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m Proof (by picture) of a combinatorial refinement of K.-H.
relation (1860s)

m Motivation: the proof was found as by-product of a new
algebraic proof of the trace formula for Hecke operators on
modular forms (Eichler-Selberg 1950s), following an idea of
Zagier from 1990

m Another proof of K.-H. relation

m Cohomological interpretation of the trace formula



The Kronecker-Hurwitz class number

For D > 0, H(D) equals the number of PSLy(Z)-equivalence
classes of positive definite integral binary quadratic forms of
discriminant —D, with those classes that contain a multiple of
x2 + y? or of x? — xy + y? counted with multiplicity 1/2 or 1/3,
respectively. Set H(0) = —1/12.
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Action:

Qo7(x,y) = Qax + by, cx + dy) for vy = (25) € PSLy(Z).



The Kronecker-Hurwitz relation
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Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))

For any n > 1 we have

Z H(4n — t?) = Z max(a, d) .

t2<4n n=ad
= a,d>0



The Kronecker-Hurwitz relation

D 0 3 4 7 8 11 12 15 16 19 20
1 1 1 4 3

- - - 1 1 1 = 2 = 1 2
H(D) 12 3 2 3 2

Theorem (Kronecker (1860), Gierster (1880), Hurwitz (1885))
For any n > 1 we have

Z H(4n — t?) = z max(a, d) .

t2<4n n=ad
= a,d>0

Example. n =5:
H(20)+2H(19)+2H(16)+2H(11)+2H(4) = 2+2+3+2+1 = 5+5



[ =PSLy(Z), My={M e My(Z):det M = n}/{+£1}

If nis square-free, M, =T (3 %) is a double coset, otherwise a
finite union of double cosets.



Dictionary matrices—quadratic forms

We have a [-equivariant bijection
M=(25) ¢ Qux.y) = o’ +(d — a)xy — by®

between integral matrices of determinant n and trace t and
quadratic forms of discriminant t> — 4n.



Dictionary matrices—quadratic forms

We have a [-equivariant bijection
M= (25)«— Qu(x,y) = ox?® + (d — a)xy — by?
between integral matrices of determinant n and trace t and
quadratic forms of discriminant t> — 4n.
m Conjugacy classes <— [-equivalence classes
m Fixed points Mz = z <— Roots Qu(z,1) = 0.
m The fixed point of YMy~! is yzp.

m A matrix M € M, is elliptic iff Tr(M)? — 4n < 0 iff it has a
unique fixed point zp; in the upper half-plane $).

StabM :={y el :AMy 1=M}={rveT:Quoy=Qu}
={yerl:vzu =2zum} €{1,2,3}



Reformulation of K.H-relation

2H(4n — t?)= the (weighted) number of elliptic M-conjugacy
classes of trace +t £ 0 in M,,.

Let x be a modified characteristic function of the fund. domain
F ={z€e$H:-1/2<Re(z)<1/2, |z| > 1}

for the action of I on $), such that x(z) is 1/2x times the angle
subtended by F at z.



Reformulation of K.H-relation

2H(4n — t?)= the (weighted) number of elliptic M-conjugacy
classes of trace +t £ 0 in M,,.

Let x be a modified characteristic function of the fund. domain
F ={z€e$H:-1/2<Re(z)<1/2, |z| > 1}

for the action of I on $), such that x(z) is 1/2x times the angle
subtended by F at z.

The K.-H. relation can be restated as follows

Z x(zm) = Z max(a, d) + {1/6 if nis a square,

MeM ad 0 otherwise.
N —
M elliptic a,d>0



A refinement of the K.-H. relation

We have a disjoint decomposition into right cosets

M, = UJ @oHrT.
n=ad

0<h<a

Theorem (P. -Zagier 2016)

For each right coset K = (% ;K) rc M, with akx,dx > 0:

2 if ak > dk,

1 .
Z X(ZM) = 1+6-5K:\/ﬁr IfaK:dK,
M,Véleligtic 0 if ax < dk.

Generically, there is a 1 to 2 correspondence between right cosets
K C M, with ax > dk and elliptic conjugacy classes in M,,.



A further refinement

Let x~ be a characteristic function of the half-fundamental domain
F~ = {z € F:Re(z) <0},
(defined like ), and define o : PGLS (R) — Q by

X (zm) if M is elliptic with fixed point zy € $,

1
a(M) = EEP) if M is scalar,

0 otherwise.

Note: « is well-defined, a(M) = a(AM).



A further refinement

For M = (§7) € GLa2(R) with y > 0, we have

1 ify>1,
da(My) =<1/2 ify=1,
ver 0 ify<l1.

There is a "weighted bijection” between half the elliptic conjugacy
classes in M, and those right cosets (3 5) T with a > d.



A tesselation of a Euclidean half-plane

We have to count the number of v € I such (§ 1)~ has fixed
point in F~. Let v = (Z’ 3) with ¢ > 0, and define:

A(y) = {(x,y) € R?: (% 7) has fixed point in F~}
= {(x,y) eR?>:0<d—cx—ay <c<—dx— by}

The triangle A(y) is contained in the Euclidean half-plane
H o= {(xy)eR?|y>1},

which proves the case y < 1 of the previous theorem.



A tesselation of a Euclidean half-plane

We have to count the number of v € I such (§ 1)~ has fixed
point in F~. Let v = (Z’ 3) with ¢ > 0, and define:

A(y) = {(x,y) € R?: (% 7) has fixed point in F~}
= {(x,y) eR?>:0<d—cx—ay <c<—dx— by}
The triangle A(y) is contained in the Euclidean half-plane
H o= {(xy)eR?|y>1},

which proves the case y < 1 of the previous theorem.

(y = c(—dx — by) +d?> —d(d — cx —ay) > c® +d? — c|d| > 1)



A tesselation of a Euclidean half-plane

Theorem

Let Too = {y €T :yo0o = c0}. We have a tesselation

"= J aM

YEMNT

of the half-plane H into semi-infinite triangles with disjoint
interiors.



A tesselation of a Euclidean half-plane

The region H and a few triangles A(7).



The group I is a free product of its two subgroups generated by
the elements S = (1 _1) and U = ( _1) of orders 2 and 3.

NSNS

Sus SU2 Usu usu?  U3su U25U2

: O\ \ ¢

SU SU? US U?2s

5'\ U L U2
I =S5
] I3
T _U2

A tree associated to [ = PSLy(Z): the vertices are labeled by the
elements of I and the edges by the generators S, U and U? as shown.



s$~.'sus

The region R (shaded) is covered by triangles of words starting in U.
The finite side of A(y) has been labeled by the final letter of 7y as a word
in S, U, U?.



We show R = {(x,y) e R?|0<x<y—1} = Uyer A(MY)
where 7 C I is the set of words starting in U:



We show R = {(x,y) eR?|0<x<y—1} = Uyer A(MY)
where 7 C I is the set of words starting in U:

ySU| HSU?

~S

The cone C(v) (left, shaded) decomposes into two triangles and two
smaller cones. |



Traces of Hecke operators

The group I acts both on the left and on the right on the Q-vector
space R, = Q[M,].
m “Hecke operator acting on modular forms”:

T= > (25) eRrn

n=ad
o<bgd

m “Hecke operator acting on period polynomials”: There exists
an element T, € Q[M,] such that

(1_5)?n - T,?o(l—S) € (1_ T)Rn (A)
T(14+S) € (1+U+UR, (8)
T.(1+U+U?) € (1+9S)R,

m Example: Ty =1—1(1+S5) — L(1 4+ U+ U?) sat. (A), (B)



Traces of Hecke operators

For M € M, let A(M) = Tr?>(M) — 4n and define

—1/|StabM| if A(M) <0

1 if AM)=u?>>0 7
w(M) = | (M)=u*>0,uc

1/6 if M scalar

0 otherwise.

Then w(M) is a conjugacy class invariant and if t> — 4n < 0:

—2H(4n—t?) ift#0,

Z wiX) = {—H(4n—t2) ift=0
XCMp, o
Tr(X)==%t

One can use this to extend the Kronecker-Hurwitz class number:
H(D) = —u/2 if D = —u? < 0.



Traces of Hecke operators

For T =3 cuM € Rn, S C M, let degs(T) := X pyes em € Q.

Theorem (P.-Zagier 2018)
Let n be a positive integer, and let T, € R, satisfy both (A)
and (B).

For any right I-coset K C M, we have deg, 7~',, = -1

For any '-conjugacy class X we have

degy T, = w(X).



Traces of Hecke operators

For T =3 cuM € Rn, S C M, let degs(T) := X pyes em € Q.

Theorem (P.-Zagier 2018)
Let n be a positive integer, and let T, € R, satisfy both (A)
and (B).
For any right I-coset K C M, we have deg, 7~',, = -1
For any '-conjugacy class X we have

degy T, = w(X).

The theorem easily implies a formula for the trace of Hecke
operators on modular forms for I' = PSLy(Z). With more work, it
proves trace formulas for congruence subgroups of I as well!



Another proof of the Kronecker-Hurwitz relation

Computing deg 'IN',, by the two parts of the theorem yields another
proof of the following version of the the Kronecker-Hurwitz

formula:
= > w(X) = INM,|=>d,
d|n

XCM,j

where the sum is over all conjugacy classes X.



Eichler-Selberg trace formula

Let Sk(I') € Mg(I) be the space of cusp forms, resp. modular
forms of weight k for I'. For even k > 4 we have

Tr(Th, Mi(T)) + Tr( T, Sk()) = Z w(X)pk—2(Tr(X), n)
XCMnp

= — Z pr—2(t, n)H(4n — tz)

teZ

where the sum is over conjugacy classes X and pg(t, n) is the
Gegenbauer polynomial, defined by

(1= tX+nX?)7" =" pu(t, n)X".
w=0



Cohomological formulation

For even k > 2, let Vj_p ~ Sym* =2 C2 be the GL2(C)-module of
homogenous polynomials in two variables of degree k — 2. Then

S ) TH(To HI(T, Viea)) = — Y w(X) Tr(Mx, Vi)
I XCMn

where Mx is a representative of the conjugacy class X.

Exercise: Tr(M, V,,) = pu(Tr M, det M).



Cohomological formulation

S (1) T(To H(M Vi) = — > w(X) Tr(Mx, Via)
I XM,
Remarks:

m If k =2 only / = 0 contributes, yielding the class number
relation, while if k > 4 only i = 1 contributes, yielding the
trace formula.
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Cohomological formulation

S (1) T(To H(M Vi) = — > w(X) Tr(Mx, Via)
I XM,

Remarks:

m If k =2 only / = 0 contributes, yielding the class number
relation, while if k > 4 only i = 1 contributes, yielding the
trace formula.

m Theorem (P. 2018) This shape of the trace formula
generalizes to arbitrary congruence subgroups.

m The ultimate generalization is the “Topological trace formula”
of Goresky and MacPherson, computing Lefschetz numbers of
Hecke correspondences on very general reductive groups.



