostan & Kauers, 2010].

Fix of asymptotic formulas (first observed/proved by Melczer)

In fact:
OEIS S equiv

11 A151261

 12
√

3
π

(2
√

3)n

n2 (n = 2p)
18
π

(2
√

3)n

n2 (n = 2p + 1)

13 A151275

 12
√

30
π

(2
√

6)n

n2 (n = 2p)
144√

5π

(2
√

6)n

n2 (n = 2p + 1)

15 A151255

 24
√

2
π

(2
√

2)n

n2 (n = 2p)
32
π

(2
√

2)n

n2 (n = 2p + 1)
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Contributions

. First proof of formerly guessed linear differential operators for F(1, 1; t).

. Discovery and proof of explicit hypergeometric expressions for F(x, y; t).

. Proof of algebricity, resp. transcendence, of those series.

. Similar proofs for F(0, 0; t), F(0, 1; t), and F(1, 0; t).

. Conjectured asymptotic formulas for the coefficients of F(0, 0; t), F(0, 1; t),
F(1, 0; t), since then proved by Melczer and Wilson.
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Table of D-Finite F(x, y; t) at x = y = 0 [This work]

OEIS S alg conj’d equiv OEIS S alg conj’d equiv

1 A005568 N

{
32
π

4n

n3 (n = 2p)

0 (n = 2p + 1)
13 A151345 N

 24
√

30
25π

(2
√

6)n

n3 (n = 2p)

0 (n = 2p + 1)

2 A001246 N

{
8
π

4n

n3 (n = 2p)

0 (n = 2p + 1)
14 A151370 N 2µ3C3/2

π
(2C)n

n3

3 A151362 N

{
3
√

6
π

6n

n3 (n = 2p)

0 (n = 2p + 1)
15 A151332 N

 16
√

2
π

(2
√

2)n

n3 (n = 4p)

0 (n = 4p + 1, 2, 3)

4 A172361 N 128
27π

8n

n3 16 A151357 N 2A3/2
π

(2A)n

n3

5 A151332 N

 16
√

2
π

(2
√

2)n

n3 (n = 4p)

0 (n = 4p + 1, 2, 3)
17 A151334 N

{
81
√

3
π

3n

n4 (n = 3p)

0 (n = 3p + 1, 2)

6 A151357 N 2A3/2
π

(2A)n

n3 18 A151366 N 27
√

3
π

6n

n4

7 A151341 N

 12
√

3
π

(2
√

3)n

n3 (n = 2p)

0 (n = 2p + 1)
19 A138349 N

{
768
π

4n

n5 (n = 2p)

0 (n = 2p + 1)

8 A151368 N 2B3/2
π

(2B)n

n3

9 A151345 N

 24
√

30
25π

(2
√

6)n

n3 (n = 2p)

0 (n = 2p + 1)

10 A151370 N 2µ3C3/2
π

(2C)n

n3

11 A151341 N

 12
√

3
π

(2
√

3)n

n3 (n = 2p)

0 (n = 2p + 1)

12 A151368 N 2B3/2
π

(2B)n

n3
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Table of D-Finite F(x, y; t) at x = 0, y = 1 [This work]

OEIS S alg conj’d equiv OEIS S alg conj’d equiv

1 A005558 N 8
π

4n

n2 12 A151472 N 3B7/2
2π

(2B)n

n3

2 A151392 N

{
4
π

4n

n2 (n = 2p)

0 (n = 2p + 1)
13 A151437 N


72
√

30
5π

(2
√

6)n

n3 (n = 2p)
864
√

5
25π

(2
√

6)n

n3 (n = 2p + 1)

3 A151478 N 3
√

6
2π

6n

n2 14 A151492 N 6λµ3C5/2
5π

(2C)n

n3

4 A151496 N 32
9π

8n

n2 15 A151375 N



448
√

2
9π

(2
√

2)n

n3 (n = 4p)
640
9π

(2
√

2)n

n3 (n = 4p + 1)
416
√

2
9π

(2
√

2)n

n3 (n = 4p + 2)

512
9π

(2
√

2)n

n3 (n = 4p + 3)

5 A151380 N 3
4

√
3
π

3n

n3/2 16 A151430 N 4A7/2
π

(2A)n

n3

6 A151450 N 5
16

√
10
π

5n

n3/2 17 A151378 N 27
8

√
3
π

3n

n5/2

7 A148790 N 8
3
√

π
4n

n3/2 18 A151483 Y 27
8

√
3
π

6n

n5/2

8 A151485 N
√

3
π

6n

n3/2 19 A005568 N

{
32
π

4n

n3 (n = 2p)

0 (n = 2p + 1)

9 A151440 N 5
24

√
10
π

5n

n3/2

10 A151493 N 7
54

√
21
π

7n

n3/2

11 A151394 N


36
√

3
π

(2
√

3)n

n3 (n = 2p)
54
π

(2
√

3)n

n3 (n = 2p + 1)
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Table of D-Finite F(x, y; t) at x = 1, y = 0 [This work]
OEIS S alg conj’d equiv OEIS S alg conj’d equiv

1 A005558 N 8
π

4n

n2 12 A151464 N 2B3/2√3
3π

(2B)n

n2

2 A151392 N

{
4
π

4n

n2 (n = 2p)
0 (n = 2p + 1)

13 A151423 N

{
4
√

30
5π

(2
√

6)n

n2 (n = 2p)
0 (n = 2p + 1)

3 A151471 N

{
2
√

6
π

6n

n2 (n = 2p)
0 (n = 2p + 1)

14 A151490 N
√

6µC3/2

3π
(2C)n

n2

4 A151496 N 32
9π

8n

n2 15 A151379 N

{
4
√

2
π

(2
√

2)n

n2 (n = 2p)
0 (n = 2p + 1)

5 A151379 N

{
4
√

2
π

(2
√

2)n

n2 (n = 2p)
0 (n = 2p + 1)

16 A148934 N
√

2A3/2

π
(2A)n

n2

6 A148934 N
√

2A3/2

π
(2A)n

n2 17 A151497 N 27
8

√
3
π

3n

n5/2

7 A151410 N

{
4
√

3
π

(2
√

3)n

n2 (n = 2p)
0 (n = 2p + 1)

18 A151483 Y 27
8

√
3
π

6n

n5/2

8 A151464 N 2B3/2√3
3π

(2B)n

n2 19 A005817 N 32
π

4n

n3

9 A151423 N

{
4
√

30
5π

(2
√

6)n

n2 (n = 2p)
0 (n = 2p + 1)

10 A151490 N
√

6µC3/2

3π
(2C)n

n2

11 A151410 N

{
4
√

3
π

(2
√

3)n

n2 (n = 2p)
0 (n = 2p + 1)
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The Kernel Equation [≤ Knuth, 1968]: an Example,

walk of length n + 1 =
walk of length n followed by a step from {←, ↑,→, ↓}

provided this remains in the quarter plane!

Recurrence relation:

fn+1;i,j = fn;i+1,j + J0 < jK fn;i,j−1 + J0 < iK fn;i−1,j + fn;i,j+1.
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The Kernel Equation [≤ Knuth, 1968]: an Example,

walk of length n + 1 =
walk of length n followed by a step from {←, ↑,→, ↓},

provided this remains in the quarter plane!

Recurrence relation:

fn+1;i,j = fn;i+1,j + J0 < jK fn;i,j−1 + J0 < iK fn;i−1,j + fn;i,j+1.

fn+1;i,jxiyjtn+1 =
(

fn;i+1,jxi+1yjtn
)
× x̄t + J0 < jK

(
fn;i,j−1xiyj−1tn

)
× yt +

J0 < iK
(

fn;i−1,jxi−1yjtn
)
× xt +

(
fn;i,j+1xiyj+1tn

)
× ȳt,

Notation: x̄ =
1
x

, ȳ =
1
y

.
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The Kernel Equation [≤ Knuth, 1968]: an Example,

walk of length n + 1 =
walk of length n followed by a step from {←, ↑,→, ↓},

provided this remains in the quarter plane!

Recurrence relation:

fn+1;i,j = fn;i+1,j + J0 < jK fn;i,j−1 + J0 < iK fn;i−1,j + fn;i,j+1.

fn+1;i,jxiyjtn+1 =
(

fn;i+1,jxi+1yjtn
)
× x̄t + J0 < jK

(
fn;i,j−1xiyj−1tn

)
× yt +

J0 < iK
(

fn;i−1,jxi−1yjtn
)
× xt +

(
fn;i,j+1xiyj+1tn

)
× ȳt,

F(x, y; t)− 1 =
(

F(x, y; t)− F(0, y; t)
)
× x̄t + F(x, y; t)× yt +

F(x, y; t)× xt +
(

F(x, y; t)− F(x, 0; t)
)
× ȳt,

Notation: x̄ =
1
x

, ȳ =
1
y

.
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The Kernel Equation [≤ Knuth, 1968]: an Example,

walk of length n + 1 =
walk of length n followed by a step from {←, ↑,→, ↓},

provided this remains in the quarter plane!

Recurrence relation:

fn+1;i,j = fn;i+1,j + J0 < jK fn;i,j−1 + J0 < iK fn;i−1,j + fn;i,j+1.

Functional (“kernel”) equation:

(1− t (x + x̄ + y + ȳ)) F(x, y; t) = −ȳtF(x, 0; t)− x̄tF(0, y; t) + 1.
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The Kernel Equation [≤ Knuth, 1968]: an Example,

walk of length n + 1 =
walk of length n followed by a step from {←, ↑,→, ↓},

provided this remains in the quarter plane!

Recurrence relation:

fn+1;i,j = fn;i+1,j + J0 < jK fn;i,j−1 + J0 < iK fn;i−1,j + fn;i,j+1.

Functional (“kernel”) equation:

(1− t (x + x̄ + y + ȳ)) F(x, y; t) = −ȳtF(x, 0; t)− x̄tF(0, y; t) + 1.

Remarks:

Erasing the constraint leads to a rational generating series.

Direct attempt to solve leads to tautologies.
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D-Finiteness via the Finite Group: an Example,

J = 1− t ∑(i,j)∈S xiyj = 1− t(x + x̄ + y + ȳ) is invariant
under the change of (x, y) into, respectively:

G = {(x, y),

(
x̄, y
)
,
(

x̄, ȳ
)
,
(

x, ȳ
)

}

.

Kernel equation:

J(x, y; t)xyF(x, y; t) = −txF(x, 0; t)− tyF(0, y; t) + xy,

− J(x, y; t)x̄yF(x̄, y; t) = tx̄F(x̄, 0; t) + tyF(0, y; t)− x̄y,

J(x, y; t)x̄ȳF(x̄, ȳ; t) = −tx̄F(x̄, 0; t)− tȳF(0, ȳ; t) + x̄ȳ,

− J(x, y; t)xȳF(x, ȳ; t) = txF(x, 0; t) + tȳF(0, ȳ; t)− xȳ.

Adding together yields: xy F(x, y; t) =
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)

}

.

Kernel equation:

J(x, y; t)xyF(x, y; t) = −txF(x, 0; t)− tyF(0, y; t) + xy,

− J(x, y; t)x̄yF(x̄, y; t) = tx̄F(x̄, 0; t) + tyF(0, y; t)− x̄y,
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under the change of (x, y) into, respectively:

G = {(x, y),

(
x̄, y
)
,
(

x̄, ȳ
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D-Finiteness via the Finite Group: an Example,

J = 1− t ∑(i,j)∈S xiyj = 1− t(x + x̄ + y + ȳ) is invariant
under the change of (x, y) into any element of

G = {(x, y),
(

x̄, y
)
,
(

x̄, ȳ
)
,
(

x, ȳ
)
}.

Kernel equation:

J(x, y; t)xyF(x, y; t) = −txF(x, 0; t)− tyF(0, y; t) + xy,

− J(x, y; t)x̄yF(x̄, y; t) = tx̄F(x̄, 0; t) + tyF(0, y; t)− x̄y,

J(x, y; t)x̄ȳF(x̄, ȳ; t) = −tx̄F(x̄, 0; t)− tȳF(0, ȳ; t) + x̄ȳ,

− J(x, y; t)xȳF(x, ȳ; t) = txF(x, 0; t) + tȳF(0, ȳ; t)− xȳ.

Adding together yields:
J(x, y; t) ∑

g∈G
sign(g) g

(
xy F(x, y; t)

)
= xy− x̄y + x̄ȳ− xȳ.
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J = 1− t ∑(i,j)∈S xiyj = 1− t(x + x̄ + y + ȳ) is invariant
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(
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)
,
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)
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)
}.
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− J(x, y; t)xȳF(x, ȳ; t) = txF(x, 0; t) + tȳF(0, ȳ; t)− xȳ.

Adding together yields:

∑
g∈G

sign(g) g
(

xy F(x, y; t)
)
=

xy− x̄y + x̄ȳ− xȳ
J(x, y; t)

.
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− J(x, y; t)xȳF(x, ȳ; t) = txF(x, 0; t) + tȳF(0, ȳ; t)− xȳ.

Adding together yields:
[x>][y>] ∑

g∈G
sign(g) g

(
xy F(x, y; t)

)
= [x>][y>]

xy− x̄y + x̄ȳ− xȳ
J(x, y; t)

.
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J = 1− t ∑(i,j)∈S xiyj = 1− t(x + x̄ + y + ȳ) is invariant
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G = {(x, y),
(
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)
,
(

x̄, ȳ
)
,
(

x, ȳ
)
}.
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J(x, y; t)x̄ȳF(x̄, ȳ; t) = −tx̄F(x̄, 0; t)− tȳF(0, ȳ; t) + x̄ȳ,

− J(x, y; t)xȳF(x, ȳ; t) = txF(x, 0; t) + tȳF(0, ȳ; t)− xȳ.

Adding together yields:
xy F(x, y; t) = [x>][y>]

xy− x̄y + x̄ȳ− xȳ
J(x, y; t)

.
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Cases 1–19 are D-Finite

J = 1− t ∑(i,j)∈S xiyj −→ a group G of birational transformations

Theorem [Bousquet-Mélou & Mishna, 2010]

Let S be one of the step sets 1–19. Then, the group G is finite and:

xy F(x, y; t) = [x>][y>]
∑g∈G sign(g) g

(
xy
)

J(x, y; t)
.

In particular, F(x, y; t) is D-finite.

Proof: Use [Lipshitz, 1988] (“The diagonal of a D-finite power series is D-finite”)
for positive parts of D-finite series.

. Constructive proof, but impractical to get an ODE for F(x, y; t)

. Remark: The formula provides no direct information for x = y = 1.
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.

In particular, F(x, y; t) is D-finite.

Proof: Use [Lipshitz, 1988] (“The diagonal of a D-finite power series is D-finite”)
for positive parts of D-finite series.

. Constructive proof, but impractical to get an ODE for F(x, y; t) by any
algorithm; in fact, any such ODE is probably

TOO LARGE TO BE MERELY WRITTEN!

. Remark: The formula provides no direct information for x = y = 1.
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algorithm; in fact, any such ODE is probably
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Explicit Expressions for the Cases 1–19

Theorem [This work]

Let S be one of the step sets 1–19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2F1 functions.
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Explicit Expressions for the Cases 1–19

Theorem [This work]

Let S be one of the step sets 1–19. Then, the generating series F(1, 1; t) is
expressible using iterated integrals of 2F1 functions.

Example: King walks in the quarter plane (A025595, )

F(1, 1; t) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·
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Explicit Expressions for the Cases 1–19

Theorem [This work]

Let S be one of the step sets 1–19. Then, the generating series F(1, 1; t) is
expressible using iterated integrals of 2F1 functions.

Example: King walks in the quarter plane (A025595, )

F(1, 1; t) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

Proved by deriving and solving:

t2(4t+ 1)(8t− 1)(2t− 1)(t+ 1)y′′′+ t(576t4 + 200t3− 252t2− 33t+ 5)y′′+

(1152t4 + 88t3 − 468t2 − 48t + 4)y′ + (384t3 − 72t2 − 144t− 12)y = 0.
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Explicit Expressions for the Cases 1–19

Theorem [This work]

Let S be one of the step sets 1–19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2F1 functions.

. Proof uses Creative telescoping, ODE factorization, ODE solving:

1 If R = ∑g
sign(g) g(xy)

J(x,y;t) , then F = 1
xy [x

>y>]R = Resu,v H, for H = R(1/u,1/v;t)
(1−xu)(1−yv) .

Taking algebraic residues commutes with specializing x and y!

2 If L ∈ Q(x, y)[t]〈∂t〉 and U, V ∈ Q(x, y, u, v, t) such that L(H) = ∂uU + ∂vV, then
L(F(x, y; t)) = 0 after integration over closed contours.
Use creative telescoping to find L (as well as U and V).

Works in practice with early evaluation (x, y) = (1, 1), but not for symbolic (x, y).
Works also for (0, 0), (x, 0), and (0, y)!

3 Factor L as L2 · P1 · · · Pt, where L2 has order ≤ 2 and the Pi have order 1.
4 Solve L2 in terms of 2F1s and deduce F.

5 For F(x, y; t), run whole process for F(0, 0; t), F(x, 0; t), and F(0, y; t), then
substitute into kernel equation!
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. Proof uses Creative telescoping, ODE factorization, ODE solving:

1 If R = ∑g
sign(g) g(xy)

J(x,y;t) , then F = 1
xy [x

>y>]R = Resu,v H, for H = R(1/u,1/v;t)
(1−xu)(1−yv) .

Taking algebraic residues commutes with specializing x and y!
2 If L ∈ Q(x, y)[t]〈∂t〉 and U, V ∈ Q(x, y, u, v, t) such that L(H) = ∂uU + ∂vV, then

L(F(x, y; t)) = 0 after integration over closed contours.
Use creative telescoping to find L (as well as U and V).
Works in practice with early evaluation (x, y) = (1, 1), but not for symbolic (x, y).

Works also for (0, 0), (x, 0), and (0, y)!

3 Factor L as L2 · P1 · · · Pt, where L2 has order ≤ 2 and the Pi have order 1.
4 Solve L2 in terms of 2F1s and deduce F.

5 For F(x, y; t), run whole process for F(0, 0; t), F(x, 0; t), and F(0, y; t), then
substitute into kernel equation!

Frédéric Chyzak Small-Step Walks



16 / 21

Explicit Expressions for the Cases 1–19

Theorem [This work]

Let S be one of the step sets 1–19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2F1 functions.

. Proof uses Creative telescoping, ODE factorization, ODE solving:

1 If R = ∑g
sign(g) g(xy)

J(x,y;t) , then F = 1
xy [x

>y>]R = Resu,v H, for H = R(1/u,1/v;t)
(1−xu)(1−yv) .

Taking algebraic residues commutes with specializing x and y!
2 If L ∈ Q(x, y)[t]〈∂t〉 and U, V ∈ Q(x, y, u, v, t) such that L(H) = ∂uU + ∂vV, then

L(F(x, y; t)) = 0 after integration over closed contours.
Use creative telescoping to find L (as well as U and V).
Works in practice with early evaluation (x, y) = (1, 1), but not for symbolic (x, y).
Works also for (0, 0), (x, 0), and (0, y)!

3 Factor L as L2 · P1 · · · Pt, where L2 has order ≤ 2 and the Pi have order 1.
4 Solve L2 in terms of 2F1s and deduce F.
5 For F(x, y; t), run whole process for F(0, 0; t), F(x, 0; t), and F(0, y; t), then

substitute into kernel equation!

Frédéric Chyzak Small-Step Walks



17 / 21

Hypergeometric Series Occurring in Explicit Expressions for F(x, y; t)
S occurring 2F1 w S occurring 2F1 w

1 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 11 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

4t2+1

2 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 12 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

3 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2

(12t2+1)2 13 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

4 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t(t+1)
(4t+1)2 14 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

5 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t4 15 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t4

6 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2 16 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2

7 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

4t2+1 17 2F1

(
1
3

2
3

1

∣∣∣∣w
)

27t3

8 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2 18 2F1

(
1
3

2
3

1

∣∣∣∣w
)

27t2(2t + 1)

9 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2 19 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2

10 2F1

(
1
4

3
4

1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2
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∣∣∣∣w
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Observation: Related to complete elliptic integrals, E(
√

w) and K(
√

w).
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Computer Algebra Ingredients (Steps 2 to 4)

Well-studied algorithms

Creative telescoping: [Zeilberger, 1990], [Lipshitz, 1988], [Almkvist &
Zeilberger, 1990], [Takayama, 1990], [Wilf & Zeilberger, 1990] [Chyzak,
2000], [Koutschan, 2010], [Chen, Kauers, & Singer, 2012], [Bostan,
Lairez, & Salvy, 2013], [Lairez, 2015]

Factorization of ODE: [Beke, 1894], [Schwarz, 1989], [Grigor’ev, 1990],
[Singer, 1996], [van Hoeij, 1997]

Solving with 2F1: [Bostan, Chyzak, van Hoeij, & Pech, 2011], [Fang, van
Hoeij, 2011], [Kunwar, van Hoeij, 2013], [Kunwar, 2014], [van Hoeij,
Vidunas, 2015], [van Hoeij, Imamoglu, 2015]

Already combined for a simpler problem: Diagonal 3D Rook Paths
[Bostan, Chyzak, van Hoeij, & Pech, 2011]

Problem: Determine the number an of paths from (0, 0, 0) to (n, n, n) that
use positive multiples of (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Solution: G(x) = 1 + 6 ·
∫ x

0

2F1

(
1/3 2/3

2

∣∣∣∣ 27w(2−3w)
(1−4w)3

)
(1− 4w)(1− 64w)

dw.

Frédéric Chyzak Small-Step Walks



19 / 21

Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

Problem: Definitions of residues and positive parts of rational functions?

· · · − 1
w3 −

1
w2 −

1
w

?
=

1
1− w

?
= 1 + w + w2 + · · ·
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

New formula

F(a, b; t) = Resx,y

[
x̄ȳR(x, y; t)

(x− a)(y− b)

]
Γ1

= Resx,y

[
R(x̄, ȳ; t)

(1− ax)(1− by)

]
Γ2

.

Interpretation [Aparicio-Monforte & Kauers, 2013]

Resx,y is linear on the vector space QZ2
;

the rational functions R(x, y; t) and (x− a)−1(y− b)−1 are expanded as
a series with support in the cone Γ1 = {xiyjtn : i, |j| ≤ n ≥ 0};
the rational functions R(x̄, ȳ; t) and (1− ax)−1(1− by)−1 are expanded
as a series with support the cone Γ2 = {xiyjtn : −i, |j| ≤ n ≥ 0};
a theory of series with support in a cone legitimates the product.

Link with creative telescoping [This work]

L(H) = ∂uU + ∂vV =⇒ L([H]Γ) = 0

provided H, U, V admit expansions with respect to the same cone Γ.
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Proofs of Algebraicity/Transcendence of F(x, y; t) and F(1, 1; t)

Theorem

In cases 1–19, F(x, y; t) is transcendental since F(0, 0; t) is.

In cases 1–16 and 19, F(1, 1; t) is transcendental.

Specific simplifications prove algebraicity of F(1, 1; t) in cases 17–18.

Proof: Define G = (P1 · · · Pt)(F) so that L2(G) = 0.

F is algebraic =⇒ G is algebraic.

Computing a few coefficients of G shows that this is not 0 on all cases
of interest.

Applying Kovacic’s algorithm to L2 (order 2) or just computing
exponential solutions (order 1) decides whether L2 has nonzero
algebraic solutions.
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Conclusions

A succession of functional equations of several types

rec. relation on fn;i,j → kernel equation on F(x, y; t) → ODE on F(1, 1; t)

A succession of computer-algebra algorithms

creative telescoping → ODE factorization → ODE solving

Summary of contributions

Three kinds of conjectures now proved:
differential operators that witness D-finiteness,
algebraic vs transcendental nature of series,
explicit forms for generating series as integrals of 2F1-series.

Key technical contribution: positive parts as residues

Wanted

Better understanding of the systematic emergence of elliptic integrals
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