Finite Automata, Automatic Sets, and Difference Equations

Michael F. Singer (joint work with Reinhard Schäfke)

Transient Transcendence in Transylvania Braşov, Romania May13, 2019

Finite Automata

- > Σ finite alphabet, Σ^* words on Σ
- **Σ**-automaton = finite, labelled, digraph. Vertices = *states*
 - ▶ ∃ distinguished state = *initial state*
 - Some states are *final states*
 - For any state q and $\sigma \in \Sigma$, \exists ! arrow labelled σ leaving q

 $\underline{\text{ex.}} \Sigma = \{0, 1\}, \text{ states} = \{i, f, g\}, \text{ initial} = \{i\}, \text{ final} = \{f\}$

w ∈ Σ* is recognizable by a Σ-autom. if this autom. reads the word and ends in a final state. A set S ⊂ Σ* is recognizable if ∃ a Σ-autom. whose set of recognizable words is S.
 <u>ex.</u>100 (yes), 110 (no)

Finite Automata

- Neural Nets
- Formal Languages
- Complexity of Numbers
 - E. Borel: Are irrational algebraic numbers normal?
 - Hartmanis/Stearns: Do there exist real time computable irrational algebraic numbers?
 - Loxton/van der Poorten: Can b-ary expansions of irrational algebraic numbers be generated by a finite automaton? NO- Adamczewski/Bugeaud.

How powerful are finite automata?

Automatic Sets

 $n \in \mathbb{N} \Rightarrow [n]_k$ is the base *k* representation of *n*.

A set $S \subset \mathbb{N}$ is *k*-automatic (*k*-recognizable) if the set $\{[n]_k \mid n \in S\}$ is Σ -recognizable, $\Sigma = \{0, 1, \dots, k-1\}$.

The set of powers of 2 is 2-automatic.

Automatic Sets

 $n \in \mathbb{N} \Rightarrow [n]_k$ is the base *k* representation of *n*.

A set $S \subset \mathbb{N}$ is *k*-automatic (*k*-recognizable) if the set $\{[n]_k \mid n \in S\}$ is Σ -recognizable, $\Sigma = \{0, 1, \dots, k-1\}$.

The set of powers of 2 is 2-automatic. Is it 3-automatic?

Thm (Cobham, 1969). For $k, l \ge 2$ multiplicatively independent, a subset $S \subset \mathbb{N}$ is k- and l-automatic then it is ultimately periodic.

S ultimately periodic = $\exists c, d \text{ s.t.}$ for all $x > c, x \in S \Leftrightarrow x + d \in S$.

Difference Equations

Prop. $S \subset \mathbb{N}$ is *k*-automatic $\Rightarrow y(x) = \sum_{n \in S} x^n$ satisfies a *k*-Mahler equation

$$L(y(x)) = y(x^{k^m}) + a_{m-1}(x)y(x^{k^{m-1}}) + \ldots + a_0(x)y(x) = 0, \ a_i(x) \in \mathbb{C}(x).$$

ex.
$$S = \{2^i \mid i = 0, 1, ...\} \Rightarrow y(x) = \sum_{i=0}^{\infty} x^{2^i}$$
 satisfies
 $y(x^4) - (x^2 + 1)y(x^2) + x^2y(x) = 0.$

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $y(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only it is a rational function.

Cobham's Theorem and Mahler Equations

Thm (Cobham, 1969). For k, l, multiplicatively independent, a subset $S \subset \mathbb{N}$ is k- and l-automatic if and only if it is ultimately periodic.

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $y(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only if it is a rational function.

$\underline{\textbf{A-B Thm}} \Rightarrow \textbf{C Thm:}$

•
$$S \Rightarrow y(x) = \sum_{n \in \mathbb{N}} \alpha_n x^n$$
, $\alpha_n = 0, 1, \alpha_n = 1 \Leftrightarrow n \in S$

• k-automatic
$$\Rightarrow \sum a_i(x)y(x^{k^i}) = 0$$

• *I*-automatic
$$\Rightarrow \sum b_i(x)y(x^{i}) = 0$$

• A-B Thm $\Rightarrow y(x) = \frac{p(x)}{q(x)}$

•
$$q(x)(\sum \alpha_n x^n) = p(x)$$

 $\Rightarrow A_0 \alpha_{N+i} + A_1 \alpha_{N+i-1} + ... + A_N \alpha_i = 0, i >> 0$

• $\alpha_{N+i} = -\frac{1}{A_0}(A_1\alpha_{N+i-1} + ... + A_N\alpha_i)$ and $\alpha_i = 0, 1 \Rightarrow$ ultimately periodic A-B use the C Thm. to prove the A-B Thm!

A-B Theorem and Similar Results

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only if it is a <u>rational function</u>.

Thm (Ramis, 1992). $F(x) \in C[[x]]$ satisfies a linear differential equation

$$L_1(F(x)) = \frac{d^n}{dx^n}(F(x)) + a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}(F(x)) + \ldots + a_0(x)F(x) = 0$$

and a linear *q*-difference equation (*q* not a root of 1)

$$L_2(F(x)) = F(q^m x) + b_{m-1}(x)F(q^{m-1}x) + \ldots + b_0(x)F(x) = 0$$

with $a_i(x), b_i(x) \in C(x)$, if and only if it is a <u>rational function</u>.

Functions Satisfying Two Linear Differential/Difference Equations

$$\begin{aligned} L_1(y) &= \partial_1^n(y) + a_{n-1}\partial_1^{n-1}(y) + \ldots + a_1\partial_1(y) + a_0y = 0 \\ L_2(y) &= \partial_2^m(y) + b_{m-1}\partial_2^{m-1}(y) + \ldots + b_1\partial_2(y) + b_0y = 0 \quad a_i, b_i \in C(x) \end{aligned}$$

У	∂_1	∂_2	Conclusion
$y \in C((x))$	$\frac{\partial}{\partial x}$	$\partial_2(x) = qx, q \neq \text{ root of } 1$	$y \in C(x)$ Ramis, 1992
$y \in C((x))$	$\frac{\partial}{\partial x}$	$\partial_2(x) = x^p, \ p \in \mathbb{Z}_{\geq 2}$	$y \in C(x)$ Bézivin, 1994
$y \in C((\frac{1}{x}))$	$\frac{\partial}{\partial x}$	$\partial(x) = x + 1$	$y \in C(x)$
$y \in C((x))$	$\partial_1(x) = q_1 x$	$\partial_2(x) = q_2 x, q_1, q_2$ indep.	$y \in C(x)$ Bézivin-Boutabba, 1992
$y \in C((x))$	$\partial_1(x) = x^{p_1}$	$\partial_2(x) = x^{p_2}, p_1, p_2$ indep.	$y \in C(x)$ Adamczewski-Bell, 2013
$y \in C((\frac{1}{x}))$	$\partial_1(x) = x + 1$	$\partial_2(\mathbf{x}) = \mathbf{x} + \alpha, \alpha \notin \mathbb{Q}$	$y \in C(x)$
y Merom.	$\frac{\partial}{\partial x}$	$\partial(x) = x + 1$	$\mathbf{y} = \sum \mathbf{r}_j(\mathbf{x}) \mathbf{e}^{lpha_j \mathbf{x}}, \mathbf{r}_j \in \mathbf{C}(\mathbf{x})$
			Bézivin-Gramain*, 1996
y Merom.	$\partial_1(x) = x + 1$	$\partial_2(\mathbf{X}) = \mathbf{X} + \alpha, \alpha \in \mathbb{R} \setminus \mathbb{Q}$	$\mathbf{y} = \sum r_j(\mathbf{x}) \mathbf{e}^{lpha_j \mathbf{x}}, r_j \in \mathbf{C}(\mathbf{x})$
			Bézivin-Gramain*, 1996
	:		

We have a general approach that allows us to prove and generalize all these results

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems

$$Y(x^k) = A_1(x)Y(x)$$
 $Y(x^l) = A_2(x)Y(x)$
 $A_1(x), A_2(x) \in GL_n(\mathbb{C}(x))$

are equivalent to constant Mahler systems

$$\begin{aligned} Z(x^k) &= B_1 Z(x) & Z(x') = B_2 Z(x) \\ B_1, B_2 &\in GL_n(\mathbb{C}), \end{aligned}$$

that is, there is a change of variables Y = GZ taking the first systems to the second.

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Assume k, l are multiplicatively independent and the system

$$Y(x^{k}) = A_{1}(x)Y(x)$$
 $Y(x') = A_{2}(x)Y(x)$ (1)

with $A_1, A_2 \in GL_n(C(x))$ is consistent. Then there exists $G(x) \in GL_n(K), K = C(x^{1/s}), s \in \mathbb{N}$, such that the substitution Y = G(x)Z transforms (1) to

$$Z(x^{k}) = B_{1}Z(x)$$
 $Z(x') = B_{2}Z(x)$ (2)

with $\underline{B_1, B_2 \in GL_n(C)}$.

Consistent:
$$x \mapsto x^l, x^k$$
 commute $\Rightarrow Y((x^k)^l) = Y((x^l)^k) \Rightarrow A_2(x^k)A_1(x) = A_1(x^l)A_2(x)$

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, l multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k- and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems are equivalent to constant Mahler systems.

$Sc-Si \Rightarrow A-B$

- F(x) is a component of a solution Y(x) of a *consistent* system $Y(x^k) = A_1(x)Y(x)$ $Y(x^l) = A_2(x)Y(x)$.
- S-S ⇒ Y(x) = G(x)Z(x), G ∈ GL_n(C(x¹/_s)), Z satisfies constant system.
- ▶ Const. sys. have only const. solns. $\Rightarrow Z \in GL_n(C) \Rightarrow Y \in GL_n(C(x^{\frac{1}{s}}))$

$$F \in C(x^{\frac{1}{s}}) \cap C((x)) = C(x).$$

Ramis's Theorem and Systems of Difference Eqns

Thm (Ramis, 1992). $F(x) \in C[[x]]$ satisfies a linear differential equation and a linear *q*-difference equation then F(x) is a <u>rational function</u>.

Thm (Schäfke-Singer, 2016) Assume q is not a root of 1 and the system

$$\frac{dY}{dx} = A_1(x)Y(x) \qquad Y(qx) = A_2(x)Y(x) \tag{3}$$

with $A_1, A_2 \in GL_n(C(x))$ is consistent. Then there exists $G(x) \in GL_n(C(x))$ such that the substitution Y = G(x)Z transforms (3) to

$$\frac{dZ}{dx} = \frac{B_1}{x}Z(x) \qquad Z(qx) = B_2Z(x) \tag{4}$$

with $\underline{B_1, B_2 \in GL_n(C)}$.

Consistent: $x \frac{d}{dx}$ commutes with $x \mapsto qx \Rightarrow \frac{dA_2}{dx} + A_2A_1 = qA_1(qx)A_2$

Consistent Systems of Differential/Difference Eqns

MetaTheorem:

- Consistent systems have simple singuarities
- Systems with simple singularities are equivalent to simple systems.
- A-B, Ramis's, ... Theorem follows because
 - Simple systems have simple solutions

Final Comments

Similar result for

 $\partial Y(x) = A(x)Y(x), \quad \sigma Y(x) = B(x)Y(x)$

with $\partial = \frac{d}{dx}$, and $\sigma(x) = x + a$, or $\sigma(x) = qx$ or $\sigma(x) = x^p$ and systems of two linear difference equations

 $\sigma_1 Y(x) = A(x) Y(x), \quad \sigma_2 Y(x) = B(x) Y(x)$

with (σ_1, σ_2) a sufficiently independent pair of shift operators, pair of *q*-dilation operators or pair of Mahler operators. This yields A-B results for these operators.

R. Schäfke, M.F. Singer, *Consistent systems of linear differential and difference equations*, arXiv:1605.02616, 46 Pages, to appear in JEMS.

R. Schäfke, M.F. Singer, *Mahler equations and rationality*, arXiv:1605.08830, 7 pages.