The Jacobian Conjecture, a reduction of the degree via a Combinatorial Physics approach

ADRIAN TANASĂ

univ. Bordeaux \& IFIN \& I. U. F.
in collaboration with
Axel de Goursac and Andrea Sportiello
arXiv:1411.6558[math.AG], Annales Henri Poincaré (2016)
Brașov, 17 mai 2019

Plan

(1) Jacobian Conjecture (JC)

- Statement
- Relation with the Dixmier Conjecture
- Some history
- Some notations
- Some progress
(2) What is (0 -dimensional) Quantum Field Theory (QFT)?
(3) The intermediate field method in QFT
(9) JC as a 0-dimensional QFT model - the Abdesselam-Rivasseau (AR) model
(5) The intermediate field method in the AR model
(0) Conclusions and perspectives

Jacobian Conjecture

strinkingly simple and natural conjecture
(a metro/tram ticket (size) conjecture)
"high school algebra"

Jacobian Conjecture

strinkingly simple and natural conjecture
(a metro/tram ticket (size) conjecture)
"high school algebra"
O. Keller, Monats. Math. Phys. (1939)
(for $n=2$ and polynomials with integral coefficients)
Jacobian Conjecture ($J C_{n}$):
Let $n \geq 1$. If a polynomial function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has Jacobian determinant which is a non-vanishing constant, then the function F has a polynomial inverse.

Example.
$n=2, F\left(z_{1}, z_{2}\right)=\left(z_{1}+z_{2}^{3}, z_{2}\right)$ and $F^{-1}\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}^{3}, z_{2}\right)$.
Jacobian $=\operatorname{det}\left(\begin{array}{ll}\frac{d F_{1}}{d z_{1}} & \frac{d F_{1}}{d z_{2}} \\ \frac{d F_{2}}{d z_{1}} & \frac{d F_{2}}{d z_{2}}\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}1 & 3 z_{2}^{2} \\ 0 & 1\end{array}\right)=1$

Relations to the Dixmier conjecture

J. Dixmier, Bull. Soc. Math. France (1968)

Dixmier conjecture ($D C_{n}$):
Any endomorphism of the n-th Weyl algebra (the algebra of polynomial differential operators in n variables) is invertible.
$D C_{n} \Rightarrow J C_{n}$
A. Belov-Kanel and M. Kontsevitch, Moscow Math. J. (2007)

The Jacobian conjecture in dimension $2 n$ implies the Dixmier conjecture in rank n.

Back to the Jacobian conjecture - faulty proofs

- before 1982 (see H. Bass et. al., Bull. Amer. Math. Soc.)
- W. Engel (Math. Ann. ('55)) claimed to prove the case $n=2$. A. Vitushkin (1975) published 2 essential errors
- B. Segre published 3 incomplete proofs ('56,'57,'60) ; Canals and Lluis ('70) noted an error. Abhyankar and Moh pointed out a faul in Segre's proof and also in Canals and Lluis's correction
- Gröbner proposed a proof in '61. Zariski pointed out that the argument is faulty
- Oda in '80 proposed a proof - false
- etc.
- after 1982 : other faulty proofs ...
A. van den Essen, "Polynomial automorphisms and the Jacobian conjecture", Birkhäuser (2000)

Internet blog: "How not to prove the Jacobian conjecture" :)

Back to the Jacobian conjecture - some notations

$$
J_{F}(z)=\left(\frac{\mathrm{d}}{\mathrm{~d} z_{i}} F_{j}(z)\right)_{1 \leq i, j \leq n}
$$

\mathcal{P}_{n} - the set of polynomial systems F (all its coordinate functions $F_{j}(j=1, \ldots, n)$ are polynomials)

$$
\begin{aligned}
\mathcal{J}_{n}^{\text {lin }} & :=\left\{F \in \mathcal{P}_{n} \mid \operatorname{det} J_{F}(z)=c \in \mathbb{C}^{\times}\right\}, \\
\mathcal{J}_{n} & :=\left\{F \in \mathcal{P}_{n} \mid F \text { is invertible }\right\} .
\end{aligned}
$$

Jacobian Conjecture ($J C_{n}$):

$$
\mathcal{J}_{n}^{\operatorname{lin}}=\mathcal{J}_{n} \quad \forall n .
$$

Some more notations

$$
\operatorname{deg}(F):=\max _{j} \operatorname{deg}\left(F_{j}(z)\right)
$$

$$
\begin{aligned}
\mathcal{P}_{n, d} & :=\left\{F \in \mathcal{P}_{n} \mid \operatorname{deg}(F) \leq d\right\} \\
\mathcal{J}_{n, d}^{\operatorname{lin}} & :=\left\{F \in \mathcal{P}_{n} \mid \operatorname{det} J_{F}(z)=c \in \mathbb{C}^{\times}, \operatorname{deg}(F) \leq d\right\} \\
\mathcal{J}_{n, d} & :=\left\{F \in \mathcal{P}_{n} \mid F \text { is invertible, } \operatorname{deg}(F) \leq d\right\}
\end{aligned}
$$

Some (substantial?) progress

(1) theorem for the quadratic case

Theorem
(S. Wang, J. Alg. (1980))

$$
\mathcal{J}_{n, 2}^{\operatorname{lin}}=\mathcal{J}_{n, 2} \quad \forall n .
$$

(2) reduction theorem to the cubic case

Theorem
(H. Bass et. al., Bull. Am. Math. Soc. (1982))

$$
\mathcal{J}_{n, 3}^{\operatorname{lin}}=\mathcal{J}_{n, 3} \quad \forall n \quad \Longrightarrow \quad \mathcal{J}_{n}^{\operatorname{lin}}=\mathcal{J}_{n} \quad \forall n .
$$

$F_{i}(z)=z_{i}+$ homogeneous pol. of degree 3.

A remark on H. Bass et. al. proof

The proof of H . Bass et. al. involves manipulations under which the dimension n is increased, thus this proof does not imply the corresponding statement without the " $\forall n$ " quantifier, i.e. that

$$
\mathcal{J}_{n, 3}^{\operatorname{lin}}=\mathcal{J}_{n, 3} \Rightarrow \mathcal{J}_{n}^{\operatorname{lin}}=\mathcal{J}_{n} .
$$

Our result - a further reduction of the degree; notations

For $n^{\prime} \leq n$ and $F \in \mathcal{P}_{n, d}$, we write

$$
z=\left(z_{1}, z_{2}\right)
$$

and

$$
F=\left(F_{1}, F_{2}\right)
$$

to distinguish components in the two subspaces

$$
\mathbb{C}^{n^{\prime}} \times \mathbb{C}^{n-n^{\prime}} \equiv \mathbb{C}^{n}
$$

We set

$$
R\left(z_{2} ; z_{1}\right)=F_{2}\left(z_{1}, z_{2}\right)
$$

emphasizing that, in R, we consider z_{2} as the variables in a polynomial system, and z_{1} as parameters.
The invertibility of R, denoted by $R\left(\cdot ; z_{1}\right) \in \mathcal{J}_{n-n^{\prime}, d}$, for a fixed z_{1}, means that there exists a pol. R^{-1} with variables $y_{2} \in \mathbb{C}^{n-n^{\prime}}$, and depending on z_{1}, s. t .

$$
\forall z_{2} \in \mathbb{C}^{n-n^{\prime}}, \quad R^{-1}\left(R\left(z_{2} ; z_{1}\right) ; z_{1}\right)=z_{2}
$$

A few more notations

We define the subspaces of $\mathcal{P}_{n, d}$:

$$
\begin{aligned}
\mathcal{J}_{n, d ; n^{\prime}}:= & \left\{F \in \mathcal{P}_{n, d} \mid R\left(\cdot ; z_{1}\right) \in \mathcal{J}_{n-n^{\prime}, d} \forall z_{1} \in \mathbb{C}^{n^{\prime}}\right. \\
& \text { and } \left.F^{-1} \text { restricted to } \mathbb{C}^{n^{\prime}} \times\{0\} \text { is in } \mathcal{P}_{n^{\prime}}\right\} \\
\mathcal{J}_{n, d ; n^{\prime}}^{\operatorname{lin}}:= & \left\{F \in \mathcal{P}_{n, d} \mid R\left(\cdot ; z_{1}\right) \in \mathcal{J}_{n-n^{\prime}, d} \forall z_{1} \in \mathbb{C}^{n^{\prime}}\right. \\
& \text { and } \left.\left(\operatorname{det} J_{F}\right)\left(z_{1}, R^{-1}\left(0, z_{1}\right)\right)=c \in \mathbb{C}^{\times}, \forall z_{1} \in \mathbb{C}^{n^{\prime}}\right\}
\end{aligned}
$$

generalizations of $\mathcal{J}_{n, d}$ and resp. $\mathcal{J}_{n, d}^{\operatorname{lin}}$
linear subspace of dimension $n-n^{\prime}$ (the last $n-n^{\prime}$ variables) on which z vanishes

QFT-inspired choices - they should become clear in the sequel

Our result - a further reduction of the degree

A. de Goursac et. al., Annales Henri Poincaré (2016)

Theorem

For $n \in \mathbb{N}$ and $d \geq 3$, there exists an injective map $\Phi: \mathcal{P}_{n, d} \rightarrow \mathcal{P}_{n(n+1), d-1}$ satisfying
$\Phi\left(\mathcal{J}_{n, d}^{\operatorname{lin}}\right) \equiv \mathcal{J}_{n(n+1), d-1 ; n}^{\operatorname{lin}} \cap \operatorname{Im}(\Phi) ; \quad \Phi\left(\mathcal{J}_{n, d}\right) \equiv \mathcal{J}_{n(n+1), d-1 ; n} \cap \operatorname{Im}(\Phi)$,
where $\operatorname{Im}(\Phi)=\Phi\left(\mathcal{P}_{n, d}\right)$.

A first consequence

Combining Bass et. al. theorem and the theorem above, the full Jacobian Conjecture reduces to the question whether

$$
\mathcal{J}_{n(n+1), 2 ; n}^{\operatorname{lin}} \cap \operatorname{Im}(\Phi)=\mathcal{J}_{n(n+1), 2 ; n} \cap \operatorname{Im}(\Phi) .
$$

- this question seems as difficult as the original Jacobian conjecture ...
- it involves only a quadratic degree, and this might simplify the resolution, in the light of Wang Theorem

A stronger version of JC

Conjecture

For all $n \geq n^{\prime} \geq 0$, and all $d \geq 1$,

$$
\mathcal{J}_{n, d ; n^{\prime}}^{\operatorname{lin}}=\mathcal{J}_{n, d ; n^{\prime}} .
$$

JC follows from the above conjecture

(0-dim.) Quantum Field Theory in a nutshell

A theory defined by means of a (functional) integral representation of the partition function, in which the fields are linearly coupled to sources;
from this, all the correlation functions of the respective physical system can be obtained by (functional) differentiation
A. Abdsselam, Sém. Loth. Comb. (2002),
A. Tanasă, Sém. Loth. Comb. (2012)

0-dim. Quantum Field Theory in a nutshell

Usually in QFT, the fields φ_{i} are functions of space(-time) $\left(\mathbb{R}^{D}\right)$ $D=0$
($D \neq n$, the dimension of the linear system $F(z)$)
the scalar field φ_{i} is not a function of space-time
(there is no space-time)!
φ_{i} is a (real or complex) variable
partition function (generating function)

$$
Z=\int_{\mathbb{R}} d \varphi e^{-\frac{1}{2} \varphi^{2}+\frac{\lambda}{4!} \varphi^{4}}
$$

λ - the coupling constant the quadratic part + interaction non-quadratic (here quartic) part In 0-dim. QFT, the functional integral become usual (real or complex) integrals!

Combinatorial QFT

QFT: sources

One (still) needs to evaluate integrals of type

$$
\frac{\lambda^{n}}{n} \int d \varphi e^{-\varphi^{2} / 2}\left(\frac{\varphi^{4}}{4!}\right)^{n}
$$

one can (still) use standard QFT techniques:
$Z_{0}(J):=\int d \varphi e^{-\varphi^{2} / 2+J \phi}$
J - the source
computations of (2k)-point correlation functions:

$$
\int d \phi e^{-\phi^{2} / 2} \varphi^{2 k}=\left.\frac{\partial^{2 k}}{\partial J^{2 k}} \int d \varphi e^{-\varphi^{2} / 2+J \varphi}\right|_{J=0}=\left.\frac{\partial^{2 k}}{\partial J^{2 k}} e^{J^{2} / 2}\right|_{J=0} .
$$

QFT - perturbation theory and Feynman graphs

perturbation theory - formal series in λ
\rightarrow (abstract) Feynman graphs and Feynman integrals (use of Wick Theorem)
A. Zvonkine, Math. and Computer Modelling (1997) the quadratic part \rightarrow edges the interaction part \rightarrow vertices
example:

(related to the physical information of a theory - interactions of elementary particle (in colliders a. s. o.))

0 -dimensional QFT - interesting "laboratories" for testing theoretical physics tools
V. Rivasseau and Z. Wang, J. Math. Phys. (2010)

The intermediate field method in QFT -

idea: introduing a new field, σ, to rewrite the interaction the degree of the interaction has been reduced!
example: φ^{6} model

$$
Z(\lambda)=\int \frac{d \varphi}{\sqrt{2 \pi}} e^{-\frac{1}{2} \varphi^{2}} e^{-\lambda \varphi^{6}}=\int \frac{d \varphi}{\sqrt{2 \pi}} e^{-\frac{1}{2} \varphi^{2}} \int \frac{d \sigma}{\sqrt{2 \pi}} e^{-\frac{1}{2} \sigma^{2}} e^{\imath \sqrt{2 \lambda} \varphi^{3} \sigma}
$$

JC as a QFT model - the Abdesselam-Rivasseau model

A. Abdesselam, Annales H. Poincaré (2013)
$F \in \mathcal{P}_{n, d}$.

$$
F_{i}(z)=z_{i}-\sum_{k=2}^{d} \sum_{j_{1}, \ldots, j_{k}=1}^{n} w_{i, j_{1} \ldots j_{k}}^{(k)} z_{j_{1}} \ldots z_{j_{k}}=: z_{i}-\sum_{k=2}^{d} W_{i}^{(k)}(z)
$$

for $i \leq n$ and $w_{i, j_{1} \ldots j_{k}}^{(k)}$ some coefficients (the coupling constants)

JC as a QFT model - the Abdesselam-Rivasseau model

A. Abdesselam, Annales Henri Poincaré (2013) the partition function

$$
Z(J, K)=\int_{\mathbb{C}^{n}} \mathrm{~d} \varphi \mathrm{~d} \varphi^{\dagger} e^{-\varphi^{\dagger} \varphi+\varphi^{\dagger} \sum_{k=2}^{d} W^{(k)}(\varphi)+J^{\dagger} \varphi+\varphi^{\dagger} K}
$$

where J, K are vectors in \mathbb{C}^{n} (the sources)
measure: $\mathrm{d} \varphi \mathrm{d} \varphi^{\dagger}:=\prod_{i=1}^{n} \frac{\mathrm{dRe} \varphi_{i} \mathrm{~d} \operatorname{Im} \varphi_{i}}{\pi}$
$\varphi^{\dagger} K:=\sum_{i=1}^{n} \varphi_{i}^{\dagger} K$, a. s. o.
setting the coupling constants to zero (free theory), the partition function is calculated by Gaussian integration:

$$
\int_{\mathbb{C}^{n}} \mathrm{~d} \varphi \mathrm{~d} \varphi^{\dagger} e^{-\varphi^{\dagger} \varphi+J^{\dagger} \varphi+\varphi^{\dagger} K}=e^{J^{\dagger} K}
$$

very particular combinatorics of this QFT model

JC as a QFT model - the Abdesselam-Rivasseau model

- The partition function Z coincides with the inverse of the Jacobian
- The inverse G of F corresponds to the (standard) 1-point correlation function:

$$
\begin{equation*}
G_{i}(u)=\frac{\int_{\mathbb{C}^{n}} \mathrm{~d} \varphi \mathrm{~d} \varphi^{\dagger} \varphi_{i} e^{-\varphi^{\dagger} \varphi+\varphi^{\dagger} \sum_{k=2}^{d} W^{(k)}(\varphi)+\varphi^{\dagger} u}}{\int_{\mathbb{C}^{n}} \mathrm{~d} \varphi \mathrm{~d} \varphi^{\dagger} e^{-\varphi^{\dagger} \varphi+\varphi^{\dagger} \sum_{k=2}^{d} W^{(k)}(\varphi)+\varphi^{\dagger} u}} \tag{1}
\end{equation*}
$$

The sets of polynomial functions involved in JC can be rephrased in this framework:

$$
\begin{aligned}
& \mathcal{J}_{n, d}^{\operatorname{lin}}=\left\{F \in \mathcal{P}_{n, d} \mid Z(0, u)=1, \forall u \in \mathbb{C}^{n}\right\} \\
& \mathcal{J}_{n, d}=\left\{F \in \mathcal{P}_{n, d} \mid G_{i}(u) \text { given by }(1) \text { is in } \mathcal{P}_{n}\right\} .
\end{aligned}
$$

The intermediate field method for the JC QFT model

- This will reduce the degree d of F.
- We will add n^{2} "intermediate fields" $\sigma_{i j}$ to the model.
$i, j=1, \ldots, n$
- intermediate field identity

Using the general formula of Gaussian integration, one has:

$$
\begin{aligned}
& e^{\left(\varphi_{i}^{\dagger} \varphi_{j}\right)\left(\sum_{j_{2}, \ldots, j_{d}=1}^{n} w_{i, j, j_{2} \ldots j_{d}}^{(d)} \varphi_{j_{2}} \ldots \varphi_{j_{d}}\right)} \\
= & \int_{\mathbb{C}^{n^{2}}} \mathrm{~d} \sigma_{i, j} \mathrm{~d} \sigma_{i, j}^{\dagger} e^{-\sigma_{i, j}^{\dagger} \sigma_{i, j}+\sigma_{i, j}^{\dagger}\left(\sum_{j_{2}, \ldots, j_{d}=1}^{n} w_{i, j, j_{2} \ldots j_{d}}^{(d)} \varphi_{j_{2}} \ldots \varphi_{j_{d}}\right)+\left(\varphi_{i}^{\dagger} \varphi_{j}\right) \sigma_{i, j}}
\end{aligned}
$$

The intermediate field method for the JC QFT model

use the intermediate field identity for each pair (i, j), in the partition function $Z(J, K)$ of the JC QFT model with n dimensions and degree d, in order to to re-express the monomials of degree d in the fields φ

$$
\begin{gathered}
\Longrightarrow Z(J, K)=\int_{\mathbb{C}^{n}} \mathrm{~d} \varphi \mathrm{~d} \varphi^{\dagger} \int_{\mathbb{C}^{n^{2}}} \mathrm{~d} \sigma \mathrm{~d} \sigma^{\dagger} e^{-\varphi^{\dagger} \varphi+\varphi^{\dagger} \sum_{k=2}^{d-1} W^{(k)}(\varphi)+J^{\dagger} \varphi+\varphi^{\dagger} K} \\
e^{\sum_{i, j=1}^{n}\left(-\sigma_{i, j}^{\dagger} \sigma_{i, j}+\sigma_{i, j}^{\dagger} \sum_{j_{2}, \ldots, j_{d}=1}^{n} w_{i, j, j 2 . . j_{d}}^{(d)} \varphi_{2} \ldots \varphi_{j_{d}}+\varphi \varphi_{i}^{\dagger} \varphi \sigma_{\sigma_{i, j}}\right)} .
\end{gathered}
$$

Setting this proper

(1) We define the new fields $\phi \in \mathbb{C}^{n+n^{2}}$ by

$$
\phi=\left(\varphi_{1}, \ldots, \varphi_{n}, \sigma_{1,1}, \ldots, \sigma_{1, n}, \cdots, \sigma_{n, 1}, \ldots, \sigma_{n, n}\right)
$$

(2) We define the coupling constants \tilde{w} as:

- for $k=d-1$, we set $\tilde{w}_{i, j, j_{2} \ldots j_{d}}^{(d-1)}:=w_{i, j, j_{2} \ldots j_{d}}^{(d-1)}$ and $\tilde{w}_{i \cdot n+j, j_{2} \ldots j_{d}}^{(d-1)}=w_{i, j, j_{2} \ldots j_{d}}^{(d)}$ with $i, j, j_{2}, \ldots j_{n} \leq n$
- for $k \in\{3, \ldots, d-2\}$, we set $\tilde{w}_{i, j, j_{2} \ldots j_{k}}^{(k)}:=w_{i, j, j_{2} \ldots j_{k}}^{(k)}$ with $i, j, j_{2}, \ldots j_{n} \leq n$
- for $k=2$, we set $\tilde{w}_{i, j, j_{2}}^{(2)}:=w_{i, j, j_{2}}^{(2)}$ and $\tilde{w}_{i, j, i \cdot n+j}^{(2)}=1$ with $i, j, j_{2} \leq n$.
The remaining coefficients of \tilde{w} are set to 0 .
(3) The sources are defined to be $\tilde{J}:=(J, 0)$ and $\tilde{K}:=(K, 0)$, (the number of extra vanishing coordinates is n^{2}).

The resulting QFT model

(1) The partition function:

$$
Z(J, K)=\int_{\mathbb{C}^{n+n^{2}}} \mathrm{~d} \phi \mathrm{~d} \phi^{\dagger} e^{-\phi^{\dagger} \phi+\phi^{\dagger} \sum_{k=2}^{d-1} \tilde{W}^{(k)}(\phi)+\tilde{J}^{\dagger} \phi+\phi^{\dagger} \tilde{K}}
$$

(2) The 1-point correlation functions:

$$
G_{i}(u)=\frac{\int_{\mathbb{C}^{n+n^{2}}} \mathrm{~d} \phi \mathrm{~d} \phi^{\dagger} \phi_{i} e^{-\phi^{\dagger} \phi+\phi^{\dagger} \sum_{k=2}^{d-1} \tilde{W}^{(k)}(\phi)+\phi^{\dagger} \tilde{u}}}{\int_{\mathbb{C}^{n+n^{2}}} \mathrm{~d} \phi \mathrm{~d} \phi^{\dagger} e^{-\phi^{\dagger} \phi+\phi^{\dagger} \sum_{k=2}^{d-1}} \tilde{W}^{(k)}(\phi)+\phi^{\dagger} \tilde{u}},
$$

for $i \in\{1, \ldots, n\}$.

So, what have we showed?

The partition function (resp. the 1-point correlation function) of the JC QFT model with dimension n and degree d is equal to the partition function (resp. the n first coordinates of the 1 -point correlation function) of the model with dimension $n(n+1)$ and degree $d-1$, up to a redefinition of
(1) the fields
(2) the coupling constant $w \mapsto \tilde{w}$
(3) the sources.

Since the partition function corresponds to the inverse of the Jacobian (resp. the 1 -point correlation function corresponds to the formal inverse), this gives a QFT proof of the theorem.

However ...

This is not a proof of the Jacobian Conjecture (unfortunately)!

Alternative proof

In
A. de Goursac et. al. Annales H. Poincaré (2016)
algebraic (no-QFT-like) proof of our reduction result

For further reading

various purely combinatorial approaches to JC were given:

- proposition of Joyal's combinatorial species as a tool
D. Zeilberger (1987)
- reformulation of the JC using trees
D. Wright (1999)
- reformulation of the JC using rooted trees
D. Singer, Electron. J. Comb. (2011)
- etc.

Conclusion and perspectives

- We have proved, using QFT-inspired techniques, a reduction theorem to the quadratic case for JC, up to the addition of a new parameter n^{\prime} (related to the introduction of additional intermediate fields σ)
- immediate perspective: adaptation of Wang's proof to our modified quadratic case
- reformulation of Wang's proof in a QFT language
- revisit the Dixmier Conjecture from the perspective of non-commutative QFT

Thank you for your attention! Vă mulțumesc pentru atenție!

