Étale Algebraic Series

Herwig HAUSER

Braşov 2019

Setting :

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n}\right) \text { variables, } \\
& x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right), \\
& y \text { a single variable, } \\
& K \text { a field, char }(K)=0, \\
& K[[x]]=K\left[\left[x_{1}, \ldots, x_{n}\right]\right] \text { formal power series ring, } \\
& K\left[\left[x^{\prime}\right]\right]=K\left[\left[x_{1}, \ldots, x_{n-1}\right]\right], \\
& K\langle x\rangle=K\left\langle x_{1}, \ldots, x_{n}\right\rangle \text { algebraic power series ring, } \\
& K\left\langle x^{\prime}\right\rangle=K\left\langle x_{1}, \ldots, x_{n-1}\right\rangle, \\
& K[x, y]=K\left[x_{1}, \ldots, x_{n}, y\right] \text { polynomial ring. }
\end{aligned}
$$

Algebraic series :

$h \in K\left[\left[x_{1}, \ldots, x_{n}\right]\right]$,
$P(x, h(x))=0$ for some (irreducible) polynomial $P(x, y) \in K[x, y]:$

$$
p_{d}(x) h^{d}+p_{d-1}(x) h^{d-1}+\ldots+p_{1}(x) h+p_{0}(x)=0 .
$$

Convention:

$$
h(0)=0 .
$$

Examples :

$$
\begin{aligned}
& h(x)=\frac{x}{1+x}, \quad \sqrt{1+x}-1, \quad x \sqrt{1+x}, \quad \sqrt{1+x}-\sqrt[3]{1+x}, \\
& P(x, y)=(1+x) y-x=0, \\
& \\
& \quad(y+1)^{2}-(1+x)=0, \\
& \\
& \quad y^{2}-\left(x^{2}+x^{3}\right)=0, \\
& \\
& \quad\left[y^{3}+(1+x)(1+3 y)\right]^{2}-(1+x)\left(1+x-3 y^{2}\right)^{2}=0 .
\end{aligned}
$$

Étale algebraic series :

$P(x, h(x))=0$ with $P(x, y)$ satisfying

$$
\partial_{y} P(0,0) \neq 0,
$$

say,

$$
\begin{gathered}
P(x, y)=y+Q(x, y), \\
\quad \operatorname{ord} Q(0, y) \geq 2 .
\end{gathered}
$$

We also say: h is étale algebraic over $K[x]$.

Examples :

$$
\begin{array}{llrl}
h(x) & =\sqrt{1+x}-1 & \text { étale: } & y^{2}+2 y-x=0, \\
h(x)=x \sqrt{1+x} & \text { not étale: } & y^{2}-\left(x^{2}+x^{3}\right)=0 .
\end{array}
$$

Similarly, for a ring $K[x] \subset N \subset K[[x]]$:
h étale algebraic over N, if $P(h)=0$ for some $P \in N[y]$ with $\partial_{y} P(0,0) \neq 0$,
say,

$$
P(x, y)=y+Q(y),
$$

with $Q \in N[y]$ and $\operatorname{ord} Q(0, y) \geq 2$.

Inverse Function Theorem :

$$
\begin{aligned}
f_{1}\left(z_{1}, \ldots, z_{n}\right) & =z_{1}+\widetilde{f}_{1}\left(z_{1}, \ldots, z_{n}\right), \\
& \ldots \\
& \ldots \\
f_{n}\left(z_{1}, \ldots, z_{n}\right) & =z_{n}+\widetilde{f}_{n}\left(z_{1}, \ldots, z_{n}\right),
\end{aligned}
$$

$f=\left(f_{1}, \ldots, f_{n}\right)$ polynomials, or algebraic, convergent or formal series, ord $\widetilde{f}_{i}(z) \geq 2$.
Define

$$
\begin{aligned}
& g^{1}(z):=z, \\
& g^{k+1}(z):=z-\tilde{f}\left(g^{k}(z)\right), \\
& g:=\lim g^{k} .
\end{aligned}
$$

Then:

$$
g=f^{-1},
$$

$g=\left(g_{1}, \ldots, g_{n}\right)$, with g_{i} algebraic, convergent, or formal series, respectively.
Note: g^{k} is given by substitution and hence polynomial if f is polynomial.

Univariate Étalization Lemma :

h an algebraic series in one variable x.
There exists an $e \geq 1$ such that

$$
h(x)=k(x)+a(x) \cdot x^{e}
$$

with k a polynomial of degree $\leq e$ and a an étale algebraic series, $a(0)=0$.
Proof:
$P(x, y)$ minimal polynomial of h, say, $P(x, h(x))=0$; then $\partial_{y} P(x, h(x)) \neq 0$.

$$
e:=\operatorname{ord} \partial_{y} P(x, h(x)) .
$$

Decompose

$$
h=k+a \cdot x^{e},
$$

k polynomial of degree $\leq e, a$ series with $a(0)=0$.
Taylor:

$$
\begin{aligned}
\partial_{y} P(x, k) & =\partial_{y} P\left(x, h-a \cdot x^{e}\right) \\
& =\partial_{y} P(x, h)-\partial_{y}^{2} P(x, h) \cdot a \cdot x^{e}+T\left(x, a \cdot x^{e}\right) .
\end{aligned}
$$

Comparison of orders:

$$
\operatorname{ord} \partial_{y} P(x, k)=\operatorname{ord} \partial_{y} P(x, h)=e .
$$

Taylor:

$$
\begin{aligned}
0 & =P(x, h) \\
& =P\left(x, k+a \cdot x^{e}\right) \\
& =P(x, k)+\partial_{y} P(x, k) \cdot a \cdot x^{e}+S\left(x, a \cdot x^{e}\right) .
\end{aligned}
$$

Comparison of orders:

$$
\operatorname{ord} P(x, k)>2 e .
$$

Set

$$
\begin{gathered}
P(x, k)=: x^{2 e} \cdot R(x), \\
S\left(x, y \cdot x^{e}\right)=: x^{2 e} \cdot Q(x, y) .
\end{gathered}
$$

Divide

$$
P(x, k)+\partial_{y} P(x, k) \cdot a \cdot x^{e}+S\left(x, a \cdot x^{e}\right)=0
$$

by $x^{2 e}$:

$$
R(x)+a+Q(x, a)=0 .
$$

ord $Q(0, y) \geq 2$, hence:
a is étale algebraic.

Multivariate Étalization Lemma :

h an algebraic series in $x=\left(x_{1}, \ldots, x_{n}\right)$.
There exists a polynomial

$$
k(x)=\sum_{i=0}^{e} k_{i}\left(x^{\prime}\right) x_{n}^{i},
$$

in x_{n} with $k_{i} \in K\left\langle x^{\prime}\right\rangle$, and a polynomial $Q(x, y) \in K[x, y]$ such that

$$
h(x)=k(x)+a(x) \cdot Q(x, k),
$$

where $a \in K\langle x\rangle$ with $a(0)=0$ is an étale algebraic series over

$$
K\left(x, k_{0}, \ldots, k_{e}\right) \cap K\langle x\rangle .
$$

Proof:
$P(x, h)=0$, with $\partial_{y} P(x, h) \neq 0$ of order e. Linear coordinate change: $\partial_{y} P(x, h)$ is x_{n}-regular of order e,

$$
\partial_{y} P(x, h)=x_{n}^{e}+\text { terms in } x_{1}, \ldots, x_{n} .
$$

Set $g:=\partial_{y} P(x, h)$.

Weierstrass:

$$
h(x)=k(x)+c(x) \cdot g(x),
$$

with $k \in K\left\langle x^{\prime}\right\rangle\left[x_{n}\right]$ a polynomial in x_{n} of degree $\leq e$ with algebraic series coefficients in x^{\prime} and $c \in K\langle x\rangle$ an algebraic series.

Taylor:

$$
\begin{aligned}
\partial_{y} P(x, k) & =\partial_{y} P(x, h-c \cdot g) \\
& =g-\partial_{y}^{2} P(x, h) \cdot c \cdot g+T(x, c \cdot g) \\
& =g \cdot\left[1-\partial_{y}^{2} P(x, h) \cdot c+T(x, c \cdot g) \cdot g^{-1}\right] .
\end{aligned}
$$

Comparison of orders:

$$
\partial_{y} P(x, k)=\partial_{y} P(x, h) \cdot u(x),
$$

$u \in K\langle x\rangle^{*}$ a unit.
Set $f:=\partial_{y} P(x, k)$ and $a:=c \cdot u^{-1}$, so that $a \cdot f=c \cdot g$ and hence

$$
h=k+a \cdot f .
$$

Taylor:

$$
\begin{aligned}
0 & =P(x, h)=P(x, k+a \cdot f) \\
& =P(x, k)+\partial_{y} P(x, k) \cdot a \cdot f+S(x, a \cdot f) \\
& =P(x, k)+f^{2} \cdot a+S(x, a \cdot f)
\end{aligned}
$$

Get:

$$
0=P(x, k)+f^{2} \cdot\left[a+S(x, a \cdot f) \cdot f^{-2}\right] .
$$

In particular:

$$
R(x, k):=P(x, k) \cdot f^{-2}=\frac{P(x, k)}{\partial_{y} P(x, k)^{2}} \in K\left(x, k_{0}, \ldots, k_{e}\right) \cap K\langle x\rangle
$$

is an algebraic series.
Set $U(x, z, y):=S(x, y z) \cdot z^{-2}$, a polynomial of order ≥ 2 in y.
From

$$
P(x, k)+f^{2} \cdot\left[a+S(x, a \cdot f) \cdot f^{-2}\right]=0
$$

follows

$$
R(x, k)+a+U\left(x, \partial_{y} P(x, k), a\right)=0,
$$

Proven:
a is étale algebraic over $K\left(x, k_{0}, \ldots, k_{e}\right) \cap K\langle x\rangle$.

Persistence Theorem :

If a certain property

$$
\mathcal{P}: K[[x]] \rightarrow\{0,1\}
$$

holds for polynomials as well as for étale algebraic series,

$$
\mathcal{P}(K[x])=\mathcal{P}\left(K_{e t}\langle x\rangle\right)=1,
$$

and is closed under addition, multiplication and division, it holds for all algebraic series,

$$
\mathcal{P}(K\langle x\rangle)=1 .
$$

Applications :

Recursion.
Convergence.
Asymptotics.
D-finiteness.
Eisenstein.

Diagonals.
Finite support.

Artin Approximation :

$P(x, y)$ convergent series, $h(x)$ formal solution, $P(x, h(x))=0$, and $c \geq 1$. There exists a convergent solution $\widetilde{h}(x)$ with $\widetilde{h} \equiv h$ modulo x^{c}.

Note : Same for several equations $P_{1}=\ldots=P_{k}=0$ in variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ and solution vectors $h=\left(h_{1}, \ldots, h_{m}\right)$. If P polynomial or algebraic, then \widetilde{h} algebraic.

Idea of proof :

If $\partial_{y} P(x, h(x))=0$, add $\partial_{y} P(x, y)$ to your equation, get system, and work with suitable minors of the Jacobian matrix instead of $\partial_{y} P(x, y)$.

If $\partial_{y} P(x, h(x)) \neq 0$, proceed as in the theorem above: Write $h=k+a \cdot f$, where $f=\partial_{y} P(x, k)$ is x_{n}-regular of order e, and k polynomial in x_{n}.

Weierstrass:

$$
P(x, k)=B \cdot f^{2}+\sum_{i=0}^{2 e-1} R_{i}\left(x^{\prime}, k_{0}, \ldots, k_{e}\right) \cdot x_{n}^{i},
$$

with B and R_{i} convergent.
Know from the above:

$$
P(x, k) \in f^{2} \cdot K\langle x\rangle .
$$

Uniqueness of remainder:

$$
R_{i}\left(x^{\prime}, k_{0}, \ldots, k_{e}\right)=0 .
$$

System of convergent equations in one variable less, $x^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$, with formal solutions k_{0}, \ldots, k_{e}. Apply induction.

Artin-Mazur Lemma :

h algebraic, $P(x, h)=0$, minimal polynomial,

$$
\begin{aligned}
& R:=K[x, y] /\langle P(x, y)\rangle, \\
& \widetilde{R}:=\text { integral closure of } R,
\end{aligned}
$$

$$
\text { know: } \widetilde{R}=K\left[x, z_{1}, \ldots, z_{k}\right] /\left\langle P_{1}, \ldots, P_{k}\right\rangle
$$

Lift ($x, h(x)$) from $X=\operatorname{Spec}(R)$ to $\widetilde{X}=\operatorname{Spec}(\widetilde{R})$ (universal property of normalization). Get solution $\left(h_{1}, \ldots, h_{k}\right)$ of $P_{1}=\ldots=P_{k}=0$ at, say, $0 \in \tilde{X}$, and

$$
\pi: \widetilde{X} \rightarrow X,\left(x, z_{1}, \ldots, z_{k}\right) \rightarrow\left(x, z_{1}\right) .
$$

But \widetilde{X} is graph and by Zariski's theorem analytically irreducible, hence smooth,

$$
\left(\partial_{z_{i}} P_{j}\right)(0,0) \text { invertible. }
$$

Then:

$$
R \subset \widetilde{R}=K\left[x, h_{1}, \ldots, h_{k}\right] \text { étale extension },
$$

and

$$
h_{1}=h .
$$

Conclusion:

Every algebraic series is a component of a vector of algebraic series satisfying an étale system of polynomial equations.

Standard étale extensions: (Chevalley)

Every étale extension is locally standard étale:

$$
\begin{aligned}
& h_{1}, \ldots, h_{k} \text { solutions of } P_{1}(x, y)=\ldots=P_{k}(x, y)=0, \\
& y=\left(y_{1}, \ldots, y_{k}\right), P_{i} \text { polynomials, } \\
& h_{i} \text { algebraic series, } h_{i}(0)=0 \\
& \left(\partial_{y_{i}} P_{j}\right)(0,0) \text { invertible. }
\end{aligned}
$$

There exists an étale algebraic series $a(x)$ such that

$$
h=\frac{s_{0}(x)+s_{1}(x) \cdot a+\ldots+s_{d}(x) \cdot a^{d}}{t_{0}(x)+t_{1}(x) \cdot a+\ldots+t_{e}(x) \cdot a^{e}},
$$

s_{i}, t_{j} polynomials, $t_{0}(0) \neq 0$.

Faculty of Mathematics
University of Vienna, Austria
herwig.hauser@univie.ac.at

