
Length derivative of generating series
for walks in the quarter plane

Charlotte Hardouin (IMT, Toulouse)
collaborations with T. Dreyfus, J. Roques, MF. Singer

Transient transcendence in Transylvania, May 16, 2019



Walks
Cardinal directions of the plane encoded by (i , j) with i , j = −1, 0, 1

Fix a set of probabilistic weights

W = {(di,j)i,j=−1,0,1 ∈ (Q ∩ [0, 1])8 with
∑

di,j = 1},

Set of directions of the walk D := {(i , j)|di,j 6= 0}
A walk in the quarter plane with weight W is a sequence of points
(Pn)n∈Z+ ∈ (Z+)2 with
P0 = (0, 0), such that Pn+1 − Pn = (i , j) ∈ D and P(Pn → Pn+1) = di,j

Example
D = {←, ↑,→,↘, ↓,↙}

Figure – Walk with directions in D of Length 45 ending at (15, 2)



Walks
Cardinal directions of the plane encoded by (i , j) with i , j = −1, 0, 1
Fix a set of probabilistic weights

W = {(di,j)i,j=−1,0,1 ∈ (Q ∩ [0, 1])8 with
∑

di,j = 1},

Set of directions of the walk D := {(i , j)|di,j 6= 0}

A walk in the quarter plane with weight W is a sequence of points
(Pn)n∈Z+ ∈ (Z+)2 with
P0 = (0, 0), such that Pn+1 − Pn = (i , j) ∈ D and P(Pn → Pn+1) = di,j

Example
D = {←, ↑,→,↘, ↓,↙}

Figure – Walk with directions in D of Length 45 ending at (15, 2)



Walks
Cardinal directions of the plane encoded by (i , j) with i , j = −1, 0, 1
Fix a set of probabilistic weights

W = {(di,j)i,j=−1,0,1 ∈ (Q ∩ [0, 1])8 with
∑

di,j = 1},

Set of directions of the walk D := {(i , j)|di,j 6= 0}
A walk in the quarter plane with weight W is a sequence of points
(Pn)n∈Z+ ∈ (Z+)2 with
P0 = (0, 0), such that Pn+1 − Pn = (i , j) ∈ D and P(Pn → Pn+1) = di,j

Example
D = {←, ↑,→,↘, ↓,↙}

Figure – Walk with directions in D of Length 45 ending at (15, 2)



Probabilistic interpretation

We call a walk unweighted if di,j = 1
|D| for all (i , j) ∈ D and d0,0 = 0.

Fix a walk with set of weights W = {(di,j)(i,j)∈D} :
I Associated probabilities : P

(
(0, 0)→k (l , s)

)
I Generating series

QW(x , y , t) =
∑
l,s,k

P
(
(0, 0)→k (l , s)

)
x l y stk

converges for |x |, |y | ≤ 1 and |t| < 1.
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Classification

Difficult to compute the quantities P
(
(0, 0)→k (l , s)

)
.

Properties of the sequence of probabilities ⇔ Algebraic structure of the
generating series
Classification issue : when is QW(x , y , t)

I algebraic over Q(x , y , t) ?
I holonomic over Q(x , y , t) ? (x , y , and t-holonomic)
I differentially algebraic in each of the variables ? f (x , y , t) is

differentially algebraic in x if for some n and polynomial
P(X0, . . . ,Xn) ∈ Q(x , y , t)[X0, . . . ,Xn]∗, we have

P(f , ∂
∂x (f ), . . . , ∂

n

∂xn (f )) = 0
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Combinatorial classification for unweighted walks

Symmetries and classifying objects : Bousquet-Mélou, Mishna (2010)
I For unweighted walks : 256 possible choices for D.

Triviality, Symmetries ⇒ 79 interesting ones.

I associate to an unweighted walk,
I an algebraic curve EW of genus 0 or 1, and
I a group GW of birational transformations of the plane.

For unweighted walks,
|GW | <∞ if and only if QW(x , y , t) is holonomic.
A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers,
M. Mishna,S. Melzcer, A. Rechnitzer,I. Kurkova, K. Raschel
What are the differential algebraic properties of the series ?
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Weighted walks and t-derivations

In this talk, we will see how, for genus 1 walks, one can use the theory of
Mordell-Weil lattices of rational elliptic surfaces to produce an algorithm
to find these differential algebraic relations.



The functional equation
Consider a set of weights W := {di,j}.
The generating series QW(x , y , t) =

∑
l,s,k P

(
(0, 0)→k (l , s)

)
x l y stk

satisfies

KW(x , y , t)QW(x , y , t) =
xy − KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)

+ KW(0, 0, t)QW(0, 0, t).

where

KW(x , y , t) := xy

1− t
∑

(i,j)∈{−1,0,1}

di,jx i y j

 .

Unweighted example :

D = {←, ↑,↘} = {(−1, 0), (0, 1), (1,−1)}.

KW(x , y , t) := xy − t(y + xy 2 + x2).
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The Kernel curve of the walk

Let (C , |.|) be an algebraically closed complete field extension of Q(t)
endowed with the t-valuation. The Kernel curve EW of the walk is

EW = {(x , y) ∈ P1(C)× P1(C)|KW(x , y , t) = 0}.

Therefore, either
I EW is reducible ;
I EW is irreducible and smooth. It is an elliptic curve ;
I EW is irreducible and is singular. In that case, it has one singular

point and it is a genus zero curve.
Dreyfus-H.-Roques-Singer : Characterization of the direction sets of
reducible and genus zero walks.
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From now on, I will assume that EW has genus 1.



Group of the walk

EW = {(x , y) | KW(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

We define two involutions of EW and an automorphism :

ι1(x , y) = (x , 1
y

∑
(i,−1)∈D

di,−1x i∑
(i,+1)∈D

di,1x i )

ι2(x , y) = ( 1
x

∑
(−1,j)∈D

d−1,j y j∑
(+1,j)∈D

d1,j y j , y)

σ = ι2 ◦ ι1

GW =< σ >

We have
I There exists ΩW ∈ EW(Q(t)) such that σ(P) = P ⊕ ΩW
I GW is finite if and only if ΩW is a torsion point.
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Specializing

KW(x , y , t)QW(x , y , t) =
xy − KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)

+ KW(0, 0, t)QW(0, 0, t).

for (x , y) ∈ EW
One obtain a difference equation of the form

σF − F = ι1(xy)− xy ,

where F = KW(0, y , t)QW(0, y , t).



Specializing

0 =
xy − KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)
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Difference Galois theory

Fix C a complete algebraically closed extension of Q(t).

The equation

σF − F = ι1(xy)− xy ,

allows to find a criteria

Theorem (Dreyfus-Hardouin)
If Q(0, y , t) is ∂t -∂y -algebraic over C then it is ∂y -algebraic over Q

Theorem (Dreyfus-H.-Roques-Singer)
If Q(0, y , t) is ∂y -alg over Q then there exist c0, . . . , cn−1 ∈ C not all
zero and h ∈ C(EW) such that

c0b + · · ·+ cn−1δ
n−1(b) + δn(b) = σ(h)− h, (3.1)

with δ the invariant derivation of C(EW) and b = ι1(xy)− xy ∈ C(EW).
We call (3.1) a telescoper for b.
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Telescopers in C(EW), EW an elliptic curve

EW elliptic curve, σ the addition by a non torsion point, K = C(EW)
Def.

I {uQ | Q ∈ EW} local param. are coherent if uQ	ΩW = σ(uQ).
I For g ∈ C(EW), Q ∈ EW , write

g = cQ,N

uQN + · · ·+ cQ,i

ui
Q

+ · · ·+ cQ,1

uQ
+ f

with f regular at Q. Then, the ith orbit residue of g at Q is

oresi
Q(g) =

∑
n∈Z

c i
σn(Q).

Existence of Telescopers. The following are equivalent :
I g satisfies a telescoper equation.
I For each i ∈ N>0,Q ∈ EW , oresi

Q(g) = 0.



Telescopers in C(EW), EW an elliptic curve
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Unweighted walks, genus(EW) = 1, |GW | =∞

Theorem (Dreyfus-H.-Roques-Singer)
I 42 cases : Q(0, y , t) is ∂y -diff trans. over Q
I 9 cases : Q(0, y , t) is ∂y -diff. algebraic but not holonomic over Q.
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Unweighted case : Decoupling functions

In parallell, Bernardi, Bousquet-Mélou and Raschel proved that

Theorem
I For theses 9 cases, the function xy decouples, that is ,

xy = f (x) + g(y)on EW for some f , g ∈ Q(X ).
I If the function xy decouples then one can find an explicit differential

algebraic equation for the Q(0, y , t) in y and t.



Generalization weighted case

Theorem (H.-Singer)
If EW is of genus 1 and |GW | =∞ the following statements are
equivalent

I Q(0, y , t) is ∂y -algebraic over Q

I there exists h ∈ C(EW) such that b = ι1(xy)− xy = σ(h)− h
I xy decouples , that is , xy = f (x) + g(y)on EW
I Q(0, y , t) is ∂t -algebraic over Q
I Set Pi = (∞, ∗) ∈ EW(Q(t)) and Qi = (∗,∞) ∈ EW(Q(t)).

Essentially there exists n ∈ Z such that there exists i = 1, 2
P1 = σn(Qi )

This essentially comes from ι1(b) = −b !
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Mordell-Weil lattices
EW = {(x , y) ∈ P1(C)× P1(C)|KW(x , y , t) = xy − tS(x , y) = 0} with C
alg closed extension of Q(t)

is the generic fiber of a surface S that is an elliptic fibration over P1(C)
obtained as

I the minimal resolution of the surface
M = {(x , y , t) ∈ P1(C)× P1(C)× P1(C)|KW(x , y , t) = 0}

I the blow up of P1 × P1 at the eight base points of the pencil of
curves {Eλ := {(x , y) ∈ P1(C)× P1(C)|KW(x , y , λ) = 0}}λ∈P1(C)

On the surface S, the automorphism σ extends to a QRT map.
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Then, if there exist n such that P1 = σn(Qi ) and if we choose choose Qi
to be the zero of EW then

I σ(P) = P ⊕ σ(Qi ) for any P ∈ EW(Q(t))
I P1 = σn(Qi ) implies P1 = σ(Qi )⊕ · · · ⊕ σ(Qi )( n times)
I and

h(P1) = n2h(σ(Qi ))

where h is the Néron Tate height on the generic fiber EW(Q(t)).
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An algorithm to find explicit diff.alg. relations

Fix the weights W and use Magma to compute the heights of the points
using a Weierstrass form for EW .

I First note that the group of the walk is finite iff h(σ(Qi )) = 0
I Then compute h(P1) and h(σ(Qi )) to find the two potential n such

that h(P1) = n2h(Pi ))
I If σn(Qi ) 6= P1 then the generating series is ∂y -∂t -transcendent over

Q.
I If σn(Qi ) = P1 one can use an effective Riemann-Roch theorem to

find f , g ∈ Q(X ) such that

xy = f (x) + g(y) on EW

I Use Bernardi-Bousquet-Mélou-Raschel to find the differential
algebraic equations satisfied by the generating series.
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Direct criteria
When several base points merge, one can compute directly the heights

I via intersection theory and Shioda’s formula

h(P) = 2 + 2(P.O)−
∑
v∈R

contrv (P,P)

with O the zero section, P the section corresponding to P and
contrv (P,P) the contribution for the reducible fibres.

I and via the classification of reducible fibres for rational elliptic
surfaces (See Shioda and Oguiso-Shioda)
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For instance, If the directions set is

which corresponds to Q1 = R1 and P1 = P2 = S2. We get the following
fibre at zero
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By Oguiso-Shioda, one can have other A6 or A6 ⊕ A1 as Dynkin diagram
and one finds

Lemma (H.-Singer)
I The group GW is infinite
I The generating series is ∂y -algebraic if and only iff

d1,1d−1,−1 − d0,−1d0,1 = 0

.
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Conclusion

Combinatorics of the base points and of the Dynkin
diagrams of the reducible fibers

encode
the diff. alg. properties of the generating series



Thank you for your attention
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