Factoring Linear Recurrence Operators

Mark van Hoeij ${ }^{1}$

Florida State University

Brașov Romania

May 13, 2019

Recurrence operators with rational function coefficients

Let $a_{i}(n) \in \mathbb{Q}(n)$ be rational functions in n.
Recurrence relation:

$$
a_{k}(n) u(n+k)+\cdots+a_{1}(n) u(n+1)+a_{0}(n) u(n)=0 .
$$

Solutions $u(n)$ are viewed as functions on subsets of \mathbb{C}.

Recurrence operators with rational function coefficients

Let $a_{i}(n) \in \mathbb{Q}(n)$ be rational functions in n.
Recurrence relation:

$$
a_{k}(n) u(n+k)+\cdots+a_{1}(n) u(n+1)+a_{0}(n) u(n)=0 .
$$

Solutions $u(n)$ are viewed as functions on subsets of \mathbb{C}.

Recurrence operator: write the recurrence relation as $L(u)=0$ where

$$
L=a_{k} \tau^{k}+\cdots+a_{0} \tau^{0} \in \mathbb{Q}(n)[\tau]
$$

Here τ is the shift operator. It sends $u(n)$ to $u(n+1)$.

Recurrence relations come from many sources:
Zeilberger's algorithm, walks, QFT computations, OEIS, etc.

Goal: factoring recurrence operators

Factoring: if possible, write L as a composition $L_{1} \circ L_{2}$ of lower order operators.

Computing first order right-factors:
Same as computing hypergeometric solutions, there are algorithms (Petkovšek 1992, vH 1999) and implementations.

Goal: compute right-factors of order $d>1$.

Goal: factoring recurrence operators

Factoring: if possible, write L as a composition $L_{1} \circ L_{2}$ of lower order operators.

Computing first order right-factors:
Same as computing hypergeometric solutions, there are algorithms (Petkovšek 1992, vH 1999) and implementations.

Goal: compute right-factors of order $d>1$.
Method 1: Hypergeometric solutions of a system of order $\binom{k}{d}$.
Method 2: Construct factors from special solutions.

Example: Entry A025184 in OEIS

$$
\begin{aligned}
L(u)= & 33 n(3 n-1)(3 n-2) u(n) \\
& +11\left(2047 n^{3}-10725 n^{2}+17192 n-8520\right) u(n-1) \\
& -9\left(4397 n^{3}+10169 n^{2}-110500 n+145368\right) u(n-2) \\
& -54(2 n-5)\left(5353 n^{2}-33313 n+53904\right) u(n-3) \\
& -115668(n-4)(2 n-5)(2 n-7) u(n-4)=0 .
\end{aligned}
$$

$L \in \mathbb{Q}(n)\left[\tau^{-1}\right]$ has order 4 and n-degree 3.

Example: Entry A025184 in OEIS

$$
\begin{aligned}
L(u)= & 33 n(3 n-1)(3 n-2) u(n) \\
& +11\left(2047 n^{3}-10725 n^{2}+17192 n-8520\right) u(n-1) \\
& -9\left(4397 n^{3}+10169 n^{2}-110500 n+145368\right) u(n-2) \\
& -54(2 n-5)\left(5353 n^{2}-33313 n+53904\right) u(n-3) \\
& -115668(n-4)(2 n-5)(2 n-7) u(n-4)=0 .
\end{aligned}
$$

$L \in \mathbb{Q}(n)\left[\tau^{-1}\right]$ has order 4 and n-degree 3.
Our implementation finds a right-hand factor R where $R(u)=$

$$
\begin{gathered}
3 n(3 n-1)(3 n-2)\left(221 n^{2}-723 n+574\right) u(n) \\
-2(2 n-1)\left(7735 n^{4}-33040 n^{3}+48239 n^{2}-27998 n+5280\right) u(n-1) \\
-36(n-2)(2 n-1)(2 n-3)\left(221 n^{2}-281 n+72\right) u(n-2)
\end{gathered}
$$

R order 2 but n-degree 5 which is more than L !
(Explanation: R has 3 true and 2 apparent singularities).

Gauss' lemma does not hold for $\mathbb{Q}[n][\tau] \subset \mathbb{Q}(n)[\tau]$

Gauss' lemma does not hold for difference operators:
(1) Reducible operators in $\mathbb{Q}(n)[\tau]$ are often irreducible in $\mathbb{Q}[n][\tau]$.
(2) L can have a right-factor R with higher n-degree than L (after clearing denominators).

This means:
(1) It is not enough to factor in the τ-Weyl algebra $\mathbb{Q}[n][\tau]$.
(2) Bounding n-degrees of right-factors is non-trivial.

Method 1: Reduce order- d factors to order- 1 factors

Beke (1894) gave a method to reduce:

- order-d factors of a differential operator of order k to
- order-1 factors of several operators of order $\binom{k}{d}$.

Bronstein (ISSAC'1994) gave significant improvements:

Method 1: Reduce order- d factors to order-1 factors

Beke (1894) gave a method to reduce:

- order- d factors of a differential operator of order k to
- order-1 factors of several operators of order $\binom{k}{d}$.

Bronstein (ISSAC'1994) gave significant improvements:
(1) Use only one system of order $\binom{k}{d}$ (instead of several operators of that order, whose factors had to be combined with a potentially costly computation)
(2) This system has much smaller coefficients, which improves performance as well.

Beke 1894 / Bronstein 1994 works for recurrence operators as well.

Method 1: Reduce to order 1

Let $\mathcal{D}:=\mathbb{Q}(n)[\tau]$.
Let $L \in \mathcal{D}$ have order k.
Suppose L has a right-factor R of order d.
Consider the \mathcal{D}-modules

$$
M_{L}:=\mathcal{D} / \mathcal{D} L \quad \text { and } \quad M_{R}:=\mathcal{D} / \mathcal{D} R
$$

and homomorphism:

Method 1: Reduce to order 1

Let $\mathcal{D}:=\mathbb{Q}(n)[\tau]$.
Let $L \in \mathcal{D}$ have order k.
Suppose L has a right-factor R of order d.
Consider the \mathcal{D}-modules

$$
M_{L}:=\mathcal{D} / \mathcal{D} L \quad \text { and } \quad M_{R}:=\mathcal{D} / \mathcal{D} R
$$

and homomorphism:

$$
\phi: \bigwedge_{\Lambda}^{d} M_{L} \rightarrow \bigwedge^{d} M_{R}
$$

Over $\mathbb{Q}(n)$:

$$
\operatorname{dim}\binom{d}{M_{L}}=\binom{k}{d} \quad \text { and } \operatorname{dim}\left(\bigwedge^{d} M_{R}\right)=\binom{d}{d}=1
$$

Hence:
$\phi \rightsquigarrow$ a hypergeometric solution of the system for $\bigwedge^{d} M_{L}$

System for $\bigwedge^{d} M_{L}$: Example with $k=4$ and $d=2$.

Let $L=\tau^{4}+a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and $M_{L}:=\mathcal{D} / \mathcal{D} L$.
Action of τ on basis of $\bigwedge^{2} M_{L}$ is:

System for $\bigwedge^{d} M_{L}$: Example with $k=4$ and $d=2$.

Let $L=\tau^{4}+a_{3} \tau^{3}+a_{2} \tau^{2}+a_{1} \tau+a_{0}$ and $M_{L}:=\mathcal{D} / \mathcal{D} L$.
Action of τ on basis of $\bigwedge^{2} M_{L}$ is:

$$
\begin{aligned}
& b_{1}:=\tau^{0} \wedge \tau^{1} \quad \mapsto \tau^{1} \wedge \tau^{2}=b_{4} \\
& b_{2}:=\tau^{0} \wedge \tau^{2} \quad \mapsto \tau^{1} \wedge \tau^{3}=b_{5} \\
& b_{3}:=\tau^{0} \wedge \tau^{3} \mapsto \tau^{1} \wedge \tau^{4}=a_{0} b_{1}-a_{2} b_{4}-a_{3} b_{5} \\
& b_{4}:=\tau^{1} \wedge \tau^{2} \quad \mapsto \quad \tau^{2} \wedge \tau^{3}=b_{6} \\
& b_{5}:=\tau^{1} \wedge \tau^{3} \mapsto \tau^{2} \wedge \tau^{4}=a_{0} b_{2}+a_{1} b_{4}-a_{3} b_{6} \\
& b_{6}:=\tau^{2} \wedge \tau^{3} \mapsto \tau^{3} \wedge \tau^{4}=a_{0} b_{3}+a_{1} b_{5}+a_{2} b_{6} \\
& \left(\tau^{4}=-a_{0} \tau^{0}-a_{1} \tau^{1}-a_{2} \tau^{2}-a_{3} \tau^{3} \text { in } M_{L}\right)
\end{aligned}
$$

System: $A Y=\tau(Y)$ where $A=$

$$
\left(\begin{array}{cccccc}
0 & 0 & a_{0} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & 0 & 0 & a_{0} \\
1 & 0 & -a_{2} & 0 & a_{1} & 0 \\
0 & 1 & -a_{3} & 0 & 0 & a_{1} \\
0 & 0 & 0 & 1 & -a_{3} & a_{2}
\end{array}\right)
$$

Hypergeometric solutions of systems

Suppose L has order k and a right-factor R of order d.
Let $N=\binom{k}{d}$ and A the $N \times N$ matrix as in the previous slide.
Then

$$
A Y=\tau(Y)
$$

must have a hypergeometric solution:

$$
Y=\lambda\left(\begin{array}{c}
P_{1} \\
\vdots \\
P_{N}
\end{array}\right) \quad \text { with } \quad P_{i} \in \mathbb{Q}[n] \text { and } r:=\frac{\tau(\lambda)}{\lambda} \in \mathbb{Q}(n)
$$

Suppose L has order k and a right-factor R of order d.
Let $N=\binom{k}{d}$ and A the $N \times N$ matrix as in the previous slide.
Then

$$
A Y=\tau(Y)
$$

must have a hypergeometric solution:

$$
Y=\lambda\left(\begin{array}{c}
P_{1} \\
\vdots \\
P_{N}
\end{array}\right) \quad \text { with } \quad P_{i} \in \mathbb{Q}[n] \text { and } r:=\frac{\tau(\lambda)}{\lambda} \in \mathbb{Q}(n)
$$

Bronstein found (similar to Petkovšek's algorithm) that one can write $r=c \frac{a}{b}$ with $c \in \mathbb{Q}^{*}$ and $a, b \in \mathbb{Q}[n]$ monic with:

$$
b \mid \operatorname{denom}(A) \text { and } \quad a \mid \operatorname{denom}\left(A^{-1}\right)
$$

\rightsquigarrow almost an algorithm (still need c)

Algorithms

Computing c, improvements, implementation: Barkatou +vH .
More work in progress: Barkatou $+\mathrm{vH}+$ Middeke + Schneider.
If L has high order then $A Y=\tau(Y)$ has high dimension $N=\binom{k}{d}$.
There is a faster method that works remarkably often even though it is not proved to work.

Another way to factor

LLL algorithm to factor $L \in \mathbb{Q}[x]$ in polynomial time:
(1) Compute a p-adic solution α of L.
(2) Find $M \in \mathbb{Z}[x]$ of lower degree with $M(\alpha)=0$ if it exists.
(3) If no such M exists, then L is irreducible, otherwise $\operatorname{gcd}(L, M)$ is a non-trivial factor.

In order for this to work for $L \in \mathbb{Q}(n)[\tau]$,

Another way to factor

LLL algorithm to factor $L \in \mathbb{Q}[x]$ in polynomial time:
(1) Compute a p-adic solution α of L.
(2) Find $M \in \mathbb{Z}[x]$ of lower degree with $M(\alpha)=0$ if it exists.
(3) If no such M exists, then L is irreducible, otherwise $\operatorname{gcd}(L, M)$ is a non-trivial factor.

In order for this to work for $L \in \mathbb{Q}(n)[\tau]$, the solution in Step 1 must meet this requirement:

Definition

A solution u of L is order-special if it satisfies an operator M of lower order.

Unlike the polynomial case, most solutions of most reducible operators are not order-special.

If L is reducible and u is order-special then write:

$$
R:=\sum_{i=0}^{k-1}\left(\sum_{j=0}^{\text {Degree bound }} c_{i j} n^{j}\right) \tau^{i}
$$

Then

$$
R(u)=0 \rightsquigarrow \text { equations for } c_{i j} \rightsquigarrow R
$$

If L is reducible and u is order-special then write:

$$
R:=\sum_{i=0}^{k-1}\left(\sum_{j=0}^{\text {Degree bound }} c_{i j} n^{j}\right) \tau^{i}
$$

Then

$$
R(u)=0 \rightsquigarrow \quad \text { equations for } c_{i j} \rightsquigarrow R
$$

We need:
(1) Special solutions
(2) Degree bound
(How to bound the number of apparent singularities?).

Example: Special solutions

$$
\begin{aligned}
L(u)= & 33 n(3 n-1)(3 n-2) u(n) \\
& +\cdots \\
& -115668(n-4)(2 n-5)(2 n-7) u(n-4)=0 .
\end{aligned}
$$

$L(u)=0$ determines $u(n)$ in terms of $u(n-1), \ldots, u(n-4)$ except if n is a root of the leading coefficient.

Example: Special solutions

$$
\begin{aligned}
L(u)= & 33 n(3 n-1)(3 n-2) u(n) \\
& +\cdots \\
& -115668(n-4)(2 n-5)(2 n-7) u(n-4)=0 .
\end{aligned}
$$

$L(u)=0$ determines $u(n)$ in terms of $u(n-1), \ldots, u(n-4)$
except if n is a root of the leading coefficient.
Take $q \in\left\{0, \frac{1}{3}, \frac{2}{3}\right\}$. Define $u: q+\mathbb{Z} \rightarrow \mathbb{C}$ with:

$$
L(u)=0, \quad u(n)=0 \text { for all } n<q, \quad u(q)=1
$$

Example: Special solutions

$$
\begin{aligned}
L(u)= & 33 n(3 n-1)(3 n-2) u(n) \\
& +\cdots \\
& -115668(n-4)(2 n-5)(2 n-7) u(n-4)=0 .
\end{aligned}
$$

$L(u)=0$ determines $u(n)$ in terms of $u(n-1), \ldots, u(n-4)$
except if n is a root of the leading coefficient.
Take $q \in\left\{0, \frac{1}{3}, \frac{2}{3}\right\}$. Define $u: q+\mathbb{Z} \rightarrow \mathbb{C}$ with:

$$
L(u)=0, \quad u(n)=0 \text { for all } n<q, \quad u(q)=1
$$

Then u is called a leading-special solution. Likewise:
Roots of the trailing coefficient \rightsquigarrow trailing-special solutions.
(Leading/trailing)-special solutions are frequently order-special !

Leading/trailing vs order special solutions

(Leading/trailing)-special solutions are frequently order-special.
We can only explain that for certain cases:

Leading/trailing vs order special solutions

(Leading/trailing)-special solutions are frequently order-special.
We can only explain that for certain cases:
Suppose L is a Least-Common-Left-Multiple of L_{1} and L_{2}.
Suppose L_{1} and L_{2} do not have the same valuation growths at some $q+\mathbb{Z}$ for some $q \in \mathbb{C}$.

Then a (leading/trailing)-special solution ${ }^{2}$ is order-special.

Valuation-growth: the valuation (root/pole order) at $q+$ large n minus the valuation at q - large n.

Degree bound (with Yi Zhou)

Due to apparent singularities, a right-factor R of L can have higher n-degree than L.

A bound can be computed from generalized exponents.
Generalized exponents \approx asymptotic behavior of solutions.

Degree bound (with Yi Zhou)

Due to apparent singularities, a right-factor R of L can have higher n-degree than L.

A bound can be computed from generalized exponents.
Generalized exponents \approx asymptotic behavior of solutions.
Example: $L=\tau-r$ with $r=7 n^{3}\left(1+8 n^{-1}+\cdots n^{-2}+\cdots\right)$. The dominant part of r is $e=7 n^{3}\left(1+8 n^{-1}\right)$.
This e encodes the dominant part of the solution

$$
u(n)=7^{n} \Gamma(n)^{3} n^{8}\left(1+\cdots n^{-1}+\cdots n^{-2}+\cdots\right)
$$

Degree bound (with Yi Zhou)

Due to apparent singularities, a right-factor R of L can have higher n-degree than L.

A bound can be computed from generalized exponents.
Generalized exponents \approx asymptotic behavior of solutions.
Example: $L=\tau-r$ with $r=7 n^{3}\left(1+8 n^{-1}+\cdots n^{-2}+\cdots\right)$.
The dominant part of r is $e=7 n^{3}\left(1+8 n^{-1}\right)$.
This e encodes the dominant part of the solution

$$
u(n)=7^{n} \Gamma(n)^{3} n^{8}\left(1+\cdots n^{-1}+\cdots n^{-2}+\cdots\right)
$$

Definition

Let $e=c \cdot n^{\nu} \cdot\left(1+c_{1} n^{-1 / r}+c_{2} n^{-2 / r}+\cdots+c_{r} n^{-1}\right)$.
Then e is called a generalized exponent of L if:
The operator obtained by dividing solutions of L by $\operatorname{Sol}(\tau-e)$ has an indicial equation with 0 as a root.

Degree bound (with Yi Zhou)

Let $R=r_{d} \tau^{d}+\cdots+r_{0} \tau^{0}$ be a right-factor of L in $\mathbb{Q}(n)[\tau]$.

$$
\begin{aligned}
\operatorname{det}(R) & :=(-1)^{d} \frac{r_{0}}{r_{d}} \in \mathbb{Q}(n) \\
& =c n^{v}\left(1+c_{1} n^{-1}+c_{2} n^{-2}+\cdots\right) \in \mathbb{Q}\left(\left(n^{-1}\right)\right)
\end{aligned}
$$

Dominant part:

$$
\operatorname{dom}(\operatorname{det}(R))=c n^{v}\left(1+c_{1} n^{-1}\right)
$$

Degree bound (with Yi Zhou)

Let $R=r_{d} \tau^{d}+\cdots+r_{0} \tau^{0}$ be a right-factor of L in $\mathbb{Q}(n)[\tau]$.

$$
\begin{aligned}
\operatorname{det}(R) & :=(-1)^{d} \frac{r_{0}}{r_{d}} \in \mathbb{Q}(n) \\
& =c n^{v}\left(1+c_{1} n^{-1}+c_{2} n^{-2}+\cdots\right) \in \mathbb{Q}\left(\left(n^{-1}\right)\right)
\end{aligned}
$$

Dominant part:

$$
\operatorname{dom}(\operatorname{det}(R))=c n^{v}\left(1+c_{1} n^{-1}\right)
$$

$c_{1}=$ number of apparent singularities of R (with multiplicity) + a term that comes from $\{$ true singularities of R \} $\subseteq\{$ true singularities of $L\}$
$\{$ gen. exp. of $L\} \supseteq\{$ gen. exp. of $R\} \rightsquigarrow \operatorname{dom}(\operatorname{det}(R)) \rightsquigarrow c_{1}$ \rightsquigarrow bound(number apparent singularities) \rightsquigarrow degree bound

Irreducibility proof

Except for special cases, method 2 does not prove that the factors it finds are irreducible.

Suppose L is not factored by method 2 .
Idea:

- Gen. exponents \rightsquigarrow finite set of potential $\operatorname{dom}(\operatorname{det}(R))$
- p-curvature \rightsquigarrow conditions $\bmod p$ for $\operatorname{dom}(\operatorname{det}(R))$
- Incompatible? $\rightsquigarrow L$ is irreducible.

Irreducibility proof

Except for special cases, method 2 does not prove that the factors it finds are irreducible.

Suppose L is not factored by method 2 .

Idea:

- Gen. exponents \rightsquigarrow finite set of potential $\operatorname{dom}(\operatorname{det}(R))$
- p-curvature \rightsquigarrow conditions $\bmod p$ for $\operatorname{dom}(\operatorname{det}(R))$
- Incompatible? $\rightsquigarrow L$ is irreducible.

Overview:

(1) Factor with method 2 .
(2) Apply the above idea to the factors.
(3) Any factor not proved irreducible: fall back on method 1 .

