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Alternating Sign Matrices

Four famous problems
in Statistical Mechanics, Integrability and Combinatorics

are related by simple bijections:

Fully-Packed Loops (FPL),
the 6 Vertex Model with DWBC (6VM),
perfect 3-colourings of the grid (3-Col),
and Alternating-Sign Matrices (ASM).
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Asymptotic shape of ASM’s

In large ASM’s you see the emergence of a limit shape

This is analogous (but different) to the Arctic Circle for domino
tilings of the Aztec Diamond.

The analytic determination of this curve is our subject today.
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In large ASM’s you see the emergence of a limit shape

This is analogous (but different) to the Arctic Circle for domino
tilings of the Aztec Diamond.

The analytic determination of this curve is our subject today.
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A reminder:
Arctic curves at free-fermionic points
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

weighted “Domino Tilings of the Aztec Diamond”
(a planar-graph dimer-covering problem, thus a fermionic system. . . )
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

Consider the customary 6-Vertex Model weights...

a a′ b b′ c c ′

then consider the following map: (note: ∆ = aa′+bb′−cc ′
2
√
aa′bb′

= 0)
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Domino Tilings of the Aztec Diamond: a bigger picture

Let’s have a look at a bigger
picture... (here L = 64)

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

The use of colours allow to visu-
alize the boundary of the frozen
regions, as well as the NILP’s

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

The limit shape, that they
called Arctic curve, is a circle.

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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The Colomo–Pronko formula
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What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM are Yang-Baxter integrable,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (through
CFTP) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges... √

ω = 1...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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Numerical simulations (through
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ω = 3...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM are Yang-Baxter integrable,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (through
CFTP) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges... √

ω = 5...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland

Andrea Sportiello The Tangent Method



What about integrable systems out of fermionic points?

All of this is beautiful, but planar dimer coverings are fermionic...

As we know, ω-enumerations of
ASM are Yang-Baxter integrable,
with a fermionic point at ω = 2
(domino tilings of the Aztec Dia-
mond)

Numerical simulations (through
CFTP) seem to show that the
arctic curve varies smoothly with
ω, at least within certain ranges... √

ω = 7...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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The Colomo–Pronko formula

What is know theoretically? almost nothing up to recent times...
Then Colomo and Pronko, from 2008 to 2010, came with a series
of papers in which they:

I found a multicontour formula for a suitable quantity
(emptiness formation probability). . .

I . . . from which, in analogy with certain random matrix models,
derived a conjectural threshold condition. . .

I . . . which gives the (conjectural) Arctic Curve, first at ω = 1. . .

I . . . then at generic ω, in terms of the refined enumerations
Aω(n; r), of which they calculated the asymptotics for ω ≤ 4
(where the corresponding 6-Vertex Model is
“disordered”). . . . . .

I . . . and then, together with P. Zinn-Justin, also for ω > 4
(where the 6VM is “antiferromagnetic”).
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The Colomo–Pronko formula: ω = 1

Picture and formula for ω = 1:

The South-West arc satisfies
x(1− x) + y(1− y) + xy = 1/4
x , y ∈ [0, 1/2]

(just a “+xy” modification
w.r.t. a circle)
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The Colomo–Pronko–Zinn-Justin formula: 0 < ω < +∞

Theoretical prediction (for the South-West arc) drawn for values:

ω
(+∞)

202
22
10

antiferro 6
4

disordered 3
domino til. 2

ASM 1
(0)
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Refined enumeration of ASM’s

We call Aω(n) the counting polynomial associated to ω-weighted
ASM of size n:

Aω(n) =
∑
A∈An

ω#{−1 in A}

Thus, e.g., A1(n) =
∏

0≤j≤n−1
(3j+1)!
(n+j)! , the total number of size-n

ASM

Call Aω(n, r) the counting polynomial
associated to ω-weighted ASM of size
n, such that the only +1 in the bottom
row is at the r -th column
Thus, e.g.,

A1(n + 1, r + 1)

A1(n + 1)
=

(n+r
n

)(2n−r
n

)(3n+1
n

)
example at n = 10, r = 4
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The Colomo–Pronko formula: generic ω

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y + ψ(z)

ψ(z) := lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

C(x , y) is algebraic (with small degree) only at discrete special
values of ω (including the famous 1, 2, 3 cases), namely,
parametrising ω = 2− 2 cos θ, when θ/π ∈ Q (with small
denominator)
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How are these results derived?

Call hn(z) =
∑n

r=1 Aω(n, r)z r−1

Define the Emptiness Formation Probability, EFP(n; r , s): the
probability that in the top-left s × r rectangle of the n × n ASM
there are no ±1 elements.

By the “inverse scattering method”, it can be determined that the
EFP(n; r , s) is related to hn(z), through a multi-contour integral
formula

hn,s(z1, . . . , zs) :=
1

∆(z)
det
(
zk−1j (zj − 1)s−khn−k+1(zj)

)
j ,k

EFP(n; r , s) =

∮
0

dz1
2πi
· · ·
∮
0

dzs
2πi

∏
j

((ω − 1)zj + 1)s−j

z rj (zj − 1)s−j+1

×
∏
j<k

zj − zk
t zjzk + (ω − 1− t)zj + 1

hn,s(z1, . . . , zs)
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How are these results derived?

Call hn(z) =
∑n

r=1 Aω(n, r)z r−1

Define the Emptiness Formation Probability, EFP(n; r , s): the
probability that in the top-left s × r rectangle of the n × n ASM
there are no ±1 elements.

By the “inverse scattering method”, it can be determined that the
EFP(n; r , s) is related to hn(z), through a multi-contour integral
formula

When (r , s) crosses the Arctic Curve, EFP(n; r , s) is expected to
show a 0-1 threshold transition, that can be studied through
saddle-point methods, helped by previous techniques developed for
a certain Random Matrix Model (Triple Penner Model)
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How to derive this?

. . . in a few words, something very complicated already for the
square domain

And something relying deeply on “miracles” of integrability
methods, that have no guarantee to occur in other domains

Furthermore, already for ω = 1, the curve is not C∞
at the points of contact with the boundary of the domain,
and is not even piecewise algebraic at generic ω

This is at difference from the beautiful, and essentially complete,
theory for bipartite dimer models, developed by Kenyon and
Okounkov (which thus contains ASM’s at ω = 2)

How can we hope for an analogue of Kenyon–Okounkov results on
the whole phase diagram of the 6-Vertex Model?
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A reminder on the basic theory of Plane Curves

A curve C will be represented either by the Cartesian equation
A(x , y) = 0, or the parametric equations x = f (t), y = g(t).
It is constituted by the concatenation of a finite number of arcs.
An arc is a portion of the curve for which a “smooth” parametric
presentation exists.

A curve is algebraic if the defining Cartesian equation A(x , y) = 0
is algebraic, otherwise it is trascendental.

A double point s.t. the two arcs passing through P have the same
tangent is a cusp. A cusp is of the first kind if P is an endpoint of
both arcs, and there is an arc of C on each side of the tangent, and
of the second kind if P is an endpoint of both arcs, and the two
arcs lie on the same side of the tangent,
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A reminder on the basic theory of Plane Curves

The envelope E of a one-parameter family of curves {Cz}z∈I is the
curve, minimal under inclusion, that is tangent to every curve of
the family.

If the equation of the family {Cz} is given in Cartesian coordinates
by U(z ; x , y) = 0, the non-singular points (x , y) of the envelope E
are the solutions of the system of equations

U(z ; x , y) = 0 ;
d

dz
U(z ; x , y) = 0 .

We call caustic the envelope of a family of straight lines. In this
case U is linear in x and y :

U(z ; x , y) = x A(z) + y B(z) + C (z)
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The Colomo–Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends linearly on x and y , is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y + ψ(z) .

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).

But this has not been derived geometrically!
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The Colomo–Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
caustic of the family of lines, for z in the interval z ∈ [1,+∞),

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y + ψ(z) .

But this has not been derived geometrically!
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The source of “transcendence” in the formula. . .

What’s the algebraic nature of the Colomo–Pronko formula?
Let us pass to the trigonometric/hyperbolic parametrisation
of the vertex weights (for the disordered/antiferro regimes)

disordered antiferro

η ∈ [0, π/2] η > 0
a(λ) = sin(η − λ) a(λ) = sinh(η − λ)
b(λ) = sin(η + λ) b(λ) = sinh(η + λ)
c = − sin(2η) c = sinh(2η)

−η < λ < η
ξ ∈ [0, η − λ]

φ(ξ) =
c

a(ξ)b(ξ)

α :=
π

2η

family of lines f (ξ; x , y) = x φ(ξ + λ) + y φ(ξ − η)−ΨD/AF(ξ)

ΨD(ξ) = cot ξ − cot(ξ + λ− η)− ψD(ξ) + ψD(ξ + λ+ η)

ΨAF(ξ) = coth ξ − coth(ξ + λ− η)− ψAF(ξ) + ψAF(ξ + λ+ η)

ψD(ξ) = α cot(αξ) ψAF(ξ) = α (lnϑ1)′(αξ)
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The tangent method
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A reminder on interacting NILP

Recall that an ASM can be seen (in 4 different ways) as a
configuration of interacting non-intersecting lattice paths (NILP),
which are in fact non-interacting when ω = 2.

The refinement position is the point at which the most external
path leaves the boundary
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The structure of a typical refined ASM

After some thinking, you get
convinced that a typical large
ASM, of size n refined at r ,
must look like a typical ASM,
plus a straight line connecting
(0, r) to the Arctic Curve, and
tangent to the Arctic Curve

Indeed, this is what you see in
a simulation...

n = 300, r = 250
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The Geometric Tangent Method in a picture

n ↑

n + m

→

n ↓

n − 1

←

m

→
1

←

In this geometry, there is no
reason for the isolated line to
change direction at row n. Then:

IF the arctic curve exists

IF it does not depend on m

IF the path leaves the curve tan-
gentially

THEN from the method we get
a caustic parametrisation of the
curve
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Can we make the Tangent Method fully rigorous?

The Tangent Method exists in a further declination, which comes
with with a good and a bad news.

The bad news is that now you need the doubly-refined
enumeration, A(1,2)(n; r , s)

The good news is that this method can be made rigorous, and
determines the arctic curve at size n, up to a O(

√
n) band of

uncertainty.

For simplicity, I discuss this second method only for the ω = 1
square-domain case.

Andrea Sportiello The Tangent Method



Prolog: Emptiness formation probability of anything. . .

For X a (deterministic or random) object (let’s call it a probe),
define En(X ) as the probability that X ∩ B = ∅, where B is the
set of positions of ±1’s in a random ASM of size n (i.e., positions
of c-vertices in the 6VM)

Examples of X :

I Epoint
n (r , s), a single cell at coordinate (r , s)

(1-point function in the bulk);

too difficult to evaluate

I E rect
n (r , s), a r × s rectangle in a corner of the domain

(the Colomo–Pronko EFP);

viable, but still messy

I E line
n (r , s), a straigth segment from (r , 0) to (0, s);

clean definition, but also quite difficult to evaluate

I ERW
n (r , s), a directed random walk from (r , 0) to (0, s);

easy to evaluate, and can be related to E
line
n

(r , s)!
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A simple but crucial remark

Here we have our simple but crucial remark:

A(1,2)(n + 1; r + 1, s + 1) = A(n)

(
r + s

r

)
ERW
n (r , s)

The knowledge of A(1,2)(n; r , s) (the “row-column” doubly-refined
enumeration) is not so explicit as A(1)(n; r), but is well under
control (see e.g. z-w Yu. Stroganov, A new way to deal with

Izergin-Korepin determinant at root of unity)

A(1,2)(n; r , s + 1) + A(1,2)(n; r + 1, s)− A(1,2)(n; r + 1, s + 1) = A(1,3)(n; r , s)

A(1,3)(n; r , s)− A(1,3)(n; r − 1, s − 1) = A(n − 1)−1[
A(n − 1, r − 1)

(
A(n, s)− A(n, s − 1)

)
+ (r ↔ s)

]
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From the curve to its “caustic transform”

We want to find (the bottom-left corner of) the ω = 1 arctic curve
C, which satisfies x(1− x) + y(1− y) + xy = 1/4

However, as our goal is to find it through the limit n→∞ of
E line
n (ρn, σn), we shall equivalently represent it on the (ρ, σ) plane,

where it gives (ρ, σ)θ =
(
1−
√
3 tan θ
2 ,

1−
√
3 tan(π

6
−θ)

2

)
, for θ ∈ [0, π6 ]
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)E

RW
n (r , s), that shall appear as a

(rescaled) distribution concentrated on our curve.

n = 128
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)E

RW
n (r , s), that shall appear as a

(rescaled) distribution concentrated on our curve.
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Let’s have a look at ERW
n (r , s)

Let’s have a look at ERW
n (r , s), that shall converge to a step function

It is nicer to look at −
√
n∂(1,1)E

RW
n (r , s), that shall appear as a

(rescaled) distribution concentrated on our curve.

n = 512
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column 2ref enumeration is
well under control, A(1,3)(n; r , s), the row-row 2ref enumeration is
a bit easier

By a lucky accident, at ω = 1 we have

A(1,2)(n; r , s + 1) + A(1,2)(n; r + 1, s)− A(1,2)(n; r + 1, s + 1) = A(1,3)(n; r , s)

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column 2ref enumeration is
well under control, A(1,3)(n; r , s), the row-row 2ref enumeration is
a bit easier

By a lucky accident, at ω = 1 we have

A(1,2)(n;r ,s+1)+A(1,2)(n;r+1,s)−A(1,2)(n;r+1,s+1)

A(n−1)(r+s
r )

= A(1,3)(n;r ,s)

A(n−1)(r+s
r )

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column 2ref enumeration is
well under control, A(1,3)(n; r , s), the row-row 2ref enumeration is
a bit easier

By a lucky accident, at ω = 1 we have

r
r+s

A(1,2)(n;r ,s+1)

A(n−1)(r+s−1
r−1 )

+ s
r+s

A(1,2)(n;r+1,s)

A(n−1)(r+s−1
r )
− A(1,2)(n;r+1,s+1)

A(n−1)(r+s
r )

= A(1,3)(n;r ,s)

A(n−1)(r+s
r )

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column 2ref enumeration is
well under control, A(1,3)(n; r , s), the row-row 2ref enumeration is
a bit easier

By a lucky accident, at ω = 1 we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

A(1,3)(n; r , s)

A(n − 1)
(r+s

r

)

Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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A nice accident

In fact, although A(1,2)(n; r , s), the row-column 2ref enumeration is
well under control, A(1,3)(n; r , s), the row-row 2ref enumeration is
a bit easier

By a lucky accident, at ω = 1 we have

− r∂−r + s∂−s
r + s

ERW
n−1(r , s) =

A(1,3)(n; r , s)

A(n − 1)
(r+s

r

)
Thus A(1,3)(n;r ,s)

A(n−1)(r+s
r )

is sensibly larger than 0 only on the transform of

the arctic curve, and its gradient along the (1, 1) direction shall
change sign on this curve
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The astonishingly tiny finite-size corrections
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The astonishingly tiny finite-size corrections
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The astonishingly tiny finite-size corrections
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The astonishingly tiny finite-size corrections

0 20 40 60 80 100 120

0

20

40

60

80

100

120

n = 128

Andrea Sportiello The Tangent Method


