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Finite Automata

Σ - finite alphabet, Σ∗ - words on Σ

Σ-automaton = finite, labelled, digraph. Vertices = states
∃ distinguished state =initial state

Some states are final states

For any state q and σ ∈ Σ, ∃! arrow labelled σ leaving q

ex. Σ = {0, 1}, states = {i , f , g}, initial = {i}, final = {f}

w ∈ Σ∗ is recognizable by a Σ-autom. if this autom. reads the
word and ends in a final state. A set S ⊂ Σ∗ is recognizable if ∃ a
Σ-autom. whose set of recognizable words is S.

ex.100 (yes), 110 (no)
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Finite Automata

Neural Nets

Formal Languages

Complexity of Numbers

E. Borel: Are irrational algebraic numbers normal?

Hartmanis/Stearns: Do there exist real time computable irrational
algebraic numbers?

Loxton/van der Poorten: Can b-ary expansions of irrational
algebraic numbers be generated by a finite automaton?

NO- Adamczewski/Bugeaud.

How powerful are finite automata?
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Automatic Sets

n ∈ N⇒ [n]k is the base k representation of n.

A set S ⊂ N is k -automatic (k -recognizable) if the set {[n]k | n ∈ S} is
Σ-recognizable, Σ = {0,1, . . . , k − 1}.

The set of powers of 2 is 2-automatic.
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Automatic Sets

n ∈ N⇒ [n]k is the base k representation of n.

A set S ⊂ N is k -automatic (k -recognizable) if the set {[n]k | n ∈ S} is
Σ-recognizable, Σ = {0,1, . . . , k − 1}.

The set of powers of 2 is 2-automatic. Is it 3-automatic?

Thm (Cobham, 1969). For k , l ≥ 2 multiplicatively independent, a
subset S ⊂ N is k - and l-automatic then it is ultimately periodic.

S ultimately periodic = ∃ c,d s.t. for all x > c, x ∈ S ⇔ x + d ∈ S.
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Difference Equations

Prop. S ⊂ N is k -automatic⇒ y(x) =
∑

n∈S xn satisfies a k -Mahler
equation

L(y(x)) = y(xkm
) + am−1(x)y(xkm−1

) + . . .+ a0(x)y(x) = 0, ai (x) ∈ C(x).

ex. S = {2i | i = 0,1, . . .} ⇒ y(x) =
∑∞

i=0 x2i
satisfies

y(x4)− (x2 + 1)y(x2) + x2y(x) = 0.

Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
y(x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only it is
a rational function.
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Cobham’s Theorem and Mahler Equations

Thm (Cobham, 1969). For k , l , multiplicatively independent, a subset
S ⊂ N is k - and l-automatic if and only if it is ultimately periodic.

Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
y(x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only if it
is a rational function.

A-B Thm⇒ C Thm:
• S ⇒ y(x) =

∑
n∈N αnxn, αn = 0, 1, αn = 1⇔ n ∈ S

• k -automatic⇒
∑

ai (x)y(xk i
) = 0

• l-automatic⇒
∑

bi (x)y(x l i ) = 0

• A-B Thm⇒ y(x) = p(x)
q(x)

• q(x)(
∑
αnxn) = p(x)

⇒ A0αN+i + A1αN+i−1 + ..+ ANαi = 0, i >> 0

• αN+i = − 1
A0

(A1αN+i−1 + ..+ ANαi ) and αi = 0, 1⇒ ultimately periodic

A-B use the C Thm. to prove the A-B Thm!

7/16



A-B Theorem and Similar Results

Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
F (x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only if it
is a rational function.

Thm (Ramis, 1992). F (x) ∈ C[[x ]] satisfies a linear differential
equation

L1(F (x)) =
dn

dxn (F (x)) + an−1(x)
dn−1

dxn−1 (F (x)) + . . .+ a0(x)F (x) = 0

and a linear q-difference equation (q not a root of 1)

L2(F (x)) = F (qmx) + bm−1(x)F (qm−1x) + . . .+ b0(x)F (x) = 0

with ai (x),bi (x) ∈ C(x), if and only if it is a rational function.
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Functions Satisfying Two Linear Differential/Difference
Equations

L1(y) = ∂n
1 (y) + an−1∂

n−1
1 (y) + . . .+ a1∂1(y) + a0y = 0

L2(y) = ∂m
2 (y) + bm−1∂

m−1
2 (y) + . . .+ b1∂2(y) + b0y = 0 ai , bi ∈ C(x)

y ∂1 ∂2 Conclusion

y ∈ C((x)) ∂
∂x ∂2(x) = qx ,q 6= root of 1 y ∈ C(x) Ramis, 1992

y ∈ C((x)) ∂
∂x ∂2(x) = xp, p ∈ Z≥2 y ∈ C(x) Bézivin, 1994

y ∈ C(( 1
x )) ∂

∂x ∂(x) = x + 1 y ∈ C(x)

y ∈ C((x)) ∂1(x) = q1x ∂2(x) = q2x , q1,q2 indep. y ∈ C(x) Bézivin-Boutabba, 1992

y ∈ C((x)) ∂1(x) = xp1 ∂2(x) = xp2 , p1,p2 indep. y ∈ C(x) Adamczewski-Bell, 2013

y ∈ C(( 1
x )) ∂1(x) = x + 1 ∂2(x) = x + α, α /∈ Q y ∈ C(x)

y Merom. ∂
∂x ∂(x) = x + 1 y =

∑
rj (x)eαj x , rj ∈ C(x)

Bézivin-Gramain∗, 1996

y Merom. ∂1(x) = x + 1 ∂2(x) = x + α, α ∈ R\Q y =
∑

rj (x)eαj x , rj ∈ C(x)

Bézivin-Gramain∗, 1996
...

...
...

...

We have a general approach that allows us to prove and generalize all these results
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A-B Theorem and Systems of Difference Equations
Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
F (x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only if it is a
rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems

Y (xk ) = A1(x)Y (x) Y (x l ) = A2(x)Y (x)

A1(x),A2(x) ∈ GLn(C(x))

are equivalent to constant Mahler systems

Z (xk ) = B1Z (x) Z (x l ) = B2Z (x)

B1,B2 ∈ GLn(C),

that is, there is a change of variables Y = GZ taking the first systems to the
second.
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A-B Theorem and Systems of Difference Equations
Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
F (x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only if it is a
rational function.

Thm (Schäfke-Singer, 2016) Assume k , l are multiplicatively independent and
the system

Y (xk ) = A1(x)Y (x) Y (x l ) = A2(x)Y (x) (1)

with A1,A2 ∈ GLn(C(x)) is consistent. Then there exists
G(x) ∈ GLn(K ),K = C(x1/s), s ∈ N, such that the substitution Y = G(x)Z
transforms (1) to

Z (xk ) = B1Z (x) Z (x l ) = B2Z (x) (2)

with B1,B2 ∈ GLn(C).

Consistent: x 7→ x l , xk commute⇒ Y ((xk )l ) = Y ((x l )k )⇒
A2(xk )A1(x) = A1(x l )A2(x)
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A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k , l multiplicatively independent,
F (x) ∈ C[[x ]] satisfies both a k - and l-Mahler equation if and only if it is a
rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems are equivalent to
constant Mahler systems.

Sc-Si⇒ A-B

F (x) is a component of a solution Y (x) of a consistent system
Y (xk ) = A1(x)Y (x) Y (x l ) = A2(x)Y (x).

S-S ⇒ Y (x) = G(x)Z (x), G ∈ GLn(C(x
1
s )), Z satisfies constant

system.

Const. sys. have only const. solns. ⇒ Z ∈ GLn(C)⇒ Y ∈ GLn(C(x
1
s ))

F ∈ C(x
1
s ) ∩ C((x)) = C(x).
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Ramis’s Theorem and Systems of Difference Eqns

Thm (Ramis, 1992). F (x) ∈ C[[x ]] satisfies a linear differential equation and
a linear q-difference equation then F (x) is a rational function.

Thm (Schäfke-Singer, 2016) Assume q is not a root of 1 and the system

dY
dx

= A1(x)Y (x) Y (qx) = A2(x)Y (x) (3)

with A1,A2 ∈ GLn(C(x)) is consistent. Then there exists G(x) ∈ GLn(C(x))
such that the substitution Y = G(x)Z transforms (3) to

dZ
dx

=
B1

x
Z (x) Z (qx) = B2Z (x) (4)

with B1,B2 ∈ GLn(C).

Consistent: x d
dx commutes with x 7→ qx ⇒ dA2

dx + A2A1 = qA1(qx)A2
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Consistent Systems of Differential/Difference Eqns

MetaTheorem:

Consistent systems have simple singuarities

Systems with simple singularities are equivalent to simple
systems.

A-B, Ramis’s, . . . Theorem follows because

Simple systems have simple solutions

14/16



Final Comments

Similar result for

∂Y (x) = A(x)Y (x), σY (x) = B(x)Y (x)

with ∂ = d
dx , and σ(x) = x + a, or σ(x) = qx or σ(x) = xp and

systems of two linear difference equations

σ1Y (x) = A(x)Y (x), σ2Y (x) = B(x)Y (x)

with (σ1, σ2) a sufficiently independent pair of shift operators, pair of
q-dilation operators or pair of Mahler operators. This yields A-B
results for these operators.
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