Length derivative of generating series for walks in the quarter plane

Charlotte Hardouin (IMT, Toulouse)
collaborations with T. Dreyfus, J. Roques, MF. Singer

Walks

Cardinal directions of the plane encoded by (i, j) with $i, j=-1,0,1$

Walks

Cardinal directions of the plane encoded by (i, j) with $i, j=-1,0,1$ Fix a set of probabilistic weights

$$
\mathcal{W}=\left\{\left(d_{i, j}\right)_{i, j=-1,0,1} \in(\mathbb{Q} \cap[0,1])^{8} \text { with } \sum d_{i, j}=1\right\}
$$

Set of directions of the walk $\mathcal{D}:=\left\{(i, j) \mid d_{i, j} \neq 0\right\}$

Walks

Cardinal directions of the plane encoded by (i, j) with $i, j=-1,0,1$
Fix a set of probabilistic weights

$$
\mathcal{W}=\left\{\left(d_{i, j}\right)_{i, j=-1,0,1} \in(\mathbb{Q} \cap[0,1])^{8} \text { with } \sum d_{i, j}=1\right\}
$$

Set of directions of the walk $\mathcal{D}:=\left\{(i, j) \mid d_{i, j} \neq 0\right\}$
A walk in the quarter plane with weight \mathcal{W} is a sequence of points $\left(P_{n}\right)_{n \in \mathbb{Z}^{+}} \in\left(\mathbb{Z}^{+}\right)^{2}$ with

$$
P_{0}=(0,0), \text { such that } P_{n+1}-P_{n}=(i, j) \in \mathcal{D} \text { and } \mathbb{P}\left(P_{n} \rightarrow P_{n+1}\right)=d_{i, j}
$$

Example

$\mathcal{D}=\{\leftarrow, \uparrow, \rightarrow, \searrow, \downarrow, \swarrow\}$

Figure - Walk with directions in \mathcal{D} of Length 45 ending at (15,2)

Probabilistic interpretation

We call a walk unweighted if $d_{i, j}=\frac{1}{|\mathcal{D}|}$ for all $(i, j) \in \mathcal{D}$ and $d_{0,0}=0$.

Probabilistic interpretation

We call a walk unweighted if $d_{i, j}=\frac{1}{|\mathcal{D}|}$ for all $(i, j) \in \mathcal{D}$ and $d_{0,0}=0$.
Fix a walk with set of weights $\mathcal{W}=\left\{\left(d_{i, j}\right)_{(i, j) \in \mathcal{D}}\right\}$:

- Associated probabilities : $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$

Probabilistic interpretation

We call a walk unweighted if $d_{i, j}=\frac{1}{|\mathcal{D}|}$ for all $(i, j) \in \mathcal{D}$ and $d_{0,0}=0$.
Fix a walk with set of weights $\mathcal{W}=\left\{\left(d_{i, j}\right)_{(i, j) \in \mathcal{D}}\right\}$:

- Associated probabilities : $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$
- Generating series

$$
Q_{\mathcal{W}}(x, y, t)=\sum_{l, s, k} \mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right) x^{l} y^{s} t^{k}
$$

converges for $|x|,|y| \leq 1$ and $|t|<1$.

Classification

Difficult to compute the quantities $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$.

Classification

Difficult to compute the quantities $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$.
Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

Classification

Difficult to compute the quantities $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$.
Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series

Classification

Difficult to compute the quantities $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$.
Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series
Classification issue : when is $Q_{\mathcal{W}}(x, y, t)$

- algebraic over $\mathbb{Q}(x, y, t)$?
- holonomic over $\mathbb{Q}(x, y, t)$? $(x, y$, and t-holonomic $)$

Classification

Difficult to compute the quantities $\mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right)$.
Properties of the sequence of probabilities \Leftrightarrow Algebraic structure of the generating series
Classification issue : when is $Q_{\mathcal{W}}(x, y, t)$

- algebraic over $\mathbb{Q}(x, y, t)$?
- holonomic over $\mathbb{Q}(x, y, t)$? $(x, y$, and t-holonomic)
- differentially algebraic in each of the variables? $f(x, y, t)$ is differentially algebraic in x if for some n and polynomial $P\left(X_{0}, \ldots, X_{n}\right) \in \mathbb{Q}(x, y, t)\left[X_{0}, \ldots, X_{n}\right]^{*}$, we have

$$
P\left(f, \frac{\partial}{\partial x}(f), \ldots, \frac{\partial^{n}}{\partial x^{n}}(f)\right)=0
$$

Combinatorial classification for unweighted walks

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- For unweighted walks : 256 possible choices for \mathcal{D}. Triviality, Symmetries $\Rightarrow 79$ interesting ones.

Combinatorial classification for unweighted walks

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- For unweighted walks : 256 possible choices for \mathcal{D}.

Triviality, Symmetries $\Rightarrow 79$ interesting ones.

- associate to an unweighted walk,
- an algebraic curve $E_{\mathcal{W}}$ of genus 0 or 1 , and
- a group $G_{\mathcal{W}}$ of birational transformations of the plane.

Combinatorial classification for unweighted walks

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- For unweighted walks : 256 possible choices for \mathcal{D}.

Triviality, Symmetries $\Rightarrow 79$ interesting ones.

- associate to an unweighted walk,
- an algebraic curve $E_{\mathcal{W}}$ of genus 0 or 1 , and
- a group $G_{\mathcal{W}}$ of birational transformations of the plane.

For unweighted walks,
$\left|G_{\mathcal{W}}\right|<\infty$ if and only if $Q_{\mathcal{W}}(x, y, t)$ is holonomic.
A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers,
M. Mishna,S. Melzcer, A. Rechnitzer,I. Kurkova, K. Raschel

Combinatorial classification for unweighted walks

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)

- For unweighted walks : 256 possible choices for \mathcal{D}.

Triviality, Symmetries $\Rightarrow 79$ interesting ones.

- associate to an unweighted walk,
- an algebraic curve $E_{\mathcal{W}}$ of genus 0 or 1 , and
- a group $G_{\mathcal{W}}$ of birational transformations of the plane.

For unweighted walks,
$\left|G_{\mathcal{W}}\right|<\infty$ if and only if $Q_{\mathcal{W}}(x, y, t)$ is holonomic.
A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna,S. Melzcer, A. Rechnitzer,I. Kurkova, K. Raschel What are the differential algebraic properties of the series?

Weighted walks and t-derivations

In this talk, we will see how, for genus 1 walks, one can use the theory of Mordell-Weil lattices of rational elliptic surfaces to produce an algorithm to find these differential algebraic relations.

The functional equation

Consider a set of weights $\mathcal{W}:=\left\{d_{i, j}\right\}$.
The generating series $Q_{\mathcal{W}}(x, y, t)=\sum_{l, s, k} \mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right) x^{\prime} y^{s} t^{k}$ satisfies

$$
\begin{aligned}
& K_{\mathcal{W}}(x, y, t) Q_{\mathcal{W}}(x, y, t)= \\
& \quad \begin{aligned}
& x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t) \\
&+K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t) .
\end{aligned}
\end{aligned}
$$

The functional equation

Consider a set of weights $\mathcal{W}:=\left\{d_{i, j}\right\}$.
The generating series $Q_{\mathcal{W}}(x, y, t)=\sum_{l, s, k} \mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$
\begin{aligned}
& K_{\mathcal{W}}(x, y, t) Q_{\mathcal{W}}(x, y, t)= \\
& \quad \begin{aligned}
& x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t) \\
&+K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t) .
\end{aligned}
\end{aligned}
$$

where

$$
K_{\mathcal{W}}(x, y, t):=x y\left(1-t \sum_{(i, j) \in\{-1,0,1\}} d_{i, j} x^{i} y^{j}\right) .
$$

The functional equation

Consider a set of weights $\mathcal{W}:=\left\{d_{i, j}\right\}$.
The generating series $Q_{\mathcal{W}}(x, y, t)=\sum_{l, s, k} \mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$
\begin{aligned}
& K_{\mathcal{W}}(x, y, t) Q_{\mathcal{W}}(x, y, t)= \\
& \quad \begin{aligned}
x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) & Q_{\mathcal{W}}(0, y, t) \\
& +K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t)
\end{aligned}
\end{aligned}
$$

where

$$
K_{\mathcal{W}}(x, y, t):=x y\left(1-t \sum_{(i, j) \in\{-1,0,1\}} d_{i, j} x^{i} y^{j}\right) .
$$

Unweighted example :

$$
\begin{gathered}
\mathcal{D}=\{\leftarrow, \uparrow, \searrow\}=\{(-1,0),(0,1),(1,-1)\} . \\
K_{\mathcal{W}}(x, y, t):=x y-t\left(y+x y^{2}+x^{2}\right) .
\end{gathered}
$$

The functional equation

Consider a set of weights $\mathcal{W}:=\left\{d_{i, j}\right\}$.
The generating series $Q_{\mathcal{W}}(x, y, t)=\sum_{l, s, k} \mathbb{P}\left((0,0) \rightarrow^{k}(I, s)\right) x^{l} y^{s} t^{k}$ satisfies

$$
\begin{aligned}
& K_{\mathcal{W}}(x, y, t) Q_{\mathcal{W}}(x, y, t)= \\
& \quad \begin{aligned}
x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) & Q_{\mathcal{W}}(0, y, t) \\
& +K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t)
\end{aligned}
\end{aligned}
$$

where

$$
K_{\mathcal{W}}(x, y, t):=x y\left(1-t \sum_{(i, j) \in\{-1,0,1\}} d_{i, j} x^{i} y^{j}\right) .
$$

Unweighted example :

$$
\begin{gathered}
\mathcal{D}=\{\leftarrow, \uparrow, \searrow\}=\{(-1,0),(0,1),(1,-1)\} . \\
K_{\mathcal{W}}(x, y, t):=x y-t\left(y+x y^{2}+x^{2}\right) .
\end{gathered}
$$

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Therefore, either

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Therefore, either

- $E_{\mathcal{W}}$ is reducible;

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Therefore, either

- $E_{\mathcal{W}}$ is reducible;
- $E_{\mathcal{W}}$ is irreducible and smooth. It is an elliptic curve;

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Therefore, either

- $E_{\mathcal{W}}$ is reducible;
- $E_{\mathcal{W}}$ is irreducible and smooth. It is an elliptic curve;
- $E_{\mathcal{W}}$ is irreducible and is singular. In that case, it has one singular point and it is a genus zero curve.

The Kernel curve of the walk

Let $(C,||$.$) be an algebraically closed complete field extension of \mathbb{Q}(t)$ endowed with the t-valuation. The Kernel curve $E_{\mathcal{W}}$ of the walk is

$$
E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Therefore, either

- $E_{\mathcal{W}}$ is reducible;
- $E_{\mathcal{W}}$ is irreducible and smooth. It is an elliptic curve;
- $E_{\mathcal{W}}$ is irreducible and is singular. In that case, it has one singular point and it is a genus zero curve.
Dreyfus-H.-Roques-Singer: Characterization of the direction sets of reducible and genus zero walks.

From now on, I will assume that $E_{\mathcal{W}}$ has genus 1 .

Group of the walk

$$
E_{\mathcal{W}}={\overline{\left\{(x, y) \mid K_{\mathcal{W}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)
$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

$$
\begin{gathered}
\iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} d_{i,-1} x^{i}}{\sum_{(i,+1) \in \mathcal{D}} d_{i, 1} x^{i}}\right) \\
\iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}} d_{-1, j} y^{j}}{\sum_{(+1, j) \in \mathcal{D}} d_{1, j} y^{j}}, y\right) \\
\sigma=\iota_{2} \circ \iota_{1}
\end{gathered}
$$

Group of the walk

$$
E_{\mathcal{W}}={\overline{\left\{(x, y) \mid K_{\mathcal{W}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)
$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

$$
\begin{gathered}
\iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} d_{i,-1} x^{i}}{\sum_{(i,+1) \in \mathcal{D}}^{d_{i, 1} x^{i}}}\right) \\
\iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}}^{d_{-1, j} y^{j}}}{\sum_{(+1, j) \in \mathcal{D}}^{d_{1, j} y^{j}}}, y\right) \\
\sigma=\iota_{2} \circ \iota_{1}
\end{gathered}
$$

$$
G_{\mathcal{W}}=<\sigma>
$$

Group of the walk

$$
E_{\mathcal{W}}=\overline{\left\{(x, y) \mid K_{\mathcal{W}}(x, y, t)=0\right\}} \underset{ }{\text { Zariski }} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)
$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

$$
\begin{gathered}
\iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} d_{i,-1} x^{i}}{\sum_{(i,+1) \in \mathcal{D}}^{d_{i, 1} x^{i}}}\right) \\
\iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}}^{d_{-1, j} y^{j}}}{\sum_{(+1, j) \in \mathcal{D}}^{d_{1, j} y^{j}}}, y\right) \\
\sigma=\iota_{2} \circ \iota_{1}
\end{gathered}
$$

$$
G_{\mathcal{W}}=<\sigma>
$$

We have

- There exists $\Omega_{\mathcal{W}} \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ such that $\sigma(P)=P \oplus \Omega_{\mathcal{W}}$

Group of the walk

$$
E_{\mathcal{W}}={\overline{\left\{(x, y) \mid K_{\mathcal{W}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C)
$$

We define two involutions of $E_{\mathcal{W}}$ and an automorphism :

$$
\begin{gathered}
\iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} d_{i,-1} x^{i}}{\sum_{(i,+1) \in \mathcal{D}}^{d_{i, 1} x^{i}}}\right) \\
\iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}} d_{-1, j} y^{j}}{\sum_{(+1, j) \in \mathcal{D}} d_{1, j y}^{j}}, y\right) \\
\sigma=\iota_{2} \circ \iota_{1}
\end{gathered}
$$

$$
G_{\mathcal{W}}=<\sigma>
$$

We have

- There exists $\Omega_{\mathcal{W}} \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ such that $\sigma(P)=P \oplus \Omega_{\mathcal{W}}$
- $G_{\mathcal{W}}$ is finite if and only if $\Omega_{\mathcal{W}}$ is a torsion point.

Specializing

$$
\begin{aligned}
& K_{\mathcal{W}}(x, y, t) Q_{\mathcal{W}}(x, y, t)= \\
& \quad \begin{aligned}
& x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t) \\
&+K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t) .
\end{aligned}
\end{aligned}
$$

Specializing

$$
\begin{aligned}
& 0=\quad \begin{aligned}
& x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t) \\
&+K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t)
\end{aligned}
\end{aligned}
$$

for $(x, y) \in E_{\mathcal{W}}$

Specializing

$$
0=
$$

$$
\begin{aligned}
& x y-K_{\mathcal{W}}(x, 0, t) Q_{\mathcal{W}}(x, 0, t)-K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t) \\
&+K_{\mathcal{W}}(0,0, t) Q_{\mathcal{W}}(0,0, t)
\end{aligned}
$$

for $(x, y) \in E_{\mathcal{W}}$
One obtain a difference equation of the form

$$
\sigma F-F=\iota_{1}(x y)-x y,
$$

where $F=K_{\mathcal{W}}(0, y, t) Q_{\mathcal{W}}(0, y, t)$.

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$.

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$
\sigma F-F=\iota_{1}(x y)-x y,
$$

allows to find a criteria

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$
\sigma F-F=\iota_{1}(x y)-x y,
$$

allows to find a criteria
Theorem (Dreyfus-Hardouin)
If $Q(0, y, t)$ is ∂_{t} - ∂_{y}-algebraic over C then it is ∂_{y}-algebraic over \mathbb{Q}

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$
\sigma F-F=\iota_{1}(x y)-x y,
$$

allows to find a criteria
Theorem (Dreyfus-Hardouin)
If $Q(0, y, t)$ is ∂_{t} - ∂_{y}-algebraic over C then it is ∂_{y}-algebraic over \mathbb{Q}
Theorem (Dreyfus-H.-Roques-Singer)
If $Q(0, y, t)$ is ∂_{y}-alg over \mathbb{Q} then there exist $c_{0}, \ldots, c_{n-1} \in C$ not all zero and $h \in C\left(E_{\mathcal{W}}\right)$ such that

$$
\begin{equation*}
c_{0} b+\cdots+c_{n-1} \delta^{n-1}(b)+\delta^{n}(b)=\sigma(h)-h \tag{3.1}
\end{equation*}
$$

with δ the invariant derivation of $C\left(E_{\mathcal{W}}\right)$ and $b=\iota_{1}(x y)-x y \in C\left(E_{\mathcal{W}}\right)$.

Difference Galois theory

Fix C a complete algebraically closed extension of $\mathbb{Q}(t)$. The equation

$$
\sigma F-F=\iota_{1}(x y)-x y,
$$

allows to find a criteria
Theorem (Dreyfus-Hardouin)
If $Q(0, y, t)$ is ∂_{t} - ∂_{y}-algebraic over C then it is ∂_{y}-algebraic over \mathbb{Q}
Theorem (Dreyfus-H.-Roques-Singer)
If $Q(0, y, t)$ is ∂_{y}-alg over \mathbb{Q} then there exist $c_{0}, \ldots, c_{n-1} \in C$ not all zero and $h \in C\left(E_{\mathcal{W}}\right)$ such that

$$
\begin{equation*}
c_{0} b+\cdots+c_{n-1} \delta^{n-1}(b)+\delta^{n}(b)=\sigma(h)-h, \tag{3.1}
\end{equation*}
$$

with δ the invariant derivation of $C\left(E_{\mathcal{W}}\right)$ and $b=\iota_{1}(x y)-x y \in C\left(E_{\mathcal{W}}\right)$. We call (3.1) a telescoper for b.

Telescopers in $\mathbb{C}\left(E_{\mathcal{W}}\right), E_{\mathcal{W}}$ an elliptic curve

$E_{\mathcal{W}}$ elliptic curve, σ the addition by a non torsion point, $K=\mathbb{C}\left(E_{\mathcal{W}}\right)$ Def.

- $\left\{u_{Q} \mid Q \in E_{\mathcal{W}}\right\}$ local param. are coherent if $u_{Q \ominus \Omega_{\mathcal{W}}}=\sigma\left(u_{Q}\right)$.
- For $g \in \mathbb{C}\left(E_{\mathcal{W}}\right), Q \in E_{\mathcal{W}}$, write

$$
g=\frac{c_{Q, N}}{u_{Q}{ }^{N}}+\cdots+\frac{c_{Q, i}}{u_{Q}^{i}}+\cdots+\frac{c_{Q, 1}}{u_{Q}}+f
$$

with f regular at Q. Then, the $\mathbf{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\sigma^{n}(Q)}^{i}
$$

Telescopers in $\mathbb{C}\left(E_{\mathcal{W}}\right), E_{\mathcal{W}}$ an elliptic curve

$E_{\mathcal{W}}$ elliptic curve, σ the addition by a non torsion point, $K=\mathbb{C}\left(E_{\mathcal{W}}\right)$ Def.

- $\left\{u_{Q} \mid Q \in E_{\mathcal{W}}\right\}$ local param. are coherent if $u_{Q \ominus \Omega_{\mathcal{W}}}=\sigma\left(u_{Q}\right)$.
- For $g \in \mathbb{C}\left(E_{\mathcal{W}}\right), Q \in E_{\mathcal{W}}$, write

$$
g=\frac{c_{Q, N}}{u_{Q} N}+\cdots+\frac{c_{Q, i}}{u_{Q}^{i}}+\cdots+\frac{c_{Q, 1}}{u_{Q}}+f
$$

with f regular at Q. Then, the $\mathbf{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\sigma^{n}(Q)}^{i}
$$

Existence of Telescopers. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, Q \in E_{\mathcal{W}}, \operatorname{ores}_{Q}^{i}(g)=0$.

Unweighted walks， $\operatorname{genus}\left(E_{\mathcal{W}}\right)=1,\left|G_{\mathcal{W}}\right|=\infty$

$$
\begin{aligned}
& \text { 出式谋然出 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 边 }
\end{aligned}
$$

Theorem（Dreyfus－H．－Roques－Singer）
－ 42 cases ：$Q(0, y, t)$ is ∂_{y}－diff trans．over \mathbb{Q}
－ 9 cases：$Q(0, y, t)$ is ∂_{y}－diff．algebraic but not holonomic over \mathbb{Q} ．

Unweighted walks， $\operatorname{genus}\left(E_{\mathcal{W}}\right)=1,\left|G_{\mathcal{W}}\right|=\infty$

$$
\begin{aligned}
& \text { 出式谋然出 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 边 }
\end{aligned}
$$

Theorem（Dreyfus－H．－Roques－Singer）
－ 42 cases ：$Q(0, y, t)$ is ∂_{y}－diff trans．over \mathbb{Q}
－ 9 cases：$Q(0, y, t)$ is ∂_{y}－diff．algebraic but not holonomic over \mathbb{Q} ．

Unweighted case: Decoupling functions

In parallell, Bernardi, Bousquet-Mélou and Raschel proved that
Theorem

- For theses 9 cases, the function xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$ for some $f, g \in \mathbb{Q}(X)$.
- If the function $x y$ decouples then one can find an explicit differential algebraic equation for the $Q(0, y, t)$ in y and t.

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$
- xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$
- xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$
- $Q(0, y, t)$ is ∂_{t}-algebraic over \mathbb{Q}

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$
- xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$
- $Q(0, y, t)$ is ∂_{t}-algebraic over \mathbb{Q}
- Set $P_{i}=(\infty, *) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ and $Q_{i}=(*, \infty) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists $i=1,2$ $P_{1}=\sigma^{n}\left(Q_{i}\right)$

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$
- xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$
- $Q(0, y, t)$ is ∂_{t}-algebraic over \mathbb{Q}
- Set $P_{i}=(\infty, *) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ and $Q_{i}=(*, \infty) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists $i=1,2$ $P_{1}=\sigma^{n}\left(Q_{i}\right)$

This essentially comes from $\iota_{1}(b)=-b$!

Generalization weighted case

Theorem (H.-Singer)
If $E_{\mathcal{W}}$ is of genus 1 and $\left|G_{\mathcal{W}}\right|=\infty$ the following statements are equivalent

- $Q(0, y, t)$ is ∂_{y}-algebraic over \mathbb{Q}
- there exists $h \in \mathbb{C}\left(E_{\mathcal{W}}\right)$ such that $b=\iota_{1}(x y)-x y=\sigma(h)-h$
- xy decouples, that is, $x y=f(x)+g(y)$ on $E_{\mathcal{W}}$
- $Q(0, y, t)$ is ∂_{t}-algebraic over \mathbb{Q}
- Set $P_{i}=(\infty, *) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$ and $Q_{i}=(*, \infty) \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$. Essentially there exists $n \in \mathbb{Z}$ such that there exists $i=1,2$ $P_{1}=\sigma^{n}\left(Q_{i}\right)$

This essentially comes from $\iota_{1}(b)=-b$!

Mordell-Weil lattices

$E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=x y-t S(x, y)=0\right\}$ with C alg closed extension of $\mathbb{Q}(t)$

Mordell-Weil lattices

$E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=x y-t S(x, y)=0\right\}$ with C alg closed extension of $\mathbb{Q}(t)$
is the generic fiber of a surface \mathcal{S} that is an elliptic fibration over $\mathbb{P}^{1}(\mathbb{C})$ obtained as

Mordell-Weil lattices

$E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=x y-t S(x, y)=0\right\}$ with C alg closed extension of $\mathbb{Q}(t)$
is the generic fiber of a surface \mathcal{S} that is an elliptic fibration over $\mathbb{P}^{1}(\mathbb{C})$ obtained as

- the minimal resolution of the surface

$$
M=\left\{(x, y, t) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

Mordell-Weil lattices

$E_{\mathcal{W}}=\left\{(x, y) \in \mathbb{P}^{1}(C) \times \mathbb{P}^{1}(C) \mid K_{\mathcal{W}}(x, y, t)=x y-t S(x, y)=0\right\}$ with C alg closed extension of $\mathbb{Q}(t)$
is the generic fiber of a surface \mathcal{S} that is an elliptic fibration over $\mathbb{P}^{1}(\mathbb{C})$ obtained as

- the minimal resolution of the surface

$$
M=\left\{(x, y, t) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid K_{\mathcal{W}}(x, y, t)=0\right\}
$$

- the blow up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at the eight base points of the pencil of curves $\left\{E_{\lambda}:=\left\{(x, y) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid K_{\mathcal{W}}(x, y, \lambda)=0\right\}\right\}_{\lambda \in \mathbb{P}^{1}(\mathbb{C})}$

$x_{0} x_{1} y_{0} y_{1}=0$

Then, if there exist n such that $P_{1}=\sigma^{n}\left(Q_{i}\right)$ and if we choose choose Q_{i} to be the zero of $E_{\mathcal{W}}$ then

Then, if there exist n such that $P_{1}=\sigma^{n}\left(Q_{i}\right)$ and if we choose choose Q_{i} to be the zero of $E_{\mathcal{W}}$ then

- $\sigma(P)=P \oplus \sigma\left(Q_{i}\right)$ for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$

Then, if there exist n such that $P_{1}=\sigma^{n}\left(Q_{i}\right)$ and if we choose choose Q_{i} to be the zero of $E_{\mathcal{W}}$ then

- $\sigma(P)=P \oplus \sigma\left(Q_{i}\right)$ for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$
- $P_{1}=\sigma^{n}\left(Q_{i}\right)$ implies $P_{1}=\sigma\left(Q_{i}\right) \oplus \cdots \oplus \sigma\left(Q_{i}\right)(\mathrm{n}$ times)

Then, if there exist n such that $P_{1}=\sigma^{n}\left(Q_{i}\right)$ and if we choose choose Q_{i} to be the zero of $E_{\mathcal{W}}$ then

- $\sigma(P)=P \oplus \sigma\left(Q_{i}\right)$ for any $P \in E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$
- $P_{1}=\sigma^{n}\left(Q_{i}\right)$ implies $P_{1}=\sigma\left(Q_{i}\right) \oplus \cdots \oplus \sigma\left(Q_{i}\right)(\mathrm{n}$ times)
- and

$$
h\left(P_{1}\right)=n^{2} h\left(\sigma\left(Q_{i}\right)\right)
$$

where h is the Néron Tate height on the generic fiber $E_{\mathcal{W}}(\overline{\mathbb{Q}}(t))$.

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

- First note that the group of the walk is finite iff $h\left(\sigma\left(Q_{i}\right)\right)=0$

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

- First note that the group of the walk is finite iff $h\left(\sigma\left(Q_{i}\right)\right)=0$
- Then compute $h\left(P_{1}\right)$ and $h\left(\sigma\left(Q_{i}\right)\right)$ to find the two potential n such that $\left.h\left(P_{1}\right)=n^{2} h\left(P_{i}\right)\right)$

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

- First note that the group of the walk is finite iff $h\left(\sigma\left(Q_{i}\right)\right)=0$
- Then compute $h\left(P_{1}\right)$ and $h\left(\sigma\left(Q_{i}\right)\right)$ to find the two potential n such that $\left.h\left(P_{1}\right)=n^{2} h\left(P_{i}\right)\right)$
- If $\sigma^{n}\left(Q_{i}\right) \neq P_{1}$ then the generating series is ∂_{y} - ∂_{t}-transcendent over \mathbb{Q}.

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

- First note that the group of the walk is finite iff $h\left(\sigma\left(Q_{i}\right)\right)=0$
- Then compute $h\left(P_{1}\right)$ and $h\left(\sigma\left(Q_{i}\right)\right)$ to find the two potential n such that $\left.h\left(P_{1}\right)=n^{2} h\left(P_{i}\right)\right)$
- If $\sigma^{n}\left(Q_{i}\right) \neq P_{1}$ then the generating series is ∂_{y} - ∂_{t}-transcendent over \mathbb{Q}.
- If $\sigma^{n}\left(Q_{i}\right)=P_{1}$ one can use an effective Riemann-Roch theorem to find $f, g \in \mathbb{Q}(X)$ such that

$$
x y=f(x)+g(y) \text { on } E_{\mathcal{W}}
$$

An algorithm to find explicit diff.alg. relations

Fix the weights \mathcal{W} and use Magma to compute the heights of the points using a Weierstrass form for $E_{\mathcal{W}}$.

- First note that the group of the walk is finite iff $h\left(\sigma\left(Q_{i}\right)\right)=0$
- Then compute $h\left(P_{1}\right)$ and $h\left(\sigma\left(Q_{i}\right)\right)$ to find the two potential n such that $\left.h\left(P_{1}\right)=n^{2} h\left(P_{i}\right)\right)$
- If $\sigma^{n}\left(Q_{i}\right) \neq P_{1}$ then the generating series is ∂_{y} - ∂_{t}-transcendent over \mathbb{Q}.
- If $\sigma^{n}\left(Q_{i}\right)=P_{1}$ one can use an effective Riemann-Roch theorem to find $f, g \in \mathbb{Q}(X)$ such that

$$
x y=f(x)+g(y) \text { on } E_{\mathcal{W}}
$$

- Use Bernardi-Bousquet-Mélou-Raschel to find the differential algebraic equations satisfied by the generating series.

Direct criteria

When several base points merge, one can compute directly the heights

- via intersection theory and Shioda's formula

$$
h(P)=2+2(\mathcal{P} . \mathcal{O})-\sum_{v \in R} \operatorname{contr}_{v}(P, P)
$$

with \mathcal{O} the zero section, \mathcal{P} the section corresponding to P and contr $_{v}(P, P)$ the contribution for the reducible fibres.

CS $\mathrm{O}^{\text {canned with }}$

Direct criteria

When several base points merge, one can compute directly the heights

- via intersection theory and Shioda's formula

$$
h(P)=2+2(\mathcal{P} . \mathcal{O})-\sum_{v \in R} \operatorname{contr}_{v}(P, P)
$$

with \mathcal{O} the zero section, \mathcal{P} the section corresponding to P and contr $_{v}(P, P)$ the contribution for the reducible fibres.

$\mathrm{CS} \mathrm{O}^{\text {canned with }}$

- and via the classification of reducible fibres for rational elliptic surfaces (See Shioda and Oguiso-Shioda)

For instance, If the directions set is

which corresponds to $Q_{1}=R_{1}$ and $P_{1}=P_{2}=S_{2}$. We get the following fibre at zero

For instance, If the directions set is

which corresponds to $Q_{1}=R_{1}$ and $P_{1}=P_{2}=S_{2}$. We get the following fibre at zero

By Oguiso-Shioda, one can have other A_{6} or $A_{6} \oplus A_{1}$ as Dynkin diagram and one finds

By Oguiso-Shioda, one can have other A_{6} or $A_{6} \oplus A_{1}$ as Dynkin diagram and one finds
Lemma (H.-Singer)

- The group $G_{\mathcal{W}}$ is infinite
- The generating series is ∂_{y}-algebraic if and only iff

$$
d_{1,1} d_{-1,-1}-d_{0,-1} d_{0,1}=0
$$

Conclusion

Combinatorics of the base points and of the Dynkin diagrams of the reducible fibers encode
the diff. alg. properties of the generating series

