An elementary proof of the Kronecker-Hurwitz class number relation

Alexandru-Anton Popa (joint with Don Zagier)

IMAR București

Transient Transcendence in Transylvania Brașov, 13-17 May 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Proof (by picture) of a combinatorial refinement of K.-H. relation (1860s)
- Motivation: the proof was found as by-product of a new algebraic proof of the trace formula for Hecke operators on modular forms (Eichler-Selberg 1950s), following an idea of Zagier from 1990

- Another proof of K.-H. relation
- Cohomological interpretation of the trace formula

For D > 0, H(D) equals the number of $PSL_2(\mathbb{Z})$ -equivalence classes of positive definite integral binary quadratic forms of discriminant -D, with those classes that contain a multiple of $x^2 + y^2$ or of $x^2 - xy + y^2$ counted with multiplicity 1/2 or 1/3, respectively. Set H(0) = -1/12.

For D > 0, H(D) equals the number of $PSL_2(\mathbb{Z})$ -equivalence classes of positive definite integral binary quadratic forms of discriminant -D, with those classes that contain a multiple of $x^2 + y^2$ or of $x^2 - xy + y^2$ counted with multiplicity 1/2 or 1/3, respectively. Set H(0) = -1/12.

Action:

$$Q \circ \gamma(x, y) = Q(ax + by, cx + dy)$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{Z}).$

The Kronecker-Hurwitz relation

The Kronecker-Hurwitz relation

Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))

For any $n \ge 1$ we have

$$\sum_{t^2 \leqslant 4n} H(4n-t^2) = \sum_{\substack{n=ad\\a,d>0}} \max(a,d) .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Kronecker-Hurwitz relation

Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))

For any $n \ge 1$ we have

$$\sum_{t^2 \leqslant 4n} H(4n-t^2) = \sum_{n=ad \atop a, d>0} \max(a, d).$$

Example. n = 5: H(20)+2H(19)+2H(16)+2H(11)+2H(4) = 2+2+3+2+1 = 5+5

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\Gamma = \operatorname{PSL}_2(\mathbb{Z}), \quad \mathcal{M}_n = \{M \in M_2(\mathbb{Z}) : \det M = n\}/\{\pm 1\}$$

If *n* is square-free, $\mathcal{M}_n = \Gamma(\begin{smallmatrix} 1 & 0 \\ 0 & n \end{smallmatrix}) \Gamma$ is a double coset, otherwise a finite union of double cosets.

Dictionary matrices-quadratic forms

We have a Γ -equivariant bijection

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longleftrightarrow Q_M(x, y) = cx^2 + (d - a)xy - by^2$$

between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^2 - 4n$.

Dictionary matrices-quadratic forms

We have a Γ -equivariant bijection

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longleftrightarrow Q_M(x, y) = cx^2 + (d - a)xy - by^2$$

between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^2 - 4n$.

- Conjugacy classes ↔ Γ-equivalence classes
- Fixed points $Mz = z \leftrightarrow \text{Roots } Q_M(z, 1) = 0.$
- The fixed point of $\gamma M \gamma^{-1}$ is γz_M .
- A matrix $M \in \mathcal{M}_n$ is elliptic iff $Tr(M)^2 4n < 0$ iff it has a unique fixed point z_M in the upper half-plane \mathfrak{H} .

$$\begin{aligned} \mathsf{Stab}\,\mathcal{M} := & \{\gamma \in \mathsf{\Gamma} : \gamma \mathcal{M} \gamma^{-1} = \mathcal{M}\} = \{\gamma \in \mathsf{\Gamma} : \mathcal{Q}_{\mathcal{M}} \circ \gamma = \mathcal{Q}_{\mathcal{M}}\} \\ & = & \{\gamma \in \mathsf{\Gamma} : \gamma z_{\mathcal{M}} = z_{\mathcal{M}}\} \in \{1, 2, 3\} \end{aligned}$$

 $2H(4n - t^2)$ = the (weighted) number of elliptic Γ -conjugacy classes of trace $\pm t \neq 0$ in \mathcal{M}_n .

Let χ be a modified characteristic function of the fund. domain

$$\mathcal{F} = \{z \in \mathfrak{H} : -1/2 \leqslant \mathsf{Re}(z) \leqslant 1/2, \ |z| \geqslant 1\}$$

for the action of Γ on \mathfrak{H} , such that $\chi(z)$ is $1/2\pi$ times the angle subtended by \mathcal{F} at z.

 $2H(4n - t^2)$ = the (weighted) number of elliptic Γ -conjugacy classes of trace $\pm t \neq 0$ in \mathcal{M}_n .

Let χ be a modified characteristic function of the fund. domain

$$\mathcal{F} \;=\; \{z\in\mathfrak{H}: -1/2\leqslant \mathsf{Re}(z)\leqslant 1/2,\; |z|\geqslant 1\}$$

for the action of Γ on \mathfrak{H} , such that $\chi(z)$ is $1/2\pi$ times the angle subtended by \mathcal{F} at z.

The K.-H. relation can be restated as follows

$$\sum_{\substack{M \in \mathcal{M}_n \\ M \text{ elliptic}}} \chi(z_M) = \sum_{\substack{n=ad \\ a, d > 0}} \max(a, d) + \begin{cases} 1/6 & \text{ if } n \text{ is a square,} \\ 0 & \text{ otherwise.} \end{cases}$$

A refinement of the K.-H. relation

We have a disjoint decomposition into right cosets

$$\mathcal{M}_n = \bigcup_{\substack{n=ad\\0 \le b \le a}} \begin{pmatrix} a & b\\ 0 & d \end{pmatrix} \Gamma .$$

Theorem (P. -Zagier 2016)

For each right coset $K = \begin{pmatrix} a_K & * \\ 0 & d_K \end{pmatrix} \Gamma \subset \mathcal{M}_n$ with $a_K, d_K > 0$:

$$\sum_{\substack{M \in K \\ M \text{ elliptic}}} \chi(z_M) = \begin{cases} 2 & \text{if } a_K > d_K, \\ 1 + \frac{1}{6} \cdot \delta_{K = \sqrt{n} \Gamma} & \text{if } a_K = d_K, \\ 0 & \text{if } a_K < d_K. \end{cases}$$

Generically, there is a 1 to 2 correspondence between right cosets $K \subset M_n$ with $a_K > d_K$ and elliptic conjugacy classes in M_n .

Let χ^- be a characteristic function of the half-fundamental domain

$$\mathcal{F}^- = \{z \in \mathcal{F} : \operatorname{Re}(z) \leqslant 0\},\$$

(defined like χ), and define $\alpha : \mathrm{PGL}_2^+(\mathbb{R}) \to \mathbb{Q}$ by

$$\alpha(M) = \begin{cases} \chi^{-}(z_{M}) & \text{if } M \text{ is elliptic with fixed point } z_{M} \in \mathfrak{H}, \\ -\frac{1}{12} & \text{if } M \text{ is scalar}, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note: α is well-defined, $\alpha(M) = \alpha(\lambda M)$.

Theorem

For $M = \begin{pmatrix} y \\ 0 \end{pmatrix} \in GL_2(\mathbb{R})$ with y > 0, we have $\sum_{\gamma \in \Gamma} \alpha(M\gamma) = \begin{cases} 1 & \text{if } y > 1 \\ 1/2 & \text{if } y = 1 \\ 0 & \text{if } y < 1 \end{cases}.$

There is a "weighted bijection" between half the elliptic conjugacy classes in \mathcal{M}_n , and those right cosets $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \Gamma$ with $a \ge d$.

We have to count the number of $\gamma \in \Gamma$ such $\begin{pmatrix} \gamma & x \\ 0 & 1 \end{pmatrix} \gamma$ has fixed point in \mathcal{F}^- . Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with c > 0, and define:

$$\Delta(\gamma) = \{(x, y) \in \mathbb{R}^2 : \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \gamma \text{ has fixed point in } \mathcal{F}^- \}$$
$$= \{(x, y) \in \mathbb{R}^2 : 0 \leqslant d - cx - ay \leqslant c \leqslant -dx - by \}$$

The triangle $\Delta(\gamma)$ is contained in the Euclidean half-plane

$$\mathcal{H} = \{(x,y) \in \mathbb{R}^2 \mid y \ge 1\},\$$

which proves the case y < 1 of the previous theorem.

We have to count the number of $\gamma \in \Gamma$ such $\begin{pmatrix} \gamma & x \\ 0 & 1 \end{pmatrix} \gamma$ has fixed point in \mathcal{F}^- . Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with c > 0, and define:

$$\Delta(\gamma) = \{(x, y) \in \mathbb{R}^2 : \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \gamma \text{ has fixed point in } \mathcal{F}^- \}$$
$$= \{(x, y) \in \mathbb{R}^2 : 0 \leqslant d - cx - ay \leqslant c \leqslant -dx - by \}$$

The triangle $\Delta(\gamma)$ is contained in the Euclidean half-plane

$$\mathcal{H} = \{(x,y) \in \mathbb{R}^2 \mid y \ge 1\},\$$

which proves the case y < 1 of the previous theorem.

$$(y = c(-dx - by) + d^2 - d(d - cx - ay) \geqslant c^2 + d^2 - c|d| \geqslant 1)$$

Theorem

Let $\Gamma_{\infty} = \{\gamma \in \Gamma : \gamma \infty = \infty\}$. We have a tesselation

$$\mathcal{H} = \bigcup_{\gamma \in \mathsf{\Gamma} \smallsetminus \mathsf{\Gamma}_{\infty}} \Delta(\gamma)$$

of the half-plane $\mathcal H$ into semi-infinite triangles with disjoint interiors.

A tesselation of a Euclidean half-plane

The region \mathcal{H} and a few triangles $\Delta(\gamma)$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

The group Γ is a free product of its two subgroups generated by the elements $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $U = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ of orders 2 and 3.

A tree associated to $\Gamma = PSL_2(\mathbb{Z})$: the vertices are labeled by the elements of Γ and the edges by the generators S, U and U^2 as shown.

The region \mathcal{R} (shaded) is covered by triangles of words starting in U. The finite side of $\Delta(\gamma)$ has been labeled by the final letter of γ as a word in S, U, U^2 .

We show $\mathcal{R} := \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq y - 1\} = \bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma)$, where $\mathcal{T} \subset \Gamma$ is the set of words starting in U:

We show $\mathcal{R} := \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq y - 1\} = \bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma)$, where $\mathcal{T} \subset \Gamma$ is the set of words starting in U:

The cone $\mathcal{C}(\gamma)$ (left, shaded) decomposes into two triangles and two smaller cones.

Traces of Hecke operators

The group Γ acts both on the left and on the right on the \mathbb{Q} -vector space $\mathcal{R}_n = \mathbb{Q}[\mathcal{M}_n]$.

"Hecke operator acting on modular forms":

$$T_n^{\infty} = \sum_{\substack{n=ad\\ 0 \leqslant b \leqslant d}} \left(\begin{smallmatrix} a & b \\ o & d \end{smallmatrix}\right) \in \mathcal{R}_n.$$

• "Hecke operator acting on period polynomials": There exists an element $\widetilde{T}_n \in \mathbb{Q}[\mathcal{M}_n]$ such that

$$(1-S)\widetilde{T}_n - T_n^{\infty}(1-S) \in (1-T)\mathcal{R}_n \qquad (A)$$

$$\begin{cases} \widetilde{T}_n(1+S) \in (1+U+U^2)\mathcal{R}_n \\ \widetilde{T}_n(1+U+U^2) \in (1+S)\mathcal{R}_n \end{cases} \qquad (B)$$

• Example: $\widetilde{T}_1 = 1 - rac{1}{2}(1+\mathcal{S}) - rac{1}{3}(1+U+U^2)$ sat. (A), (B)

Traces of Hecke operators

For $M \in \mathcal{M}_n$ let $\Delta(M) = \operatorname{Tr}^2(M) - 4n$ and define

$$w(M) = \begin{cases} -1/|\operatorname{Stab} M| & \text{ if } \Delta(M) < 0\\ 1 & \text{ if } \Delta(M) = u^2 > 0, u \in \mathbb{Z}\\ 1/6 & \text{ if } M \text{ scalar}\\ 0 & \text{ otherwise.} \end{cases}$$

Then w(M) is a conjugacy class invariant and if $t^2 - 4n \leq 0$:

$$\sum_{\substack{X \subset \mathcal{M}_n \\ \operatorname{Tr}(X) = \pm t}} w(X) = \begin{cases} -2H(4n - t^2) & \text{if } t \neq 0, \\ -H(4n - t^2) & \text{if } t = 0. \end{cases}$$

One can use this to extend the Kronecker-Hurwitz class number: H(D) = -u/2 if $D = -u^2 < 0$.

For
$$\widetilde{\mathcal{T}} = \sum c_{\mathcal{M}} \mathcal{M} \in \mathcal{R}_n$$
, $\mathcal{S} \subset \mathcal{M}_n$ let $\deg_{\mathcal{S}}(\widetilde{\mathcal{T}}) := \sum_{\mathcal{M} \in \mathcal{S}} c_{\mathcal{M}} \in \mathbb{Q}$.

Theorem (P.-Zagier 2018)

Let n be a positive integer, and let $T_n \in \mathcal{R}_n$ satisfy both (A) and (B).

- **1** For any right Γ -coset $K \subset \mathcal{M}_n$ we have $\deg_K \widetilde{\mathcal{T}}_n = -1$.
- **2** For any Γ-conjugacy class X we have

$$\deg_X \widetilde{T}_n = w(X)$$
 .

For
$$\widetilde{T} = \sum c_M M \in \mathcal{R}_n$$
, $\mathcal{S} \subset \mathcal{M}_n$ let $\deg_{\mathcal{S}}(\widetilde{T}) := \sum_{M \in \mathcal{S}} c_M \in \mathbb{Q}$.

Theorem (P.-Zagier 2018)

Let n be a positive integer, and let $T_n \in \mathcal{R}_n$ satisfy both (A) and (B).

- **1** For any right Γ -coset $K \subset \mathcal{M}_n$ we have $\deg_K \widetilde{T}_n = -1$.
- **2** For any Γ-conjugacy class X we have

$$\deg_X \widetilde{T}_n = w(X) \; .$$

The theorem easily implies a formula for the trace of Hecke operators on modular forms for $\Gamma = PSL_2(\mathbb{Z})$. With more work, it proves trace formulas for congruence subgroups of Γ as well!

Computing deg \widetilde{T}_n by the two parts of the theorem yields another proof of the following version of the the Kronecker-Hurwitz formula:

$$-\sum_{X\subset \mathcal{M}_n} w(X) = |\Gamma \backslash \mathcal{M}_n| = \sum_{d|n} d$$
,

where the sum is over all conjugacy classes X.

Let $S_k(\Gamma) \subset M_k(\Gamma)$ be the space of cusp forms, resp. modular forms of weight k for Γ . For even $k \ge 4$ we have

$$\operatorname{Tr}(T_n, M_k(\Gamma)) + \operatorname{Tr}(T_n, S_k(\Gamma)) = \sum_{X \subset \mathcal{M}_n} w(X) p_{k-2}(\operatorname{Tr}(X), n)$$
$$= -\sum_{t \in \mathbb{Z}} p_{k-2}(t, n) H(4n - t^2)$$

where the sum is over conjugacy classes X and $p_k(t, n)$ is the Gegenbauer polynomial, defined by

$$(1-tX+nX^2)^{-1}=\sum_{w=0}^{\infty}p_w(t,n)X^w.$$

For even $k \ge 2$, let $V_{k-2} \simeq \operatorname{Sym}^{k-2} \mathbb{C}^2$ be the $\operatorname{GL}_2(\mathbb{C})$ -module of homogenous polynomials in two variables of degree k-2. Then

$$\sum_{i} (-1)^{i} \operatorname{Tr}(T_{n}, H^{i}(\Gamma, V_{k-2})) = -\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}(M_{X}, V_{k-2})$$

where M_X is a representative of the conjugacy class X.

Exercise: $Tr(M, V_w) = p_w(Tr M, \det M)$.

Cohomological formulation

$$\sum_{i} (-1)^{i} \operatorname{Tr}(T_{n}, H^{i}(\Gamma, V_{k-2})) = -\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}(M_{X}, V_{k-2})$$

Remarks:

If k = 2 only i = 0 contributes, yielding the class number relation, while if k ≥ 4 only i = 1 contributes, yielding the trace formula.

Cohomological formulation

$$\sum_{i} (-1)^{i} \operatorname{Tr}(T_{n}, H^{i}(\Gamma, V_{k-2})) = -\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}(M_{X}, V_{k-2})$$

Remarks:

If k = 2 only i = 0 contributes, yielding the class number relation, while if k ≥ 4 only i = 1 contributes, yielding the trace formula.

• **Theorem (P. 2018)** This shape of the trace formula generalizes to arbitrary congruence subgroups.

$$\sum_{i} (-1)^{i} \operatorname{Tr}(T_{n}, H^{i}(\Gamma, V_{k-2})) = -\sum_{X \subset \mathcal{M}_{n}} w(X) \operatorname{Tr}(M_{X}, V_{k-2})$$

Remarks:

- If k = 2 only i = 0 contributes, yielding the class number relation, while if k ≥ 4 only i = 1 contributes, yielding the trace formula.
- **Theorem (P. 2018)** This shape of the trace formula generalizes to arbitrary congruence subgroups.
- The ultimate generalization is the "Topological trace formula" of Goresky and MacPherson, computing Lefschetz numbers of Hecke correspondences on very general reductive groups.