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Setting :

x = (x1, ..., xn) variables,

x′ = (x1, ..., xn−1),

y a single variable,

K a field, char(K) = 0,

K[[x]] = K[[x1, ..., xn]] formal power series ring,

K[[x′]] = K[[x1, ..., xn−1]],

K〈x〉 = K〈x1, ..., xn〉 algebraic power series ring,

K〈x′〉 = K〈x1, ..., xn−1〉,

K[x, y] = K[x1, ..., xn, y] polynomial ring.
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Algebraic series :

h ∈ K[[x1, ..., xn]],

P (x, h(x)) = 0 for some (irreducible) polynomial P (x, y) ∈ K[x, y]:

pd(x)h
d + pd−1(x)h

d−1 + . . .+ p1(x)h+ p0(x) = 0.

Convention:

h(0) = 0.

Examples :

h(x) =
x

1 + x
,

√
1 + x− 1, x

√
1 + x,

√
1 + x− 3

√
1 + x,

P (x, y) = (1 + x)y − x = 0,

(y + 1)2 − (1 + x) = 0,

y2 − (x2 + x3) = 0,

[y3 + (1 + x)(1 + 3y)]2 − (1 + x)(1 + x− 3y2)2 = 0.
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Étale algebraic series :

P (x, h(x)) = 0 with P (x, y) satisfying

∂yP (0, 0) 6= 0,

say,

P (x, y) = y +Q(x, y),

ordQ(0, y) ≥ 2.

We also say: h is étale algebraic over K[x].

Examples :

h(x) =
√
1 + x− 1 étale: y2 + 2y − x = 0,

h(x) = x
√
1 + x not étale: y2 − (x2 + x3) = 0.

Similarly, for a ring K[x] ⊂ N ⊂ K[[x]]:

h étale algebraic over N , if P (h) = 0 for some P ∈ N [y] with ∂yP (0, 0) 6= 0,

say,

P (x, y) = y +Q(y),

with Q ∈ N [y] and ordQ(0, y) ≥ 2.
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Inverse Function Theorem :

f1(z1, ..., zn) = z1 + f̃1(z1, ..., zn),
. . .

. . .

fn(z1, ..., zn) = zn + f̃n(z1, ..., zn),

f = (f1, ..., fn) polynomials, or algebraic, convergent or formal series, ord f̃i(z) ≥ 2.

Define

g1(z) := z,

gk+1(z) := z − f̃(gk(z)),

g := lim gk.

Then:

g = f−1,

g = (g1, ..., gn), with gi algebraic, convergent, or formal series, respectively.

Note: gk is given by substitution and hence polynomial if f is polynomial.
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Univariate Étalization Lemma :

h an algebraic series in one variable x.

There exists an e ≥ 1 such that

h(x) = k(x) + a(x) · xe

with k a polynomial of degree ≤ e and a an étale algebraic series, a(0) = 0.

Proof :

P (x, y) minimal polynomial of h, say, P (x, h(x)) = 0; then ∂yP (x, h(x)) 6= 0.

e := ord ∂yP (x, h(x)).

Decompose

h = k + a · xe,

k polynomial of degree ≤ e, a series with a(0) = 0.

Taylor:

∂yP (x, k) = ∂yP (x, h− a · xe)

= ∂yP (x, h)− ∂2yP (x, h) · a · xe + T (x, a · xe).

Comparison of orders:

ord ∂yP (x, k) = ord ∂yP (x, h) = e.
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Taylor:

0 = P (x, h)

= P (x, k + a · xe)

= P (x, k) + ∂yP (x, k) · a · xe + S(x, a · xe).

Comparison of orders:

ordP (x, k) > 2e.

Set

P (x, k) =: x2e ·R(x),

S(x, y · xe) =: x2e ·Q(x, y).

Divide

P (x, k) + ∂yP (x, k) · a · xe + S(x, a · xe) = 0

by x2e:
R(x) + a+Q(x, a) = 0.

ordQ(0, y) ≥ 2, hence:

a is étale algebraic.
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Multivariate Étalization Lemma :

h an algebraic series in x = (x1, ..., xn).

There exists a polynomial

k(x) =

e∑
i=0

ki(x
′)xin,

in xn with ki ∈ K〈x′〉, and a polynomial Q(x, y) ∈ K[x, y] such that

h(x) = k(x) + a(x) ·Q(x, k),

where a ∈ K〈x〉 with a(0) = 0 is an étale algebraic series over

K(x, k0, ..., ke) ∩K〈x〉.

Proof :

P (x, h) = 0, with ∂yP (x, h) 6= 0 of order e. Linear coordinate change: ∂yP (x, h) is xn-regular
of order e,

∂yP (x, h) = xen+ terms in x1, ..., xn.

Set g := ∂yP (x, h).

Weierstrass:

h(x) = k(x) + c(x) · g(x),

with k ∈ K〈x′〉[xn] a polynomial in xn of degree ≤ e with algebraic series coefficients in x′

and c ∈ K〈x〉 an algebraic series.

Taylor:

∂yP (x, k) = ∂yP (x, h− c · g)

= g − ∂2yP (x, h) · c · g + T (x, c · g)

= g · [1− ∂2yP (x, h) · c+ T (x, c · g) · g−1].

Comparison of orders:

∂yP (x, k) = ∂yP (x, h) · u(x),

u ∈ K〈x〉∗ a unit.

Set f := ∂yP (x, k) and a := c · u−1, so that a · f = c · g and hence
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h = k + a · f .

Taylor:

0 = P (x, h) = P (x, k + a · f)

= P (x, k) + ∂yP (x, k) · a · f + S(x, a · f)

= P (x, k) + f2 · a+ S(x, a · f)

Get:

0 = P (x, k) + f2 · [a+ S(x, a · f) · f−2].

In particular:

R(x, k) := P (x, k) · f−2 =
P (x, k)

∂yP (x, k)2
∈ K(x, k0, ..., ke) ∩K〈x〉

is an algebraic series.

Set U(x, z, y) := S(x, yz) · z−2, a polynomial of order ≥ 2 in y.

From

P (x, k) + f2 · [a+ S(x, a · f) · f−2] = 0

follows

R(x, k) + a+ U(x, ∂yP (x, k), a) = 0,

Proven:

a is étale algebraic over K(x, k0, ..., ke) ∩K〈x〉.
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Persistence Theorem :

If a certain property

P : K[[x]]→ {0, 1}

holds for polynomials as well as for étale algebraic series,

P(K[x]) = P(Ket〈x〉) = 1,

and is closed under addition, multiplication and division, it holds for all algebraic series,

P(K〈x〉) = 1.

Applications :

Recursion.

Convergence.

Asymptotics.

D-finiteness.

Eisenstein.

Diagonals.

Finite support.
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Artin Approximation :

P (x, y) convergent series, h(x) formal solution, P (x, h(x)) = 0, and c ≥ 1. There exists a
convergent solution h̃(x) with h̃ ≡ h modulo xc.

Note : Same for several equations P1 = ... = Pk = 0 in variables x1, ..., xn, y1, ..., ym and
solution vectors h = (h1, ..., hm). If P polynomial or algebraic, then h̃ algebraic.

Idea of proof :

If ∂yP (x, h(x)) = 0, add ∂yP (x, y) to your equation, get system, and work with suitable
minors of the Jacobian matrix instead of ∂yP (x, y).

If ∂yP (x, h(x)) 6= 0, proceed as in the theorem above: Write h = k+a ·f , where f = ∂yP (x, k)

is xn-regular of order e, and k polynomial in xn.

Weierstrass:

P (x, k) = B · f2 +
2e−1∑
i=0

Ri(x
′, k0, ..., ke) · xin,

with B and Ri convergent.

Know from the above:

P (x, k) ∈ f2 ·K〈x〉.

Uniqueness of remainder:

Ri(x
′, k0, ..., ke) = 0.

System of convergent equations in one variable less, x′ = (x1, ..., xn), with formal solutions
k0, ..., ke. Apply induction.
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Artin-Mazur Lemma :

h algebraic, P (x, h) = 0, minimal polynomial,

R := K[x, y]/〈P (x, y)〉,

R̃ := integral closure of R,

know: R̃ = K[x, z1, ..., zk]/〈P1, ..., Pk〉.

Lift (x, h(x)) from X = Spec(R) to X̃ = Spec(R̃) (universal property of normalization). Get
solution (h1, ..., hk) of P1 = . . . = Pk = 0 at, say, 0 ∈ X̃, and

π : X̃ → X, (x, z1, ..., zk)→ (x, z1).

But X̃ is graph and by Zariski’s theorem analytically irreducible, hence smooth,

(∂ziPj)(0, 0) invertible.

Then:

R ⊂ R̃ = K[x, h1, ..., hk] étale extension,

and

h1 = h.

Conclusion :

Every algebraic series is a component of a vector of algebraic series satisfying an étale
system of polynomial equations.
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Standard étale extensions: (Chevalley)

Every étale extension is locally standard étale:

h1, ..., hk solutions of P1(x, y) = . . . = Pk(x, y) = 0,

y = (y1, ..., yk), Pi polynomials,

hi algebraic series, hi(0) = 0

(∂yiPj)(0, 0) invertible.

There exists an étale algebraic series a(x) such that

h =
s0(x) + s1(x) · a+ . . .+ sd(x) · ad

t0(x) + t1(x) · a+ . . .+ te(x) · ae
,

si, tj polynomials, t0(0) 6= 0.
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