An elementary proof of the Kronecker-Hurwitz class number relation

Alexandru-Anton Popa (joint with Don Zagier)

IMAR București
Transient Transcendence in Transylvania
Brașov, 13-17 May 2019

Outline

- Proof (by picture) of a combinatorial refinement of K.-H. relation (1860s)
- Motivation: the proof was found as by-product of a new algebraic proof of the trace formula for Hecke operators on modular forms (Eichler-Selberg 1950s), following an idea of Zagier from 1990
- Another proof of K.-H. relation
- Cohomological interpretation of the trace formula

For $D>0, H(D)$ equals the number of $\mathrm{PSL}_{2}(\mathbb{Z})$-equivalence classes of positive definite integral binary quadratic forms of discriminant $-D$, with those classes that contain a multiple of $x^{2}+y^{2}$ or of $x^{2}-x y+y^{2}$ counted with multiplicity $1 / 2$ or $1 / 3$, respectively. Set $H(0)=-1 / 12$.

For $D>0, H(D)$ equals the number of $\mathrm{PSL}_{2}(\mathbb{Z})$-equivalence classes of positive definite integral binary quadratic forms of discriminant $-D$, with those classes that contain a multiple of $x^{2}+y^{2}$ or of $x^{2}-x y+y^{2}$ counted with multiplicity $1 / 2$ or $1 / 3$, respectively. Set $H(0)=-1 / 12$.

Action:

$$
Q \circ \gamma(x, y)=Q(a x+b y, c x+d y) \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{PSL}_{2}(\mathbb{Z}) .
$$

D	0	3	4	7	8	11	12	15	16	19	20
$H(D)$	$-\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{2}$	1	1	1	$\frac{4}{3}$	2	$\frac{3}{2}$	1	2

D	0	3	4	7	8	11	12	15	16	19	20
$H(D)$	$-\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{2}$	1	1	1	$\frac{4}{3}$	2	$\frac{3}{2}$	1	2

Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))
For any $n \geqslant 1$ we have

$$
\sum_{t^{2} \leqslant 4 n} H\left(4 n-t^{2}\right)=\sum_{\substack{n=a d \\ a, d>0}} \max (a, d)
$$

D	0	3	4	7	8	11	12	15	16	19	20
$H(D)$	$-\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{2}$	1	1	1	$\frac{4}{3}$	2	$\frac{3}{2}$	1	2

Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))
For any $n \geqslant 1$ we have

$$
\sum_{t^{2} \leqslant 4 n} H\left(4 n-t^{2}\right)=\sum_{\substack{n=a d \\ a, d>0}} \max (a, d)
$$

Example. $n=5$:
$H(20)+2 H(19)+2 H(16)+2 H(11)+2 H(4)=2+2+3+2+1=5+5$

$$
\Gamma=\operatorname{PSL}_{2}(\mathbb{Z}), \quad \mathcal{M}_{n}=\left\{M \in M_{2}(\mathbb{Z}): \operatorname{det} M=n\right\} /\{ \pm 1\}
$$

If n is square-free, $\mathcal{M}_{n}=\Gamma\left(\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right) \Gamma$ is a double coset, otherwise a finite union of double cosets.

Dictionary matrices-quadratic forms

We have a 「-equivariant bijection

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longleftrightarrow Q_{M}(x, y)=c x^{2}+(d-a) x y-b y^{2}
$$

between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^{2}-4 n$.

We have a 「-equivariant bijection

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longleftrightarrow Q_{M}(x, y)=c x^{2}+(d-a) x y-b y^{2}
$$

between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^{2}-4 n$.

■ Conjugacy classes \longleftrightarrow-equivalence classes
■ Fixed points $M z=z \longleftrightarrow$ Roots $Q_{M}(z, 1)=0$.

- The fixed point of $\gamma M \gamma^{-1}$ is γz_{M}.
- A matrix $M \in \mathcal{M}_{n}$ is elliptic iff $\operatorname{Tr}(M)^{2}-4 n<0$ iff it has a unique fixed point z_{M} in the upper half-plane \mathfrak{H}.

$$
\begin{aligned}
\text { Stab } M & :=\left\{\gamma \in \Gamma: \gamma M \gamma^{-1}=M\right\}=\left\{\gamma \in \Gamma: Q_{M} \circ \gamma=Q_{M}\right\} \\
& =\left\{\gamma \in \Gamma: \gamma z_{M}=z_{M}\right\} \in\{1,2,3\}
\end{aligned}
$$

$2 H\left(4 n-t^{2}\right)=$ the (weighted) number of elliptic Γ-conjugacy classes of trace $\pm t \neq 0$ in \mathcal{M}_{n}.

Let χ be a modified characteristic function of the fund. domain

$$
\mathcal{F}=\{z \in \mathfrak{H}:-1 / 2 \leqslant \operatorname{Re}(z) \leqslant 1 / 2,|z| \geqslant 1\}
$$

for the action of Γ on \mathfrak{H}, such that $\chi(z)$ is $1 / 2 \pi$ times the angle subtended by \mathcal{F} at z.
$2 H\left(4 n-t^{2}\right)=$ the (weighted) number of elliptic 「-conjugacy classes of trace $\pm t \neq 0$ in \mathcal{M}_{n}.

Let χ be a modified characteristic function of the fund. domain

$$
\mathcal{F}=\{z \in \mathfrak{H}:-1 / 2 \leqslant \operatorname{Re}(z) \leqslant 1 / 2,|z| \geqslant 1\}
$$

for the action of Γ on \mathfrak{H}, such that $\chi(z)$ is $1 / 2 \pi$ times the angle subtended by \mathcal{F} at z.
The K.-H. relation can be restated as follows

$$
\sum_{\substack{M \in \mathcal{M}_{n} \\
M \text { elliptic }}} \chi\left(z_{M}\right)=\sum_{\substack{n=a d \\
a, d>0}} \max (a, d)+\left\{\begin{array}{cl}
1 / 6 & \text { if } n \text { is a square } \\
0 & \text { otherwise }
\end{array}\right.
$$

We have a disjoint decomposition into right cosets

$$
\mathcal{M}_{n}=\bigcup_{\substack{n=a d \\
0 \leqslant b<a}}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \Gamma .
$$

Theorem (P. -Zagier 2016)

For each right coset $K=\left(\begin{array}{cc}a_{K} & * \\ 0 & d_{K}\end{array}\right) \Gamma \subset \mathcal{M}_{n}$ with $a_{K}, d_{K}>0$:

$$
\sum_{\substack{M \in K \\ M \text { elliptic }}} \chi\left(z_{M}\right)= \begin{cases}2 & \text { if } a_{K}>d_{K} \\ 1+\frac{1}{6} \cdot \delta_{K=\sqrt{n} \Gamma} & \text { if } a_{K}=d_{K} \\ 0 & \text { if } a_{K}<d_{K}\end{cases}
$$

Generically, there is a 1 to 2 correspondence between right cosets $K \subset \mathcal{M}_{n}$ with $a_{K}>d_{K}$ and elliptic conjugacy classes in \mathcal{M}_{n}.

Let χ^{-}be a characteristic function of the half-fundamental domain

$$
\mathcal{F}^{-}=\{z \in \mathcal{F}: \operatorname{Re}(z) \leqslant 0\}
$$

(defined like χ), and define $\alpha: \mathrm{PGL}_{2}^{+}(\mathbb{R}) \rightarrow \mathbb{Q}$ by

$$
\alpha(M)=\left\{\begin{array}{cl}
\chi^{-}\left(z_{M}\right) & \text { if } M \text { is elliptic with fixed point } z_{M} \in \mathfrak{H}, \\
-\frac{1}{12} & \text { if } M \text { is scalar, } \\
0 & \text { otherwise } .
\end{array}\right.
$$

Note: α is well-defined, $\alpha(M)=\alpha(\lambda M)$.

Theorem

For $M=\left(\begin{array}{cc}y & x \\ 0 & 1\end{array}\right) \in \operatorname{GL}_{2}(\mathbb{R})$ with $y>0$, we have

$$
\sum_{\gamma \in \Gamma} \alpha(M \gamma)= \begin{cases}1 & \text { if } y>1 \\ 1 / 2 & \text { if } y=1 \\ 0 & \text { if } y<1\end{cases}
$$

There is a "weighted bijection" between half the elliptic conjugacy classes in \mathcal{M}_{n}, and those right cosets $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \Gamma$ with $a \geqslant d$.

We have to count the number of $\gamma \in \Gamma$ such $\left(\begin{array}{cc}y & x \\ 0 & 1\end{array}\right) \gamma$ has fixed point in \mathcal{F}^{-}. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c>0$, and define:

$$
\begin{aligned}
\Delta(\gamma) & =\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
y & x \\
0 & 1
\end{array}\right) \gamma \text { has fixed point in } \mathcal{F}^{-}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant d-c x-a y \leqslant c \leqslant-d x-b y\right\}
\end{aligned}
$$

The triangle $\Delta(\gamma)$ is contained in the Euclidean half-plane

$$
\mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geqslant 1\right\}
$$

which proves the case $y<1$ of the previous theorem.

We have to count the number of $\gamma \in \Gamma$ such $\left(\begin{array}{cc}y & x \\ 0 & 1\end{array}\right) \gamma$ has fixed point in \mathcal{F}^{-}. Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c>0$, and define:

$$
\begin{aligned}
\Delta(\gamma) & =\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{cc}
y & x \\
0 & 1
\end{array}\right) \gamma \text { has fixed point in } \mathcal{F}^{-}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: 0 \leqslant d-c x-a y \leqslant c \leqslant-d x-b y\right\}
\end{aligned}
$$

The triangle $\Delta(\gamma)$ is contained in the Euclidean half-plane

$$
\mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geqslant 1\right\}
$$

which proves the case $y<1$ of the previous theorem.

$$
\left(y=c(-d x-b y)+d^{2}-d(d-c x-a y) \geqslant c^{2}+d^{2}-c|d| \geqslant 1\right)
$$

Theorem

Let $\Gamma_{\infty}=\{\gamma \in \Gamma: \gamma \infty=\infty\}$. We have a tesselation

$$
\mathcal{H}=\bigcup_{\gamma \in \Gamma \backslash \Gamma_{\infty}} \Delta(\gamma)
$$

of the half-plane \mathcal{H} into semi-infinite triangles with disjoint interiors.

The region \mathcal{H} and a few triangles $\Delta(\gamma)$.

The group Γ is a free product of its two subgroups generated by the elements $S=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and $U=\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$ of orders 2 and 3 .

A tree associated to $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$: the vertices are labeled by the elements of Γ and the edges by the generators S, U and U^{2} as shown.

The region \mathcal{R} (shaded) is covered by triangles of words starting in U.
The finite side of $\Delta(\gamma)$ has been labeled by the final letter of γ as a word in S, U, U^{2}.

We show $\mathcal{R}:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant y-1\right\}=\bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma)$, where $\mathcal{T} \subset \Gamma$ is the set of words starting in U :

We show $\mathcal{R}:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leqslant x \leqslant y-1\right\}=\bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma)$, where $\mathcal{T} \subset \Gamma$ is the set of words starting in U :

The cone $\mathcal{C}(\gamma)$ (left, shaded) decomposes into two triangles and two smaller cones.

The group Γ acts both on the left and on the right on the \mathbb{Q}-vector space $\mathcal{R}_{n}=\mathbb{Q}\left[\mathcal{M}_{n}\right]$.

■ "Hecke operator acting on modular forms":

$$
T_{n}^{\infty}=\sum_{\substack{n=a d \\
0 \leqslant b \leqslant d}}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \mathcal{R}_{n} .
$$

■ "Hecke operator acting on period polynomials": There exists an element $\widetilde{T}_{n} \in \mathbb{Q}\left[\mathcal{M}_{n}\right]$ such that

$$
\begin{align*}
& (1-S) \widetilde{T}_{n}-T_{n}^{\infty}(1-S) \in(1-T) \mathcal{R}_{n} \tag{A}\\
& \left\{\begin{array}{c}
\widetilde{T}_{n}(1+S) \in\left(1+U+U^{2}\right) \mathcal{R}_{n} \\
\widetilde{T}_{n}\left(1+U+U^{2}\right)
\end{array} \in(1+S) \mathcal{R}_{n}\right. \tag{B}
\end{align*}
$$

- Example: $\widetilde{T}_{1}=1-\frac{1}{2}(1+S)-\frac{1}{3}\left(1+U+U^{2}\right)$ sat. (A), (B)

For $M \in \mathcal{M}_{n}$ let $\Delta(M)=\operatorname{Tr}^{2}(M)-4 n$ and define

$$
w(M)= \begin{cases}-1 /|\operatorname{Stab} M| & \text { if } \Delta(M)<0 \\ 1 & \text { if } \Delta(M)=u^{2}>0, u \in \mathbb{Z} \\ 1 / 6 & \text { if } M \text { scalar } \\ 0 & \text { otherwise }\end{cases}
$$

Then $w(M)$ is a conjugacy class invariant and if $t^{2}-4 n \leqslant 0$:

$$
\sum_{\substack{X \subset \mathcal{M}_{n} \\ \operatorname{Tr}(X)= \pm t}} w(X)= \begin{cases}-2 H\left(4 n-t^{2}\right) & \text { if } t \neq 0 \\ -H\left(4 n-t^{2}\right) & \text { if } t=0\end{cases}
$$

One can use this to extend the Kronecker-Hurwitz class number: $H(D)=-u / 2$ if $D=-u^{2}<0$.

For $\widetilde{T}=\sum c_{M} M \in \mathcal{R}_{n}, \mathcal{S} \subset \mathcal{M}_{n}$ let $\operatorname{deg}_{\mathcal{S}}(\widetilde{T}):=\sum_{M \in \mathcal{S}} c_{M} \in \mathbb{Q}$.

Theorem (P.-Zagier 2018)

Let n be a positive integer, and let $\widetilde{T}_{n} \in \mathcal{R}_{n}$ satisfy both (A) and (B).
1 For any right Γ-coset $K \subset \mathcal{M}_{n}$ we have $\operatorname{deg}_{K} \widetilde{T}_{n}=-1$.
2 For any Γ-conjugacy class X we have

$$
\operatorname{deg}_{X} \widetilde{T}_{n}=w(X)
$$

$$
\text { For } \tilde{T}=\sum c_{M} M \in \mathcal{R}_{n}, \mathcal{S} \subset \mathcal{M}_{n} \text { let } \operatorname{deg}_{\mathcal{S}}(\widetilde{T}):=\sum_{M \in \mathcal{S}} c_{M} \in \mathbb{Q}
$$

Theorem (P.-Zagier 2018)

Let n be a positive integer, and let $\widetilde{T}_{n} \in \mathcal{R}_{n}$ satisfy both (A) and (B).

1 For any right Γ-coset $K \subset \mathcal{M}_{n}$ we have $\operatorname{deg}_{K} \widetilde{T}_{n}=-1$.
2 For any Γ-conjugacy class X we have

$$
\operatorname{deg}_{X} \widetilde{T}_{n}=w(X)
$$

The theorem easily implies a formula for the trace of Hecke operators on modular forms for $\Gamma=\operatorname{PSL}_{2}(\mathbb{Z})$. With more work, it proves trace formulas for congruence subgroups of Γ as well!

Computing $\operatorname{deg} \widetilde{T}_{n}$ by the two parts of the theorem yields another proof of the following version of the the Kronecker-Hurwitz formula:

$$
-\sum_{X \subset \mathcal{M}_{n}} w(X)=\left|\Gamma \backslash \mathcal{M}_{n}\right|=\sum_{d \mid n} d
$$

where the sum is over all conjugacy classes X.

Let $S_{k}(\Gamma) \subset M_{k}(\Gamma)$ be the space of cusp forms, resp. modular forms of weight k for Γ. For even $k \geqslant 4$ we have

$$
\begin{aligned}
\operatorname{Tr}\left(T_{n}, M_{k}(\Gamma)\right)+\operatorname{Tr}\left(T_{n}, S_{k}(\Gamma)\right) & =\sum_{X \subset \mathcal{M}_{n}} w(X) p_{k-2}(\operatorname{Tr}(X), n) \\
& =-\sum_{t \in \mathbb{Z}} p_{k-2}(t, n) H\left(4 n-t^{2}\right)
\end{aligned}
$$

where the sum is over conjugacy classes X and $p_{k}(t, n)$ is the Gegenbauer polynomial, defined by

$$
\left(1-t X+n X^{2}\right)^{-1}=\sum_{\mathrm{w}=0}^{\infty} p_{\mathrm{w}}(t, n) X^{\mathrm{w}}
$$

For even $k \geqslant 2$, let $V_{k-2} \simeq \operatorname{Sym}^{k-2} \mathbb{C}^{2}$ be the $\mathrm{GL}_{2}(\mathbb{C})$-module of homogenous polynomials in two variables of degree $k-2$. Then

$$
\sum_{i}(-1)^{i} \operatorname{Tr}\left(T_{n}, H^{i}\left(\Gamma, V_{k-2}\right)\right)=-\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}\left(M_{X}, V_{k-2}\right)
$$

where M_{X} is a representative of the conjugacy class X.
Exercise: $\operatorname{Tr}\left(M, V_{w}\right)=p_{w}(\operatorname{Tr} M, \operatorname{det} M)$.

$$
\sum_{i}(-1)^{i} \operatorname{Tr}\left(T_{n}, H^{i}\left(\Gamma, V_{k-2}\right)\right)=-\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}\left(M_{X}, V_{k-2}\right)
$$

Remarks:

■ If $k=2$ only $i=0$ contributes, yielding the class number relation, while if $k \geqslant 4$ only $i=1$ contributes, yielding the trace formula.

$$
\sum_{i}(-1)^{i} \operatorname{Tr}\left(T_{n}, H^{i}\left(\Gamma, V_{k-2}\right)\right)=-\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}\left(M_{X}, V_{k-2}\right)
$$

Remarks:

■ If $k=2$ only $i=0$ contributes, yielding the class number relation, while if $k \geqslant 4$ only $i=1$ contributes, yielding the trace formula.

■ Theorem (P. 2018) This shape of the trace formula generalizes to arbitrary congruence subgroups.

$$
\sum_{i}(-1)^{i} \operatorname{Tr}\left(T_{n}, H^{i}\left(\Gamma, V_{k-2}\right)\right)=-\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}\left(M_{X}, V_{k-2}\right)
$$

Remarks:

■ If $k=2$ only $i=0$ contributes, yielding the class number relation, while if $k \geqslant 4$ only $i=1$ contributes, yielding the trace formula.
■ Theorem (P. 2018) This shape of the trace formula generalizes to arbitrary congruence subgroups.

- The ultimate generalization is the "Topological trace formula" of Goresky and MacPherson, computing Lefschetz numbers of Hecke correspondences on very general reductive groups.

