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RH and critical zeros

• Riemann Hypothesis (RH) says all (nontrivial) zeros ρ = β+
iγ of ζ(s) are critical, that is, β = 1

2

• in absence of proof of RH, natural to ask if one can show
many, rather than all, zeros are critical

• define

N(T ) = # {β + iγ : ζ(β + iγ) = 0,0 < β < 1,0 < γ ≤ T} ,

N0(T ) = #
{

1

2
+ iγ : ζ(

1

2
+ iγ) = 0,0 < γ ≤ T

}
.

• RH is equivalent to N(T ) = N0(T )
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History (I)

• Hardy (1914) showed N0(T )→∞ as T →∞

• Hardy and Littlewood later gave the quantitative bounds

N0(T )� T
3
4−ε (1917) and N0(T )� T (1921)

• since N(T ) � T logT , these results only give that “0%” of

the zeros of ζ(s) are critical
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G. H. Hardy
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J. E. Littlewood
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History (II)

• Selberg (1942) proved N0(T )� N(T ), therefore positive pro-

portion of zeros are critical

• key idea in proof is introduction of a mollifier, which serves

to dampen large values of ζ

• the occasional large values of ζ(s) on the critical line are the

source of Hardy/Littlewood’s weaker result N0(T )� T
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Selberg
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Mollification in action

—|ζ(1
2 + it)| and mollified zeta for 108 ≤ t ≤ 108 + 10; ζ has a

large value of ≈ 18.5 on this interval
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History (III)

• Levinson (1974) invented a new method for detecting critical

zeros, found 33% of zeros are on critical line

• Conrey (1989) introduced several refinements, including Kloost-

erman sums, and obtained 40.77%

• Bui, Conrey, Young (2011) and Feng (2012) obtained 41.05%

and 41.07% by introducing new mollifiers
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Theorems

Theorem (Pratt, Robles (2017)). More than 41.49% of the

zeros of ζ(s) are critical.

Theorem (Pratt, Robles, Z., Zeindler (2018)). More than 5/12

of the zeros of ζ(s) are on the critical line.
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How do you make a mollifier? (I)

• want mollifier to approximate ζ(1
2 + it)−1 (t is at height � T )

• can approximate ζ(1
2 + it) by Dirichlet polynomial

ζ(
1

2
+ it) ≈

∑
n≤T

1

n
1
2+it

even inside critical strip, so good choice for mollifier is

M(
1

2
+ it) ≈

∑
m≤T θ

µ(m)

m
1
2+it

10



How do you make a mollifier? (II)

• M(1
2 + it) ≈

∑
m≤T θ

µ(m)

m
1
2+it

• 0 < θ < 1 is fixed number; refer to θ as length of the mollifier

• heuristically, larger values of θ provide better mollification

• Conrey’s 40.77%: comes from increasing length to θ = 4
7,

up from Levinson’s θ = 1
2
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Feng’s mollifier

• in Levinson’s method, want to mollify ζ(s) + ζ′(s)
logT , not ζ(s)

• Feng chose a mollifier of the form

MF

(
1

2
+ it

)
≈

∑
0≤k≤K

1

(logT )k
∑
n≤T θ

µ(n)(µ ∗ Λ∗k)(n)

n
1
2+it

• presence of factor µ(n) simplifies main term analysis, but
introduces problems in error term analysis

• we remove this µ(n) and study the resulting main terms and
error terms
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Error terms

• if m and q are coprime integers, define m by mm ≡ 1 (mod q)

• error terms look like∑
a≤A

ν(a)
∑∑
u≤U
v≤V

(u,v)=1

(µ ∗ Λ∗k)(u)r(v)e
(
−a

u

v

)

• to get θ as large as 4
7 we must exploit structure of µ ∗ Λ∗k
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Combinatorial decompositions

• use combinatorial identities to decompose (µ ∗ Λ∗k)(n) into

Type I and Type II pieces

• Type I: (α ∗ f)(n), where α is “rough”, but only supported

on small integers, and f a smooth function

• Type II: (α ∗ β)(n), where α, β both rough, but supported on

integers that are not too small and not too large
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Type I sums

• arrange error term as∑
a≤A

ν(a)
∑
v≤V

r(v)
∑
w≤W

α(w)
∑

n≤U/w
f(n)e

(
−a

nw

v

)

• since f is smooth, n sum is incomplete Kloosterman sum

• use Pólya-Vinogradov, or completion, technique, to bound
the sum on n

• ultimately relies on Weil’s proof of the Riemann Hypothesis
for curves over finite fields
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Type II sums

• arrange error term as

∑
g�G

∑
v≤V
|α(g)||r(v)|

∣∣∣∣∣∣
∑
a≤A

∑
h�H

ν(a)β(h)e

(
−a

gh

v

)∣∣∣∣∣∣
• estimates of Deshouillers and Iwaniec on cancellation in sums

of Kloosterman sums

• spectral theory of automorphic forms
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Main terms

• we work throughout with mollifiers that approximate the in-
verse of

ζ(s) +
ζ′(s)

logT
+ · · ·+

ζ(d)(s)

(logT )d

for d ≥ 1 arbitrary

• main term analysis is extremely difficult, since in general co-
efficients of mollifier are not multiplicative

• key identity is

logx = −
∂

∂γ

1

xγ

∣∣∣∣
γ=0

= −
1

2πi

∮ 1

xz
dz

z2
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Main term mess... (I)
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Main term mess... (II)

• multiplicativity⇒ product of zeta functions and an arithmetic

factor A

• but then you have to take the derivatives...

• the symmetries in A make many of the derivatives vanish,

which is very helpful
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Thank You!
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