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RH and critical zeros

e Riemann Hypothesis (RH) says all (nontrivial) zeros p = 3+
iy of ((s) are critical, that is, 3 :%

e in absence of proof of RH, natural to ask if one can show
many, rather than all, zeros are critical

e define
NT) =#{+iv:¢(B+iy) =0,0< B <1,0<y < T},
1 1
No(T) = #{ - +iv: (5 +i1) =0,0<7<T}.

e RH is equivalent to N(T) = No(T)



History (I)

e Hardy (1914) showed No(T) — o0 as T — oo

e Hardy and3LittIewood later gave the quantitative bounds
No(T) > T4 € (1917) and No(T) > T (1921)

e since N(T) < TlogT, these results only give that “0%" of
the zeros of ((s) are critical
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J. E. Littlewood

Before creation, God did just pure
mathematics. Then He thought it
would be a pleasant change to do

some applied.

— John Edensor Littlewssd —




History (II)

e Selberg (1942) proved No(T) > N(T), therefore positive pro-
portion of zeros are critical

e key idea in proof is introduction of a mollifier, which serves
to dampen large values of ¢

e the occasional large values of ((s) on the critical line are the
source of Hardy/Littlewood's weaker result No(T) > T
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Mollification in action
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History (III)

e Levinson (1974) invented a new method for detecting critical
zeros, found 33% of zeros are on critical line

e Conrey (1989) introduced several refinements, including Kloost-
erman sums, and obtained 40.77%

e Bui, Conrey, Young (2011) and Feng (2012) obtained 41.05%
and 41.07% by introducing new mollifiers



T heorems

Theorem (Pratt, Robles (2017)). More than 41.49% of the
zeros of ((s) are critical.

Theorem (Pratt, Robles, Z., Zeindler (2018)). More than 5/12
of the zeros of ((s) are on the critical line.



How do you make a mollifier? (I)

e want mollifier to approximate ¢(3 +it)~! (¢ is at height < T')

e Can approximate g‘(% + it) by Dirichlet polynomial

1

1
C(§+Zt)% Z 1

n<T n2 it
even inside critical strip, so good choice for mollifier is
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How do you make a mollifier? (II)

[ M(% + ’it) ~ ZmSTQ /L(%'/Zzt
m

o 0 <0 <1is fixed number; refer to 6 as length of the mollifier

e heuristically, larger values of 6 provide better mollification

e Conrey's 40.77%: comes from increasing length to 6 =

up from Levinson's 6 =%

~N| S
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Feng’'s mollifier

e in Levinson's method, want to mollify ¢(s) + gés%, not ¢(s)

e Feng chose a mollifier of the form

1 , 1 n * N (n
vp(ti)s Y s HeAh)
o<rek (109T)% n3t?

e presence of factor u(n) simplifies main term analysis, but
introduces problems in error term analysis

e we remove this u(n) and study the resulting main terms and
error terms
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Error terms

e if m and g are coprime integers, definem by mm =1 (mod q)

e crror terms look like

d wv(a) Y ) (ux ANFY (w)r(v)e (—a§>
a<A u<U v
v<V
(u,v)=1

e to get 0 as large as é we must exploit structure of u x N*F
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Combinatorial decompositions

e use combinatorial identities to decompose (u * A**)(n) into
Type I and Type II pieces

e Type I: (ax* f)(n), where a is “rough”, but only supported
on small integers, and f a smooth function

e Typell: (axB)(n), where «, 8 both rough, but supported on
integers that are not too small and not too large
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Type I sums

e arrange error term as

Z v(a) Z r(v) Z a(w) Z f(n)e (—a?)

a<A o<V w<W n<U/w
e since f is smooth, n sum is incomplete Kloosterman sum

e use Podlya-Vinogradov, or completion, technique, to bound
the sum on n

e Ultimately relies on Weil's proof of the Riemann Hypothesis
for curves over finite fields
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Type Il sums

e arrange error term as

S Y @l @) | Y v(a)sh)e <_>

g=G o<V a<Ah=H

e estimates of Deshouillers and Iwaniec on cancellation in sums
of Kloosterman sums

e spectral theory of automorphic forms
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Main terms

e we work throughout with mollifiers that approximate the in-
verse of
¢'(s) ¢ (s)

+-

C(s) + - g7 (log T?

for d > 1 arbitrary

e Main term analysis is extremely difficult, since in general co-
efficients of mollifier are not multiplicative

e Key identity is

ogr = ———| = —

0 1 1 t%‘l dz
87 x” fy—O 271

x? 22
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Main term mess... (I)

e e f i fo e o et e g
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Main term mess... (II)

e Mmultiplicativity = product of zeta functions and an arithmetic
factor A

e but then you have to take the derivatives...

e the symmetries in A make many of the derivatives vanish,
which is very helpful
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T hank You!
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