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Jacobian Conjecture

strinkingly simple and natural conjecture

(a metro/tram ticket (size) conjecture)

”high school algebra”

O. Keller, Monats. Math. Phys. (1939)
(for n = 2 and polynomials with integral coefficients)

Jacobian Conjecture (JCn):
Let n ≥ 1. If a polynomial function F : Cn → Cn has Jacobian
determinant which is a non-vanishing constant, then the function
F has a polynomial inverse.

Example.
n = 2, F (z1, z2) = (z1 + z3

2 , z2) and F−1(z1, z2) = (z1 − z3
2 , z2).

Jacobian = det

(
dF1
dz1

dF1
dz2

dF2
dz1

dF2
dz2

)
= det

(
1 3z2

2

0 1

)
= 1
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Relations to the Dixmier conjecture

J. Dixmier, Bull. Soc. Math. France (1968)

Dixmier conjecture (DCn):
Any endomorphism of the n−th Weyl algebra (the algebra of
polynomial differential operators in n variables) is invertible.

DCn ⇒ JCn

A. Belov-Kanel and M. Kontsevitch, Moscow Math. J. (2007)

The Jacobian conjecture in dimension 2n implies the Dixmier
conjecture in rank n.
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Back to the Jacobian conjecture - faulty proofs

before 1982 (see H. Bass et. al., Bull. Amer. Math. Soc.)

W. Engel (Math. Ann. (’55)) claimed to prove the case n = 2.
A. Vitushkin (1975) published 2 essential errors
B. Segre published 3 incomplete proofs (’56,’57,’60) ; Canals
and Lluis (’70) noted an error. Abhyankar and Moh pointed
out a faul in Segre’s proof and also in Canals and Lluis’s
correction
Gröbner proposed a proof in ’61. Zariski pointed out that the
argument is faulty
Oda in ’80 proposed a proof - false
etc.

after 1982 : other faulty proofs ...

A. van den Essen, ”Polynomial automorphisms and the Jacobian conjecture”, Birkhäuser (2000)

Internet blog: ”How not to prove the Jacobian conjecture” :)
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Back to the Jacobian conjecture - some notations

JF (z) =

(
d

dzi
Fj(z)

)
1≤i ,j≤n

Pn - the set of polynomial systems F (all its coordinate functions
Fj (j = 1, . . . , n) are polynomials)

J lin
n := {F ∈ Pn | det JF (z) = c ∈ C×},
Jn := {F ∈ Pn |F is invertible}.

Jacobian Conjecture (JCn):

J lin
n = Jn ∀n .
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Some more notations

deg(F ) := maxj deg(Fj(z)),

Pn,d := {F ∈ Pn | deg(F ) ≤ d}
J lin
n,d := {F ∈ Pn | det JF (z) = c ∈ C×, deg(F ) ≤ d}
Jn,d := {F ∈ Pn |F is invertible, deg(F ) ≤ d}
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Some (substantial?) progress

1 theorem for the quadratic case

Theorem
(S. Wang, J. Alg. (1980))

J lin
n,2 = Jn,2 ∀n .

2 reduction theorem to the cubic case

Theorem
(H. Bass et. al., Bull. Am. Math. Soc. (1982))

J lin
n,3 = Jn,3 ∀n =⇒ J lin

n = Jn ∀n .

Fi (z) = zi + homogeneous pol. of degree 3.

ADRIAN TANASĂ
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A remark on H. Bass et. al. proof

The proof of H. Bass et. al. involves manipulations under which
the dimension n is increased, thus this proof does not imply the
corresponding statement without the “∀n” quantifier, i.e. that

J lin
n,3 = Jn,3 ⇒ J lin

n = Jn.
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Our result - a further reduction of the degree; notations

For n′ ≤ n and F ∈ Pn,d , we write

z = (z1, z2)

and
F = (F1,F2)

to distinguish components in the two subspaces

Cn′ × Cn−n′ ≡ Cn.

We set
R(z2; z1) = F2(z1, z2),

emphasizing that, in R, we consider z2 as the variables in a
polynomial system, and z1 as parameters.
The invertibility of R, denoted by R(·; z1) ∈ Jn−n′,d , for a fixed z1,
means that there exists a pol. R−1 with variables y2 ∈ Cn−n′ , and
depending on z1, s. t.

∀z2 ∈ Cn−n′ , R−1(R(z2; z1); z1) = z2.
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A few more notations

We define the subspaces of Pn,d :

Jn,d ;n′ :={F ∈ Pn,d |R(·; z1) ∈ Jn−n′,d ∀z1 ∈ Cn′

and F−1 restricted to Cn′ × {0} is in Pn′}

J lin
n,d ;n′ :={F ∈ Pn,d |R(·; z1) ∈ Jn−n′,d ∀z1 ∈ Cn′

and (det JF )(z1,R
−1(0, z1)) = c ∈ C×, ∀z1 ∈ Cn′}

generalizations of Jn,d and resp. J lin
n,d

linear subspace of dimension n − n′ (the last n − n′ variables) on
which z vanishes

QFT-inspired choices - they should become clear in the sequel
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Our result - a further reduction of the degree

A. de Goursac et. al., Annales Henri Poincaré (2016)

Theorem
For n ∈ N and d ≥ 3, there exists an injective map
Φ : Pn,d → Pn(n+1),d−1 satisfying

Φ(J lin
n,d) ≡ J lin

n(n+1),d−1;n ∩ Im(Φ) ; Φ(Jn,d) ≡ Jn(n+1),d−1;n ∩ Im(Φ) ,

where Im(Φ) = Φ(Pn,d).
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A first consequence

Combining Bass et. al. theorem and the theorem above, the full
Jacobian Conjecture reduces to the question whether

J lin
n(n+1),2;n ∩ Im(Φ) = Jn(n+1),2;n ∩ Im(Φ).

this question seems as difficult as the original Jacobian
conjecture ...

it involves only a quadratic degree, and this might simplify the
resolution, in the light of Wang Theorem

ADRIAN TANASĂ
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A stronger version of JC

Conjecture

For all n ≥ n′ ≥ 0, and all d ≥ 1,

J lin
n,d ;n′ = Jn,d ;n′ .

JC follows from the above conjecture
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The Jacobian Conjecture, a reduction of the degree via a Combinatorial Physics approach



(0−dim.) Quantum Field Theory in a nutshell

A theory defined by means of a (functional) integral representation
of the partition function, in which the fields are linearly coupled to
sources;

from this, all the correlation functions of the respective physical
system can be obtained by (functional) differentiation

A. Abdsselam, Sém. Loth. Comb. (2002),

A. Tanasă, Sém. Loth. Comb. (2012)
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0−dim. Quantum Field Theory in a nutshell

Usually in QFT, the fields ϕi are functions of space(-time) (RD)
D = 0
(D 6= n, the dimension of the linear system F (z))
the scalar field ϕi is not a function of space-time
(there is no space-time)!
ϕi is a (real or complex) variable

partition function (generating function)

Z =

∫
R
dϕ e−

1
2
ϕ2+ λ

4!
ϕ4
.

λ - the coupling constant
the quadratic part + interaction non-quadratic (here quartic) part

In 0−dim. QFT, the functional integral become usual (real or
complex) integrals!

Combinatorial QFT
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QFT: sources

One (still) needs to evaluate integrals of type

λn

n

∫
dϕ e−ϕ

2/2

(
ϕ4

4!

)n

.

one can (still) use standard QFT techniques:
Z0(J) :=

∫
dϕ e−ϕ

2/2+Jφ

J - the source
computations of (2k)−point correlation functions:

∫
dφ e−φ

2/2ϕ2k =
∂2k

∂J2k

∫
dϕ e−ϕ

2/2+Jϕ|J=0 =
∂2k

∂J2k
eJ

2/2|J=0.
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QFT - perturbation theory and Feynman graphs

perturbation theory - formal series in λ
→ (abstract) Feynman graphs and Feynman integrals

(use of Wick Theorem)
A. Zvonkine, Math. and Computer Modelling (1997)

the quadratic part → edges
the interaction part → vertices

example:
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��

��
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e
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(related to the physical information of a theory - interactions of
elementary particle (in colliders a. s. o.))

0−dimensional QFT - interesting ”laboratories” for testing
theoretical physics tools
V. Rivasseau and Z. Wang, J. Math. Phys. (2010)
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The intermediate field method in QFT - the idea

idea: introduing a new field, σ, to rewrite the interaction

the degree of the interaction has been reduced!

example: ϕ6 model

Z (λ) =

∫
dϕ√

2π
e−

1
2
ϕ2
e−λϕ

6
=

∫
dϕ√

2π
e−

1
2
ϕ2
∫

dσ√
2π

e−
1
2
σ2
eı
√

2λϕ3σ.
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JC as a QFT model - the Abdesselam-Rivasseau model

A. Abdesselam, Annales H. Poincaré (2013)

F ∈ Pn,d .

Fi (z) = zi −
d∑

k=2

n∑
j1,...,jk=1

w
(k)
i ,j1...jk

zj1 ...zjk =: zi −
d∑

k=2

W
(k)
i (z) ,

for i ≤ n and w
(k)
i ,j1...jk

some coefficients (the coupling constants)
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JC as a QFT model - the Abdesselam-Rivasseau model

A. Abdesselam, Annales Henri Poincaré (2013)

the partition function

Z (J,K ) =

∫
Cn

dϕdϕ†e−ϕ
†ϕ+ϕ†

∑d
k=2 W

(k)(ϕ)+J†ϕ+ϕ†K ,

where J, K are vectors in Cn (the sources)
measure: dϕdϕ† :=

∏n
i=1

dReϕi dImϕi
π

ϕ†K :=
∑n

i=1 ϕ
†
iK , a. s. o.

setting the coupling constants to zero (free theory), the partition
function is calculated by Gaussian integration:∫

Cn

dϕdϕ†e−ϕ
†ϕ+J†ϕ+ϕ†K = eJ

†K .

very particular combinatorics of this QFT model
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JC as a QFT model - the Abdesselam-Rivasseau model

The partition function Z coincides with the inverse of the
Jacobian

The inverse G of F corresponds to the (standard)
1−point correlation function:

Gi (u) =

∫
Cn dϕdϕ†ϕie

−ϕ†ϕ+ϕ†
∑d

k=2 W
(k)(ϕ)+ϕ†u∫

Cn dϕdϕ†e−ϕ
†ϕ+ϕ†

∑d
k=2 W

(k)(ϕ)+ϕ†u
(1)

The sets of polynomial functions involved in JC can be rephrased
in this framework:

J lin
n,d = {F ∈ Pn,d |Z (0, u) = 1, ∀u ∈ Cn},
Jn,d = {F ∈ Pn,d |Gi (u) given by (1) is in Pn}.
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The intermediate field method for the JC QFT model

This will reduce the degree d of F .

We will add n2 “intermediate fields” σij to the model.

i , j = 1, . . . , n

intermediate field identity

Using the general formula of Gaussian integration, one has:

e
(ϕ†i ϕj )

(∑n
j2,...,jd=1 w

(d)
i,j,j2...jd

ϕj2
...ϕjd

)
=

∫
Cn2

dσi ,jdσ
†
i ,je
−σ†i,jσi,j+σ

†
i,j

(∑n
j2,...,jd=1 w

(d)
i,j,j2...jd

ϕj2
...ϕjd

)
+(ϕ†i ϕj )σi,j
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The intermediate field method for the JC QFT model

use the intermediate field identity for each pair (i , j), in the
partition function Z (J,K ) of the JC QFT model with n dimensions
and degree d , in order to to re-express the monomials of degree d
in the fields ϕ

=⇒ Z (J,K ) =

∫
Cn

dϕdϕ†
∫
Cn2

dσdσ†e−ϕ
†ϕ+ϕ†

∑d−1
k=2 W (k)(ϕ)+J†ϕ+ϕ†K

e

∑n
i,j=1

(
−σ†i,jσi,j+σ

†
i,j

∑n
j2,...,jd=1 w

(d)
i,j,j2...jd

ϕj2
...ϕjd

+ϕ†i ϕjσi,j

)
.
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Setting this proper

1 We define the new fields φ ∈ Cn+n2
by

φ = (ϕ1, . . . , ϕn, σ1,1, . . . , σ1,n, · · · , σn,1, . . . , σn,n).
2 We define the coupling constants w̃ as:

for k = d − 1, we set w̃
(d−1)
i,j,j2...jd

:= w
(d−1)
i,j,j2...jd

and

w̃
(d−1)
i·n+j,j2...jd

= w
(d)
i,j,j2...jd

with i , j , j2, ...jn ≤ n

for k ∈ {3, ..., d − 2}, we set w̃
(k)
i,j,j2...jk

:= w
(k)
i,j,j2...jk

with
i , j , j2, ...jn ≤ n

for k = 2, we set w̃
(2)
i,j,j2

:= w
(2)
i,j,j2

and w̃
(2)
i,j,i·n+j = 1 with

i , j , j2 ≤ n.

The remaining coefficients of w̃ are set to 0.

3 The sources are defined to be J̃ := (J, 0) and K̃ := (K , 0),
(the number of extra vanishing coordinates is n2).
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The resulting QFT model

1 The partition function:

Z (J,K ) =

∫
Cn+n2

dφdφ†e−φ
†φ+φ†

∑d−1
k=2 W̃ (k)(φ)+J̃†φ+φ†K̃

2 The 1−point correlation functions:

Gi (u) =

∫
Cn+n2 dφdφ†φie

−φ†φ+φ†
∑d−1

k=2 W̃ (k)(φ)+φ†ũ∫
Cn+n2 dφdφ†e−φ

†φ+φ†
∑d−1

k=2 W̃ (k)(φ)+φ†ũ
,

for i ∈ {1, . . . , n}.
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So, what have we showed?

The partition function (resp. the 1−point correlation function) of
the JC QFT model with dimension n and degree d is equal to the
partition function (resp. the n first coordinates of the 1−point
correlation function) of the model with dimension n(n + 1) and
degree d − 1, up to a redefinition of

1 the fields

2 the coupling constant w 7→ w̃

3 the sources.

Since the partition function corresponds to the inverse of the
Jacobian (resp. the 1−point correlation function corresponds to
the formal inverse), this gives a QFT proof of the theorem.
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However ...

This is not a proof of the Jacobian Conjecture (unfortunately)!
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Alternative proof

In

A. de Goursac et. al. Annales H. Poincaré (2016)

algebraic (no-QFT-like) proof of our reduction result
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For further reading

various purely combinatorial approaches to JC were given:

proposition of Joyal’s combinatorial species as a tool
D. Zeilberger (1987)

reformulation of the JC using trees
D. Wright (1999)

reformulation of the JC using rooted trees
D. Singer, Electron. J. Comb. (2011)

etc.
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Conclusion and perspectives

We have proved, using QFT-inspired techniques, a reduction
theorem to the quadratic case for JC, up to the addition of a
new parameter n′ (related to the introduction of additional
intermediate fields σ)

immediate perspective: adaptation of Wang’s proof to our
modified quadratic case

reformulation of Wang’s proof in a QFT language

revisit the Dixmier Conjecture from the perspective of
non-commutative QFT
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Thank you for your attention!

Vă mulţumesc pentru atenţie!
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