Finite Automata, Automatic Sets, and Difference Equations

Michael F. Singer
(joint work with Reinhard Schäfke)

Transient Transcendence in Transylvania
Braşov, Romania May13, 2019

Finite Automata

- Σ - finite alphabet, Σ^{*} - words on Σ
- Σ-automaton $=$ finite, labelled, digraph. Vertices $=$ states
- \exists distinguished state =initial state
- Some states are final states
- For any state q and $\sigma \in \Sigma, \exists$! arrow labelled σ leaving q ex. $\Sigma=\{0,1\}$, states $=\{i, f, g\}$, initial $=\{i\}$, final $=\{f\}$

- $w \in \Sigma^{*}$ is recognizable by a Σ-autom. if this autom. reads the word and ends in a final state. A set $S \subset \Sigma^{*}$ is recognizable if \exists a Σ-autom. whose set of recognizable words is S.
ex. 100 (yes), 110 (no)

Finite Automata

- Neural Nets
- Formal Languages
- Complexity of Numbers
- E. Borel: Are irrational algebraic numbers normal?
- Hartmanis/Stearns: Do there exist real time computable irrational algebraic numbers?
- Loxton/van der Poorten: Can b-ary expansions of irrational algebraic numbers be generated by a finite automaton? NO- Adamczewski/Bugeaud.

How powerful are finite automata?

Automatic Sets

$n \in \mathbb{N} \Rightarrow[n]_{k}$ is the base k representation of n.
A set $S \subset \mathbb{N}$ is k-automatic (k-recognizable) if the set $\left\{[n]_{k} \mid n \in S\right\}$ is Σ-recognizable, $\Sigma=\{0,1, \ldots, k-1\}$.

The set of powers of 2 is 2 -automatic.

Automatic Sets

$n \in \mathbb{N} \Rightarrow[n]_{k}$ is the base k representation of n.
A set $S \subset \mathbb{N}$ is k-automatic (k-recognizable) if the set $\left\{[n]_{k} \mid n \in S\right\}$ is Σ-recognizable, $\Sigma=\{0,1, \ldots, k-1\}$.

The set of powers of 2 is 2 -automatic. Is it 3 -automatic?

Thm (Cobham, 1969). For $k, I \geq 2$ multiplicatively independent, a subset $S \subset \mathbb{N}$ is k - and l-automatic then it is ultimately periodic.
S ultimately periodic $=\exists c, d$ s.t. for all $x>c, x \in S \Leftrightarrow x+d \in S$.

Difference Equations

Prop. $S \subset \mathbb{N}$ is k-automatic $\Rightarrow y(x)=\sum_{n \in S} x^{n}$ satisfies a k-Mahler equation

$$
L(y(x))=y\left(x^{k^{m}}\right)+a_{m-1}(x) y\left(x^{k^{m-1}}\right)+\ldots+a_{0}(x) y(x)=0, \quad a_{i}(x) \in \mathbb{C}(x) .
$$

ex. $S=\left\{2^{i} \mid i=0,1, \ldots\right\} \Rightarrow y(x)=\sum_{i=0}^{\infty} x^{2^{i}}$ satisfies

$$
y\left(x^{4}\right)-\left(x^{2}+1\right) y\left(x^{2}\right)+x^{2} y(x)=0 .
$$

Thm (Adamczewski-Bell, 2013). For k, / multiplicatively independent, $y(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only it is a rational function.

Cobham's Theorem and Mahler Equations

Thm (Cobham, 1969). For k, I, multiplicatively independent, a subset $S \subset \mathbb{N}$ is k - and l-automatic if and only if it is ultimately periodic.

Thm (Adamczewski-Bell, 2013). For k, / multiplicatively independent, $y(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only if it is a rational function.

A-B Thm \Rightarrow C Thm:

- $S \Rightarrow y(x)=\sum_{n \in \mathbb{N}} \alpha_{n} x^{n}, \alpha_{n}=0,1, \alpha_{n}=1 \Leftrightarrow n \in S$
- k-automatic $\Rightarrow \sum a_{i}(x) y\left(x^{k^{i}}\right)=0$
- l-automatic $\Rightarrow \sum b_{i}(x) y\left(x^{\prime}\right)=0$
- $\mathrm{A}-\mathrm{B} \mathrm{Thm} \Rightarrow y(x)=\frac{p(x)}{q(x)}$
- $q(x)\left(\sum \alpha_{n} x^{n}\right)=p(x)$

$$
\Rightarrow A_{0} \alpha_{N+i}+A_{1} \alpha_{N+i-1}+. .+A_{N} \alpha_{i}=0, i \gg 0
$$

- $\alpha_{N+i}=-\frac{1}{A_{0}}\left(A_{1} \alpha_{N+i-1}+. .+A_{N} \alpha_{i}\right)$ and $\alpha_{i}=0,1 \Rightarrow$ ultimately periodic A-B use the C Thm. to prove the A-B Thm!

A-B Theorem and Similar Results

Thm (Adamczewski-Bell, 2013). For k, / multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only if it is a rational function.

Thm (Ramis, 1992). $F(x) \in C[[x]]$ satisfies a linear differential equation

$$
L_{1}(F(x))=\frac{d^{n}}{d x^{n}}(F(x))+a_{n-1}(x) \frac{d^{n-1}}{d x^{n-1}}(F(x))+\ldots+a_{0}(x) F(x)=0
$$

and a linear q-difference equation (q not a root of 1)

$$
L_{2}(F(x))=F\left(q^{m} x\right)+b_{m-1}(x) F\left(q^{m-1} x\right)+\ldots+b_{0}(x) F(x)=0
$$

with $a_{i}(x), b_{i}(x) \in C(x)$, if and only if it is a rational function.

Functions Satisfying Two Linear Differential/Difference Equations

$$
\begin{aligned}
& L_{1}(y)=\partial_{1}^{n}(y)+a_{n-1} \partial_{1}^{n-1}(y)+\ldots+a_{1} \partial_{1}(y)+a_{0} y=0 \\
& L_{2}(y)=\partial_{2}^{m}(y)+b_{m-1} \partial_{2}^{m-1}(y)+\ldots+b_{1} \partial_{2}(y)+b_{0} y=0 \quad a_{i}, b_{i} \in C(x)
\end{aligned}
$$

y	∂_{1}	∂_{2}	Conclusion
$y \in C((x))$	$\frac{\partial}{\partial x}$	$\partial_{2}(x)=q x, q \neq$ root of 1	$y \in C(x)$ Ramis, 1992
$y \in C((x))$	$\frac{\partial}{\partial x}$	$\partial_{2}(x)=x^{p}, p \in \mathbb{Z}_{\geq 2}$	$y \in C(x)$ Bézivin, 1994
$y \in C\left(\left(\frac{1}{x}\right)\right)$	$\frac{\partial}{\partial x}$	$\partial(x)=x+1$	$y \in C(x)$
$y \in C((x))$	$\partial_{1}(x)=q_{1} x$	$\partial_{2}(x)=q_{2} x, q_{1}, q_{2}$ indep.	$y \in C(x)$ Bézivin-Boutabba, 1992
$y \in C((x))$	$\partial_{1}(x)=x^{p_{1}}$	$\partial_{2}(x)=x^{p_{2}}, p_{1}, p_{2}$ indep.	$y \in C(x)$ Adamczewski-Bell, 2013
$y \in C\left(\left(\frac{1}{x}\right)\right)$	$\partial_{1}(x)=x+1$	$\partial_{2}(x)=x+\alpha, \alpha \notin \mathbb{Q}$	$y \in C(x)$
y Merom.	$\frac{\partial}{\partial x}$	$\partial(x)=x+1$	$y=\sum r_{j}(x) e^{\alpha_{j} x}, r_{j} \in C(x)$ Bézivin-Gramain*, 1996
y Merom.	$\partial_{1}(x)=x+1$	$\partial_{2}(x)=x+\alpha, \alpha \in \mathbb{R} \backslash \mathbb{Q}$	$y=\sum r_{j}(x) e^{\alpha_{j} x}, r_{j} \in C(x)$ Bézivin-Gramain*, 1996
\vdots	\vdots	\vdots	\vdots

We have a general approach that allows us to prove and generalize all these results

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, / multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems

$$
\begin{gathered}
Y\left(x^{\kappa}\right)=A_{1}(x) Y(x) \quad Y\left(x^{\prime}\right)=A_{2}(x) Y(x) \\
A_{1}(x), A_{2}(x) \in G L_{n}(\mathbb{C}(x))
\end{gathered}
$$

are equivalent to constant Mahler systems

$$
\begin{aligned}
Z\left(x^{k}\right)=B_{1} Z(x) & Z\left(x^{\prime}\right)=B_{2} Z(x) \\
B_{1}, B_{2} & \in G L_{n}(\mathbb{C}),
\end{aligned}
$$

that is, there is a change of variables $Y=G Z$ taking the first systems to the second.

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, I multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Assume k, I are multiplicatively independent and the system

$$
\begin{equation*}
Y\left(x^{k}\right)=A_{1}(x) Y(x) \quad Y\left(x^{\prime}\right)=A_{2}(x) Y(x) \tag{1}
\end{equation*}
$$

with $A_{1}, A_{2} \in \mathrm{GL}_{n}(C(x))$ is consistent. Then there exists $G(x) \in \mathrm{GL}_{n}(K), K=C\left(x^{1 / s}\right), s \in \mathbb{N}$, such that the substitution $Y=G(x) Z$ transforms (1) to

$$
\begin{equation*}
Z\left(x^{k}\right)=B_{1} Z(x) \quad Z\left(x^{\prime}\right)=B_{2} Z(x) \tag{2}
\end{equation*}
$$

with $\underline{B_{1}, B_{2} \in \mathrm{GL}_{n}(C)}$.
Consistent: $x \mapsto x^{\prime}, x^{k}$ commute $\Rightarrow Y\left(\left(x^{\kappa}\right)^{\prime}\right)=Y\left(\left(x^{\prime}\right)^{k}\right) \Rightarrow$

$$
A_{2}\left(x^{\kappa}\right) A_{1}(x)=A_{1}\left(x^{\prime}\right) A_{2}(x)
$$

A-B Theorem and Systems of Difference Equations

Thm (Adamczewski-Bell, 2013). For k, / multiplicatively independent, $F(x) \in C[[x]]$ satisfies both a k - and l-Mahler equation if and only if it is a rational function.

Thm (Schäfke-Singer, 2016) Consistent Mahler systems are equivalent to constant Mahler systems.
$\mathbf{S c - S i} \Rightarrow \mathbf{A}-\mathbf{B}$

- $F(x)$ is a component of a solution $Y(x)$ of a consistent system $Y\left(x^{k}\right)=A_{1}(x) Y(x) \quad Y\left(x^{\prime}\right)=A_{2}(x) Y(x)$.
- S-S $\Rightarrow Y(x)=G(x) Z(x), G \in \operatorname{GL}_{n}\left(C\left(x^{\frac{1}{s}}\right)\right), Z$ satisfies constant system.
- Const. sys. have only const. solns. $\Rightarrow Z \in \mathrm{GL}_{n}(C) \Rightarrow Y \in \mathrm{GL}_{n}\left(C\left(x^{\frac{1}{s}}\right)\right)$
- $F \in C\left(x^{\frac{1}{s}}\right) \cap C((x))=C(x)$.

Ramis's Theorem and Systems of Difference Eqns

Thm (Ramis, 1992). $F(x) \in C[[x]]$ satisfies a linear differential equation and a linear q-difference equation then $F(x)$ is a rational function.

Thm (Schäfke-Singer, 2016) Assume q is not a root of 1 and the system

$$
\begin{equation*}
\frac{d Y}{d x}=A_{1}(x) Y(x) \quad Y(q x)=A_{2}(x) Y(x) \tag{3}
\end{equation*}
$$

with $A_{1}, A_{2} \in \mathrm{GL}_{n}(C(x))$ is consistent. Then there exists $G(x) \in \mathrm{GL}_{n}(C(x))$ such that the substitution $Y=G(x) Z$ transforms (3) to

$$
\begin{equation*}
\frac{d Z}{d x}=\frac{B_{1}}{x} Z(x) \quad Z(q x)=B_{2} Z(x) \tag{4}
\end{equation*}
$$

with $\underline{B_{1}, B_{2} \in \mathrm{GL}_{n}(C)}$.

Consistent: $\quad x \frac{d}{d x}$ commutes with $x \mapsto q x \Rightarrow \frac{d A_{2}}{d x}+A_{2} A_{1}=q A_{1}(q x) A_{2}$

Consistent Systems of Differential/Difference Eqns

MetaTheorem:

- Consistent systems have simple singuarities
- Systems with simple singularities are equivalent to simple systems.

A-B, Ramis's, ... Theorem follows because

- Simple systems have simple solutions

Final Comments

Similar result for

$$
\partial Y(x)=A(x) Y(x), \quad \sigma Y(x)=B(x) Y(x)
$$

with $\partial=\frac{d}{d x}$, and $\sigma(x)=x+a$, or $\sigma(x)=q x$ or $\sigma(x)=x^{p}$ and systems of two linear difference equations

$$
\sigma_{1} Y(x)=A(x) Y(x), \quad \sigma_{2} Y(x)=B(x) Y(x)
$$

with (σ_{1}, σ_{2}) a sufficiently independent pair of shift operators, pair of q-dilation operators or pair of Mahler operators. This yields A-B results for these operators.
R. Schäfke, M.F. Singer, Consistent systems of linear differential and difference equations, arXiv:1605.02616, 46 Pages, to appear in JEMS.
R. Schäfke, M.F. Singer, Mahler equations and rationality, arXiv:1605.08830, 7 pages.

