Length derivative of generating series for walks in the quarter plane

Charlotte Hardouin (IMT, Toulouse) collaborations with T. Dreyfus, J. Roques, MF. Singer

Eranstent transcendence in Fransplvania, May 16, 2019

Walks

Cardinal directions of the plane encoded by (i, j) with i, j = -1, 0, 1

Walks

Cardinal directions of the plane encoded by (i, j) with i, j = -1, 0, 1Fix a set of probabilistic weights

$$\mathcal{W} = \{ (d_{i,j})_{i,j=-1,0,1} \in (\mathbb{Q} \cap [0,1])^8 \text{ with } \sum d_{i,j} = 1 \},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Set of directions of the walk $\mathcal{D} := \{(i, j) | d_{i,j} \neq 0\}$

Walks

Cardinal directions of the plane encoded by (i, j) with i, j = -1, 0, 1Fix a set of probabilistic weights

$$\mathcal{W} = \{ (d_{i,j})_{i,j=-1,0,1} \in (\mathbb{Q} \cap [0,1])^8 \text{ with } \sum d_{i,j} = 1 \},$$

Set of directions of the walk $\mathcal{D} := \{(i, j) | d_{i, j} \neq 0\}$ A walk in the quarter plane with weight \mathcal{W} is a sequence of points $(P_n)_{n\in\mathbb{Z}^+}\in(\mathbb{Z}^+)^2$ with

$$P_0=(0,0),$$
 such that $P_{n+1}-P_n=(i,j)\in\mathcal{D}$ and $\mathbb{P}(P_n o P_{n+1})=d_{i,j}$

Example

$$\mathcal{D} = \{\leftarrow,\uparrow,\rightarrow,\searrow,\downarrow,\swarrow\}$$

FIGURE – Walk with directions in \mathcal{D} of Length 45 ending at (15, 2) ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Probabilistic interpretation

We call a walk unweighted if $d_{i,j} = \frac{1}{|\mathcal{D}|}$ for all $(i,j) \in \mathcal{D}$ and $d_{0,0} = 0$.

Probabilistic interpretation

We call a walk unweighted if $d_{i,j} = \frac{1}{|\mathcal{D}|}$ for all $(i,j) \in \mathcal{D}$ and $d_{0,0} = 0$. Fix a walk with set of weights $\mathcal{W} = \{(d_{i,j})_{(i,j)\in \mathcal{D}}\}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Associated probabilities : $\mathbb{P}((0,0) \rightarrow^k (I,s))$

Probabilistic interpretation

We call a walk unweighted if $d_{i,j} = \frac{1}{|\mathcal{D}|}$ for all $(i,j) \in \mathcal{D}$ and $d_{0,0} = 0$. Fix a walk with set of weights $\mathcal{W} = \{(d_{i,j})_{(i,j)\in \mathcal{D}}\}$:

- ▶ Associated probabilities : $\mathbb{P}((0,0) \rightarrow^k (I,s))$
- Generating series

$$Q_{\mathcal{W}}(x,y,t) = \sum_{l,s,k} \mathbb{P}\left((0,0) \rightarrow^{k} (l,s)\right) x^{l} y^{s} t^{k}$$

converges for $|x|, |y| \leq 1$ and |t| < 1.

Difficult to compute the quantities $\mathbb{P}((0,0) \rightarrow^k (I,s))$.

Difficult to compute the quantities $\mathbb{P}((0,0) \rightarrow^k (I,s))$. Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Difficult to compute the quantities $\mathbb{P}((0,0) \rightarrow^k (I,s))$. Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Difficult to compute the quantities $\mathbb{P}((0,0) \rightarrow^k (I,s))$.

Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

Classification issue : when is $Q_{\mathcal{W}}(x, y, t)$

- algebraic over $\mathbb{Q}(x, y, t)$?
- ▶ holonomic over $\mathbb{Q}(x, y, t)$? (x, y, and t-holonomic)

Difficult to compute the quantities $\mathbb{P}((0,0) \rightarrow^k (I,s))$.

Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

Classification issue : when is $Q_{\mathcal{W}}(x, y, t)$

- algebraic over $\mathbb{Q}(x, y, t)$?
- ▶ holonomic over $\mathbb{Q}(x, y, t)$? (x, y, and t-holonomic)
- ► differentially algebraic in each of the variables? f(x, y, t) is differentially algebraic in x if for some n and polynomial P(X₀,...,X_n) ∈ Q(x, y, t)[X₀,...,X_n]*, we have

$$P(f, \frac{\partial}{\partial x}(f), \dots, \frac{\partial^n}{\partial x^n}(f)) = 0$$

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

► For unweighted walks : 256 possible choices for D. Triviality, Symmetries ⇒ 79 interesting ones.

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- ► For unweighted walks : 256 possible choices for D. Triviality, Symmetries ⇒ 79 interesting ones.
- associate to an unweighted walk,
 - an algebraic curve E_{W} of genus 0 or 1, and
 - a group G_W of birational transformations of the plane.

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- ► For unweighted walks : 256 possible choices for D. Triviality, Symmetries ⇒ 79 interesting ones.
- associate to an unweighted walk,
 - an algebraic curve E_{W} of genus 0 or 1, and
 - a group G_W of birational transformations of the plane.

For unweighted walks,

 $|G_{\mathcal{W}}| < \infty$ if and only if $Q_{\mathcal{W}}(x, y, t)$ is holonomic.

A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers,

M. Mishna, S. Melzcer, A. Rechnitzer, I. Kurkova, K. Raschel

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- ► For unweighted walks : 256 possible choices for D. Triviality, Symmetries ⇒ 79 interesting ones.
- associate to an unweighted walk,
 - an algebraic curve E_{W} of genus 0 or 1, and
 - a group G_W of birational transformations of the plane.

For unweighted walks,

 $|G_{\mathcal{W}}| < \infty$ if and only if $Q_{\mathcal{W}}(x, y, t)$ is holonomic. A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna,S. Melzcer, A. Rechnitzer,I. Kurkova, K. Raschel What are the differential algebraic properties of the series?

Weighted walks and *t*-derivations

In this talk, we will see how, for genus 1 walks, one can use the theory of Mordell-Weil lattices of rational elliptic surfaces to produce an algorithm to find these differential algebraic relations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider a set of weights $\mathcal{W} := \{d_{i,j}\}$. The generating series $Q_{\mathcal{W}}(x, y, t) = \sum_{l,s,k} \mathbb{P}\left((0, 0) \rightarrow^{k} (l, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$egin{aligned} & \mathcal{K}_{\mathcal{W}}(x,y,t) Q_{\mathcal{W}}(x,y,t) = \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) Q_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) Q_{\mathcal{W}}(0,y,t) \ & + \mathcal{K}_{\mathcal{W}}(0,0,t) Q_{\mathcal{W}}(0,0,t). \end{aligned}$$

Consider a set of weights $\mathcal{W} := \{d_{i,j}\}$. The generating series $Q_{\mathcal{W}}(x, y, t) = \sum_{l,s,k} \mathbb{P}\left((0, 0) \rightarrow^{k} (l, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$egin{aligned} &\mathcal{K}_{\mathcal{W}}(x,y,t) \mathcal{Q}_{\mathcal{W}}(x,y,t) = \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) \mathcal{Q}_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) \mathcal{Q}_{\mathcal{W}}(0,y,t) \ &+ \mathcal{K}_{\mathcal{W}}(0,0,t) \mathcal{Q}_{\mathcal{W}}(0,0,t). \end{aligned}$$

where

$$\mathcal{K}_{\mathcal{W}}(x, y, t) := xy\left(1 - t\sum_{(i,j)\in\{-1,0,1\}} d_{i,j}x^iy^j\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider a set of weights $\mathcal{W} := \{d_{i,j}\}$. The generating series $Q_{\mathcal{W}}(x, y, t) = \sum_{l,s,k} \mathbb{P}\left((0, 0) \rightarrow^{k} (l, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$egin{aligned} & \mathcal{K}_{\mathcal{W}}(x,y,t) Q_{\mathcal{W}}(x,y,t) = \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) Q_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) Q_{\mathcal{W}}(0,y,t) \ & + \mathcal{K}_{\mathcal{W}}(0,0,t) Q_{\mathcal{W}}(0,0,t). \end{aligned}$$

where

$$\mathcal{K}_{\mathcal{W}}(x,y,t) := xy\left(1-t\sum_{(i,j)\in\{-1,0,1\}}d_{i,j}x^{i}y^{j}\right).$$

Unweighted example :

$$\mathcal{D} = \{\leftarrow,\uparrow,\searrow\} = \{(-1,0), (0,1), (1,-1)\}.$$

$$\mathcal{K}_{\mathcal{W}}(x,y,t) := xy - t(y + xy^2 + x^2).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consider a set of weights $\mathcal{W} := \{d_{i,j}\}$. The generating series $Q_{\mathcal{W}}(x, y, t) = \sum_{l,s,k} \mathbb{P}\left((0, 0) \rightarrow^{k} (l, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$egin{aligned} & \mathcal{K}_{\mathcal{W}}(x,y,t) Q_{\mathcal{W}}(x,y,t) = \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) Q_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) Q_{\mathcal{W}}(0,y,t) \ & + \mathcal{K}_{\mathcal{W}}(0,0,t) Q_{\mathcal{W}}(0,0,t). \end{aligned}$$

where

$$\mathcal{K}_{\mathcal{W}}(x,y,t) := xy\left(1-t\sum_{(i,j)\in\{-1,0,1\}}d_{i,j}x^{i}y^{j}\right).$$

Unweighted example :

$$\mathcal{D} = \{\leftarrow,\uparrow,\searrow\} = \{(-1,0),(0,1),(1,-1)\}.$$

$$\mathcal{K}_{\mathcal{W}}(x,y,t) := xy - t(y + xy^2 + x^2).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* E_{W} of the walk is

$$E_{\mathcal{W}} = \{(x,y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | \mathcal{K}_{\mathcal{W}}(x,y,t) = 0\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* E_{W} of the walk is

$$E_{\mathcal{W}} = \{(x,y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | \mathcal{K}_{\mathcal{W}}(x,y,t) = 0\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Therefore, either

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* $E_{\mathcal{W}}$ of the walk is

$$E_{\mathcal{W}} = \{(x,y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | \mathcal{K}_{\mathcal{W}}(x,y,t) = 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore, either

► *E*_W is reducible;

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* E_{W} of the walk is

$$E_{\mathcal{W}} = \{(x,y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | \mathcal{K}_{\mathcal{W}}(x,y,t) = 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Therefore, either

- ► *E*_W is reducible;
- E_{W} is irreducible and smooth. It is an elliptic curve;

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* E_{W} of the walk is

$$E_{\mathcal{W}} = \{(x,y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | \mathcal{K}_{\mathcal{W}}(x,y,t) = 0\}.$$

Therefore, either

- ► *E*_W is reducible;
- E_W is irreducible and smooth. It is an elliptic curve;
- ► E_W is irreducible and is singular. In that case, it has one singular point and it is a genus zero curve.

Let (C, |.|) be an algebraically closed complete field extension of $\mathbb{Q}(t)$ endowed with the *t*-valuation. The *Kernel curve* E_{W} of the walk is

$$E_{\mathcal{W}} = \{(x, y) \in \mathbb{P}^1(\mathcal{C}) \times \mathbb{P}^1(\mathcal{C}) | K_{\mathcal{W}}(x, y, t) = 0\}.$$

Therefore, either

- ► *E*_W is reducible;
- E_W is irreducible and smooth. It is an elliptic curve;
- ► E_W is irreducible and is singular. In that case, it has one singular point and it is a genus zero curve.

Dreyfus-H.-Roques-Singer : Characterization of the direction sets of reducible and genus zero walks.

From now on, I will assume that E_{W} has genus 1.

$$E_{\mathcal{W}} = \overline{\{(x,y) \mid K_{\mathcal{W}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

$$E_{\mathcal{W}} = \overline{\{(x,y) \mid K_{\mathcal{W}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

 $G_{\mathcal{W}} = <\sigma>$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$E_{\mathcal{W}} = \overline{\{(x,y) \mid K_{\mathcal{W}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

We have

• There exists $\Omega_{\mathcal{W}} \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ such that $\sigma(P) = P \oplus \Omega_{\mathcal{W}}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

$$E_{\mathcal{W}} = \overline{\{(x,y) \mid K_{\mathcal{W}}(x,y,t) = 0\}}^{Zariski} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

We have

• There exists $\Omega_{\mathcal{W}} \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ such that $\sigma(P) = P \oplus \Omega_{\mathcal{W}}$

人口 医水黄 医水黄 医水黄素 化甘油

• G_W is finite if and only if Ω_W is a torsion point.

Specializing

$$egin{aligned} &\mathcal{K}_{\mathcal{W}}(x,y,t) Q_{\mathcal{W}}(x,y,t) = \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) Q_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) Q_{\mathcal{W}}(0,y,t) \ & + \mathcal{K}_{\mathcal{W}}(0,0,t) Q_{\mathcal{W}}(0,0,t). \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Specializing

$$0 = xy - K_{\mathcal{W}}(x, 0, t)Q_{\mathcal{W}}(x, 0, t) - K_{\mathcal{W}}(0, y, t)Q_{\mathcal{W}}(0, y, t) + K_{\mathcal{W}}(0, 0, t)Q_{\mathcal{W}}(0, 0, t).$$

for $(x, y) \in E_{\mathcal{W}}$

Specializing

$$egin{aligned} 0 &= \ & xy - \mathcal{K}_{\mathcal{W}}(x,0,t) Q_{\mathcal{W}}(x,0,t) - \mathcal{K}_{\mathcal{W}}(0,y,t) Q_{\mathcal{W}}(0,y,t) \ & + \mathcal{K}_{\mathcal{W}}(0,0,t) Q_{\mathcal{W}}(0,0,t). \end{aligned}$$

for $(x, y) \in E_{\mathcal{W}}$ One obtain a difference equation of the form

$$\sigma F - F = \iota_1(xy) - xy,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $F = K_{\mathcal{W}}(0, y, t)Q_{\mathcal{W}}(0, y, t)$.

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$.
Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$\sigma F - F = \iota_1(xy) - xy,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

allows to find a criteria

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$\sigma F - F = \iota_1(xy) - xy,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

allows to find a criteria

Theorem (Dreyfus-Hardouin)

If Q(0, y, t) is $\partial_t - \partial_y$ -algebraic over C then it is ∂_y -algebraic over \mathbb{Q}

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$\sigma F - F = \iota_1(xy) - xy,$$

allows to find a criteria

Theorem (Dreyfus-Hardouin) If Q(0, y, t) is $\partial_t - \partial_y$ -algebraic over C then it is ∂_y -algebraic over \mathbb{Q}

Theorem (Dreyfus-H.-Roques-Singer) If Q(0, y, t) is ∂_y -alg over \mathbb{Q} then there exist $c_0, \ldots, c_{n-1} \in C$ not all zero and $h \in C(E_W)$ such that

$$c_0b + \cdots + c_{n-1}\delta^{n-1}(b) + \delta^n(b) = \sigma(h) - h, \qquad (3.1)$$

with δ the invariant derivation of $C(E_W)$ and $b = \iota_1(xy) - xy \in C(E_W)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$\sigma F - F = \iota_1(xy) - xy,$$

allows to find a criteria

Theorem (Dreyfus-Hardouin) If Q(0, y, t) is $\partial_t - \partial_y$ -algebraic over C then it is ∂_y -algebraic over \mathbb{Q}

Theorem (Dreyfus-H.-Roques-Singer) If Q(0, y, t) is ∂_y -alg over \mathbb{Q} then there exist $c_0, \ldots, c_{n-1} \in C$ not all zero and $h \in C(E_W)$ such that

$$c_0b + \cdots + c_{n-1}\delta^{n-1}(b) + \delta^n(b) = \sigma(h) - h, \qquad (3.1)$$

with δ the invariant derivation of $C(E_W)$ and $b = \iota_1(xy) - xy \in C(E_W)$. We call (3.1) a telescoper for b.

Telescopers in $\mathbb{C}(E_{\mathcal{W}})$, $E_{\mathcal{W}}$ an elliptic curve

 $E_{\mathcal{W}}$ elliptic curve, σ the addition by a non torsion point, $\mathcal{K} = \mathbb{C}(E_{\mathcal{W}})$ Def.

- ▶ $\{u_Q \mid Q \in E_W\}$ local param. are **coherent** if $u_{Q \ominus \Omega_W} = \sigma(u_Q)$.
- ▶ For $g \in \mathbb{C}(E_W)$, $Q \in E_W$, write

$$g = \frac{c_{Q,N}}{u_Q^N} + \dots + \frac{c_{Q,i}}{u_Q^i} + \dots + \frac{c_{Q,1}}{u_Q} + f$$

with f regular at Q. Then, the i^{th} orbit residue of g at Q is

$${
m ores}^i_Q(g) = \sum_{n \in \mathbb{Z}} c^i_{\sigma^n(Q)}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Telescopers in $\mathbb{C}(E_{\mathcal{W}})$, $E_{\mathcal{W}}$ an elliptic curve

 $E_{\mathcal{W}}$ elliptic curve, σ the addition by a non torsion point, $\mathcal{K} = \mathbb{C}(E_{\mathcal{W}})$ Def.

- ▶ $\{u_Q \mid Q \in E_W\}$ local param. are **coherent** if $u_{Q \ominus \Omega_W} = \sigma(u_Q)$.
- ▶ For $g \in \mathbb{C}(E_W)$, $Q \in E_W$, write

$$g = \frac{c_{Q,N}}{u_Q^N} + \dots + \frac{c_{Q,i}}{u_Q^i} + \dots + \frac{c_{Q,1}}{u_Q} + f$$

with f regular at Q. Then, the i^{th} orbit residue of g at Q is

$${
m ores}^i_{{\mathcal Q}}(g) = \sum_{{\it n} \in {\mathbb Z}} c^i_{\sigma^{{\it n}}({\mathcal Q})}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Existence of Telescopers. The following are equivalent :

▶ g satisfies a telescoper equation.

• For each
$$i \in \mathbb{N}_{>0}, Q \in E_{\mathcal{W}}$$
, ores $_Q^i(g) = 0$.

Unweighted walks, $\text{genus}(\mathcal{E}_{\mathcal{W}}) = 1$, $|\mathcal{G}_{\mathcal{W}}| = \infty$

X X X X X X X X X X X X 5

Theorem (Dreyfus-H.-Roques-Singer)

- ▶ 42 cases : Q(0, y, t) is ∂_y -diff trans. over \mathbb{Q}
- ▶ 9 cases : Q(0, y, t) is ∂_y -diff. algebraic but not holonomic over \mathbb{Q} .

Unweighted walks, $\text{genus}(\mathcal{E}_{\mathcal{W}}) = 1$, $|\mathcal{G}_{\mathcal{W}}| = \infty$

X X X X X X X X X X X X 5

Theorem (Dreyfus-H.-Roques-Singer)

- ▶ 42 cases : Q(0, y, t) is ∂_y -diff trans. over \mathbb{Q}
- ▶ 9 cases : Q(0, y, t) is ∂_y -diff. algebraic but not holonomic over \mathbb{Q} .

In parallell, Bernardi, Bousquet-Mélou and Raschel proved that

Theorem

- ► For theses 9 cases, the function xy decouples, that is , xy = f(x) + g(y) on E_W for some $f, g \in Q(X)$.
- ► If the function xy decouples then one can find an explicit differential algebraic equation for the Q(0, y, t) in y and t.

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$Q(0, y, t)$$
 is ∂_y -algebraic over \mathbb{Q}

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- ▶ there exists $h \in \mathbb{C}(E_W)$ such that $b = \iota_1(xy) xy = \sigma(h) h$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}(E_{\mathcal{W}})$ such that $b = \iota_1(xy) xy = \sigma(h) h$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• xy decouples , that is , xy = f(x) + g(y)on E_W

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- ▶ there exists $h \in \mathbb{C}(E_W)$ such that $b = \iota_1(xy) xy = \sigma(h) h$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• xy decouples , that is , xy = f(x) + g(y)on E_W

•
$$Q(0, y, t)$$
 is ∂_t -algebraic over \mathbb{Q}

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}| = \infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}(E_{\mathcal{W}})$ such that $b = \iota_1(xy) xy = \sigma(h) h$
- xy decouples , that is , xy = f(x) + g(y)on E_W

•
$$Q(0, y, t)$$
 is ∂_t -algebraic over \mathbb{Q}

► Set $P_i = (\infty, *) \in E_W(\overline{\mathbb{Q}}(t))$ and $Q_i = (*, \infty) \in E_W(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists i = 1, 2 $P_1 = \sigma^n(Q_i)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- ▶ there exists $h \in \mathbb{C}(E_W)$ such that $b = \iota_1(xy) xy = \sigma(h) h$
- xy decouples , that is , xy = f(x) + g(y)on E_W

•
$$Q(0, y, t)$$
 is ∂_t -algebraic over \mathbb{Q}

► Set $P_i = (\infty, *) \in E_W(\overline{\mathbb{Q}}(t))$ and $Q_i = (*, \infty) \in E_W(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists i = 1, 2 $P_1 = \sigma^n(Q_i)$

This essentially comes from $\iota_1(b) = -b!$

Theorem (H.-Singer)

If $E_{\mathcal{W}}$ is of genus 1 and $|G_{\mathcal{W}}|=\infty$ the following statements are equivalent

- Q(0, y, t) is ∂_y -algebraic over \mathbb{Q}
- ▶ there exists $h \in \mathbb{C}(E_W)$ such that $b = \iota_1(xy) xy = \sigma(h) h$
- xy decouples , that is , xy = f(x) + g(y)on E_W

•
$$Q(0, y, t)$$
 is ∂_t -algebraic over \mathbb{Q}

► Set $P_i = (\infty, *) \in E_W(\overline{\mathbb{Q}}(t))$ and $Q_i = (*, \infty) \in E_W(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists i = 1, 2 $P_1 = \sigma^n(Q_i)$

This essentially comes from $\iota_1(b) = -b!$

 $E_{\mathcal{W}} = \{(x, y) \in \mathbb{P}^1(C) \times \mathbb{P}^1(C) | \mathcal{K}_{\mathcal{W}}(x, y, t) = xy - tS(x, y) = 0\} \text{ with } C \text{ alg closed extension of } \mathbb{Q}(t)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $E_{\mathcal{W}} = \{(x, y) \in \mathbb{P}^1(C) \times \mathbb{P}^1(C) | \mathcal{K}_{\mathcal{W}}(x, y, t) = xy - tS(x, y) = 0\} \text{ with } C \text{ alg closed extension of } \mathbb{Q}(t)$

is the generic fiber of a surface S that is an *elliptic fibration* over $\mathbb{P}^1(\mathbb{C})$ obtained as

 $E_{\mathcal{W}} = \{(x, y) \in \mathbb{P}^1(C) \times \mathbb{P}^1(C) | \mathcal{K}_{\mathcal{W}}(x, y, t) = xy - tS(x, y) = 0\} \text{ with } C \text{ alg closed extension of } \mathbb{Q}(t)$

is the generic fiber of a surface S that is an *elliptic fibration* over $\mathbb{P}^1(\mathbb{C})$ obtained as

the minimal resolution of the surface

 $M = \{(x, y, t) \in \mathbb{P}^1(\mathbb{C}) \times \mathbb{P}^1(\mathbb{C}) \times \mathbb{P}^1(\mathbb{C}) | K_{\mathcal{W}}(x, y, t) = 0\}$

 $E_{\mathcal{W}} = \{(x, y) \in \mathbb{P}^1(C) \times \mathbb{P}^1(C) | \mathcal{K}_{\mathcal{W}}(x, y, t) = xy - tS(x, y) = 0\} \text{ with } C \text{ alg closed extension of } \mathbb{Q}(t)$

is the generic fiber of a surface S that is an *elliptic fibration* over $\mathbb{P}^1(\mathbb{C})$ obtained as

the minimal resolution of the surface

$$M = \{(x, y, t) \in \mathbb{P}^1(\mathbb{C}) imes \mathbb{P}^1(\mathbb{C}) imes \mathbb{P}^1(\mathbb{C}) | \mathcal{K}_{\mathcal{W}}(x, y, t) = 0\}$$

the blow up of P¹ × P¹ at the eight base points of the pencil of curves {E_λ := {(x, y) ∈ P¹(ℂ) × P¹(ℂ)|K_W(x, y, λ) = 0}}_{λ∈P¹(ℂ)}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\sigma(P) = P \oplus \sigma(Q_i)$ for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

•
$$\sigma(P) = P \oplus \sigma(Q_i)$$
 for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$

•
$$P_1 = \sigma^n(Q_i)$$
 implies $P_1 = \sigma(Q_i) \oplus \cdots \oplus \sigma(Q_i)$ (n times)

•
$$\sigma(P) = P \oplus \sigma(Q_i)$$
 for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$
• $P_1 = \sigma^n(Q_i)$ implies $P_1 = \sigma(Q_i) \oplus \cdots \oplus \sigma(Q_i)$ (n times)
• and

$$h(P_1) = n^2 h(\sigma(Q_i))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where *h* is the Néron Tate height on the generic fiber $E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$.

Fix the weights W and use Magma to compute the heights of the points using a Weierstrass form for E_W .

Fix the weights W and use Magma to compute the heights of the points using a Weierstrass form for E_W .

First note that the group of the walk is finite iff $h(\sigma(Q_i)) = 0$

Fix the weights ${\cal W}$ and use Magma to compute the heights of the points using a Weierstrass form for $E_{{\cal W}}.$

- First note that the group of the walk is finite iff $h(\sigma(Q_i)) = 0$
- ► Then compute h(P₁) and h(σ(Q_i)) to find the two potential n such that h(P₁) = n²h(P_i))

Fix the weights ${\cal W}$ and use Magma to compute the heights of the points using a Weierstrass form for $E_{{\cal W}}.$

- First note that the group of the walk is finite iff $h(\sigma(Q_i)) = 0$
- ► Then compute h(P₁) and h(σ(Q_i)) to find the two potential n such that h(P₁) = n²h(P_i))
- If $\sigma^n(Q_i) \neq P_1$ then the generating series is $\partial_y \partial_t$ -transcendent over \mathbb{Q} .

Fix the weights ${\cal W}$ and use Magma to compute the heights of the points using a Weierstrass form for $E_{{\cal W}}.$

- First note that the group of the walk is finite iff $h(\sigma(Q_i)) = 0$
- ► Then compute h(P₁) and h(σ(Q_i)) to find the two potential n such that h(P₁) = n²h(P_i))
- If $\sigma^n(Q_i) \neq P_1$ then the generating series is $\partial_y \partial_t$ -transcendent over \mathbb{Q} .
- If σⁿ(Q_i) = P₁ one can use an effective Riemann-Roch theorem to find f, g ∈ Q(X) such that

$$xy = f(x) + g(y)$$
 on $E_{\mathcal{W}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix the weights ${\cal W}$ and use Magma to compute the heights of the points using a Weierstrass form for $E_{{\cal W}}.$

- First note that the group of the walk is finite iff $h(\sigma(Q_i)) = 0$
- ► Then compute h(P₁) and h(σ(Q_i)) to find the two potential n such that h(P₁) = n²h(P_i))
- If $\sigma^n(Q_i) \neq P_1$ then the generating series is $\partial_y \partial_t$ -transcendent over \mathbb{Q} .
- If σⁿ(Q_i) = P₁ one can use an effective Riemann-Roch theorem to find f, g ∈ Q(X) such that

$$xy = f(x) + g(y)$$
 on $E_{\mathcal{W}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Use Bernardi-Bousquet-Mélou-Raschel to find the differential algebraic equations satisfied by the generating series.

Direct criteria

When several base points merge, one can compute directly the heights

via intersection theory and Shioda's formula

$$h(P) = 2 + 2(\mathcal{P}.\mathcal{O}) - \sum_{v \in R} \operatorname{contr}_v(P, P)$$

with \mathcal{O} the zero section, \mathcal{P} the section corresponding to P and $\operatorname{contr}_{v}(P, P)$ the contribution for the reducible fibres.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Direct criteria

When several base points merge, one can compute directly the heights

via intersection theory and Shioda's formula

$$h(P) = 2 + 2(\mathcal{P}.\mathcal{O}) - \sum_{v \in R} \operatorname{contr}_v(P, P)$$

with \mathcal{O} the zero section, \mathcal{P} the section corresponding to P and $\operatorname{contr}_{v}(P, P)$ the contribution for the reducible fibres.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 and via the classification of reducible fibres for rational elliptic surfaces (See Shioda and Oguiso-Shioda) For instance, If the directions set is

which corresponds to $Q_1 = R_1$ and $P_1 = P_2 = S_2$. We get the following fibre at zero

≣ । 🗈 🔊 ९ ९ ९

For instance, If the directions set is

which corresponds to $Q_1 = R_1$ and $P_1 = P_2 = S_2$. We get the following fibre at zero

≣ । 🗈 🔊 ९ ९ ९

By Oguiso-Shioda, one can have other A_6 or $A_6 \oplus A_1$ as Dynkin diagram and one finds

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

By Oguiso-Shioda, one can have other A_6 or $A_6 \oplus A_1$ as Dynkin diagram and one finds

Lemma (H.-Singer)

- The group $G_{\mathcal{W}}$ is infinite
- The generating series is ∂_y -algebraic if and only iff

$$d_{1,1}d_{-1,-1} - d_{0,-1}d_{0,1} = 0$$
Conclusion

Combinatorics of the base points and of the Dynkin diagrams of the reducible fibers encode the diff. alg. properties of the generating series

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you for your attention