Zeros of the Riemann zeta function on the critical line

Alexandru Zaharescu

Joint work with Kyle Pratt, Nicolas Robles, and Dirk Zeindler

RH and critical zeros

- Riemann Hypothesis (RH) says all (nontrivial) zeros $\rho=\beta+$ $i \gamma$ of $\zeta(s)$ are critical, that is, $\beta=\frac{1}{2}$
- in absence of proof of RH, natural to ask if one can show many, rather than all, zeros are critical
- define

$$
\begin{aligned}
N(T) & =\#\{\beta+i \gamma: \zeta(\beta+i \gamma)=0,0<\beta<1,0<\gamma \leq T\}, \\
N_{0}(T) & =\#\left\{\frac{1}{2}+i \gamma: \zeta\left(\frac{1}{2}+i \gamma\right)=0,0<\gamma \leq T\right\} .
\end{aligned}
$$

- RH is equivalent to $N(T)=N_{0}(T)$

History (I)

- Hardy (1914) showed $N_{0}(T) \rightarrow \infty$ as $T \rightarrow \infty$
- Hardy and Littlewood later gave the quantitative bounds $N_{0}(T) \gg T^{\frac{3}{4}-\epsilon}(1917)$ and $N_{0}(T) \gg T$ (1921)
- since $N(T) \asymp T \log T$, these results only give that " 0% " of the zeros of $\zeta(s)$ are critical

G. H. Hardy

J. E. Littlewood

History (II)

- Selberg (1942) proved $N_{0}(T) \gg N(T)$, therefore positive proportion of zeros are critical
- key idea in proof is introduction of a mollifier, which serves to dampen large values of ζ
- the occasional large values of $\zeta(s)$ on the critical line are the source of Hardy/Littlewood's weaker result $N_{0}(T) \gg T$

Selberg

Mollification in action

- zeta
- mollified zeta
$-\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ and mollified zeta for $10^{8} \leq t \leq 10^{8}+10 ; \zeta$ has a large value of ≈ 18.5 on this interval

History (III)

- Levinson (1974) invented a new method for detecting critical zeros, found 33% of zeros are on critical line
- Conrey (1989) introduced several refinements, including Kloosterman sums, and obtained 40.77\%
- Bui, Conrey, Young (2011) and Feng (2012) obtained 41.05\% and 41.07% by introducing new mollifiers

Theorems

Theorem (Pratt, Robles (2017)). More than 41.49\% of the zeros of $\zeta(s)$ are critical.

Theorem (Pratt, Robles, Z., Zeindler (2018)). More than 5/12 of the zeros of $\zeta(s)$ are on the critical line.

How do you make a mollifier? (I)

- want mollifier to approximate $\zeta\left(\frac{1}{2}+i t\right)^{-1}(t$ is at height $\asymp T)$
- can approximate $\zeta\left(\frac{1}{2}+i t\right)$ by Dirichlet polynomial

$$
\zeta\left(\frac{1}{2}+i t\right) \approx \sum_{n \leq T} \frac{1}{n^{\frac{1}{2}+i t}}
$$

even inside critical strip, so good choice for mollifier is

$$
M\left(\frac{1}{2}+i t\right) \approx \sum_{m \leq T^{\theta}} \frac{\mu(m)}{m^{\frac{1}{2}+i t}}
$$

How do you make a mollifier? (II)

- $M\left(\frac{1}{2}+i t\right) \approx \sum_{m \leq T^{\theta}} \frac{\mu(m)}{m^{\frac{1}{2}+i t}}$
- $0<\theta<1$ is fixed number; refer to θ as length of the mollifier
- heuristically, larger values of θ provide better mollification
- Conrey's 40.77% : comes from increasing length to $\theta=\frac{4}{7}$, up from Levinson's $\theta=\frac{1}{2}$

Feng's mollifier

- in Levinson's method, want to mollify $\zeta(s)+\frac{\zeta^{\prime}(s)}{\log T}$, not $\zeta(s)$
- Feng chose a mollifier of the form

$$
M_{F}\left(\frac{1}{2}+i t\right) \approx \sum_{0 \leq k \leq K} \frac{1}{(\log T)^{k}} \sum_{n \leq T^{\theta}} \frac{\mu(n)\left(\mu * \Lambda^{* k}\right)(n)}{n^{\frac{1}{2}+i t}}
$$

- presence of factor $\mu(n)$ simplifies main term analysis, but introduces problems in error term analysis
- we remove this $\mu(n)$ and study the resulting main terms and error terms

Error terms

- if m and q are coprime integers, define \bar{m} by $m \bar{m} \equiv 1(\bmod q)$
- error terms look like

$$
\sum_{a \leq A} \nu(a) \sum_{\substack{u \leq U \\ v \leq V \\(u, v)=1}}\left(\mu * \Lambda^{* k}\right)(u) r(v) e\left(-a \frac{\bar{u}}{v}\right)
$$

- to get θ as large as $\frac{4}{7}$ we must exploit structure of $\mu * \Lambda^{* k}$

Combinatorial decompositions

- use combinatorial identities to decompose $\left(\mu * \Lambda^{* k}\right)(n)$ into Type I and Type II pieces
- Type I: $(\alpha * f)(n)$, where α is "rough", but only supported on small integers, and f a smooth function
- Type II: $(\alpha * \beta)(n)$, where α, β both rough, but supported on integers that are not too small and not too large

Type I sums

- arrange error term as

$$
\sum_{a \leq A} \nu(a) \sum_{v \leq V} r(v) \sum_{w \leq W} \alpha(w) \sum_{n \leq U / w} f(n) e\left(-a \frac{\overline{n w}}{v}\right)
$$

- since f is smooth, n sum is incomplete Kloosterman sum
- use Pólya-Vinogradov, or completion, technique, to bound the sum on n
- ultimately relies on Weil's proof of the Riemann Hypothesis for curves over finite fields

Type II sums

- arrange error term as

$$
\sum_{g \asymp G} \sum_{v \leq V}|\alpha(g)||r(v)|\left|\sum_{a \leq A} \sum_{h \asymp H} \nu(a) \beta(h) e\left(-a \frac{\overline{g h}}{v}\right)\right|
$$

- estimates of Deshouillers and Iwaniec on cancellation in sums of Kloosterman sums
- spectral theory of automorphic forms

Main terms

- we work throughout with mollifiers that approximate the inverse of

$$
\zeta(s)+\frac{\zeta^{\prime}(s)}{\log T}+\cdots+\frac{\zeta^{(d)}(s)}{(\log T)^{d}}
$$

for $d \geq 1$ arbitrary

- main term analysis is extremely difficult, since in general coefficients of mollifier are not multiplicative
- key identity is

$$
\log x=-\left.\frac{\partial}{\partial \gamma} \frac{1}{x^{\gamma}}\right|_{\gamma=0}=-\frac{1}{2 \pi i} \oint \frac{1}{x^{z}} \frac{d z}{z^{2}}
$$

Main term mess... (I)

$$
\begin{aligned}
& \mathcal{S}_{d}=\frac{1}{(2 \pi i)^{\ell_{1}}} \oint \cdots \oint \frac{1}{(2 \pi i)^{\ell_{2}}} \oint \cdots \oint \cdots \frac{1}{(2 \pi i)^{\ell_{d}}} \oint \cdots \oint(-1)^{1 \times \ell_{1}}(-1)^{2 \times \ell_{2}} \cdots(-1)^{d \times \ell_{d}} \\
& \times \frac{1}{(2 \pi i)^{\bar{\ell}_{1}}} \oint \cdots \oint \frac{1}{(2 \pi i)^{\bar{\ell}_{2}}} \oint \cdots \oint \cdots \frac{1}{(2 \pi i)^{\bar{\ell}_{d}}} \oint \cdots \oint(-1)^{1 \times \bar{\ell}_{1}}(-1)^{2 \times \bar{\ell}_{2}} \cdots(-1)^{d \times \overline{\bar{\ell}}_{d}} \\
& \times \sum_{\substack{d_{0}, d_{1,1}, \cdots, d_{1, \ell_{1}}, d_{2,1}, \cdots, d_{2, \ell_{1}} \cdots d_{d, 1} \cdots d_{d, \ell_{1}} \\
e_{0}, e_{1}, 1, \cdots, e_{1}, e_{2}, e_{2,1}, \cdots, e_{2}, e_{2} \cdots e_{d, 1} \cdots e_{d, e_{2}}}} \mu^{\star L_{d}+1}\left(d_{0}\right) \mu^{\star \bar{L}_{d}+1}\left(e_{0}\right) \\
& \times \frac{\left(d_{0}\left(\prod_{1 \leq i \leq \ell_{1}} d_{1, i}\right)\left(\prod_{1 \leq i \leq \ell_{2}} d_{2, i}\right) \cdots\left(\prod_{1 \leq i \leq \ell_{d}} d_{d, i}\right), e_{0}\left(\prod_{1 \leq j \leq \bar{\ell}_{1}} e_{1, j}\right)\left(\prod_{1 \leq j \leq \bar{\ell}_{2}} e_{2, j}\right) \cdots\left(\prod_{1 \leq j \leq \bar{\ell}_{d}} e_{d, j}\right)\right)^{\alpha+\beta}}{\left[d_{0}\left(\prod_{1 \leq i \leq \ell_{1}} d_{1, i}\right)\left(\prod_{1 \leq i \leq \ell_{2}} d_{2, i}\right) \cdots\left(\prod_{1 \leq i \leq \ell_{d}} d_{d, i}\right), e_{0}\left(\prod_{1 \leq j \leq \bar{\ell}_{1}} e_{1, j}\right)\left(\prod_{1 \leq j \leq \bar{\ell}_{2}} e_{2, j}\right) \cdots\left(\prod_{1 \leq j \leq \bar{\ell}_{d}} e_{d, j}\right)\right]} \\
& \times \frac{1}{d_{0}^{\alpha+s}\left(\prod_{1 \leq i \leq \ell_{1}} d_{1, i}^{\alpha+s+z_{1, i}}\right)\left(\prod_{1 \leq i \leq \ell_{2}} d_{2, i}^{\alpha+s+z_{2, i}}\right) \cdots\left(\prod_{1 \leq i \leq \ell_{d}} d_{d, i}^{\alpha+s+z_{d, i}}\right) \log ^{\sum_{r=1}^{d} r \ell_{r}} N} \\
& \times \frac{1}{e_{0}^{\beta+u}\left(\prod_{1 \leq j \leq \bar{\ell}_{1}} e_{1, i}^{\beta+u+w_{1, j}}\right)\left(\prod_{1 \leq j \leq \bar{\ell}_{2}} e_{2, j}^{\beta+u+w_{2, j}}\right) \cdots\left(\prod_{1 \leq j \leq \bar{\ell}_{d}} e_{d, j}^{\beta+u+w_{d, j}}\right) \log ^{\sum_{\bar{r}=1}^{d} \bar{r} \bar{\ell}_{\bar{r}}} N} \\
& \times \frac{d z_{1,1}}{z_{1,1}^{1+1}} \cdots \frac{d z_{1, \ell_{1}}}{z_{1, \ell_{1}}^{1+1}} \frac{d z_{2,1}}{z_{2,1}^{2+1}} \cdots \frac{d z_{2, \ell_{2}}}{z_{2, \ell_{2}}^{2+1}} \cdots \frac{d z_{d, 1}}{z_{d, 1}^{d+1}} \cdots \frac{d z_{d, \ell_{d}}}{z_{d, \ell_{d}}^{d+1}} \frac{d w_{1,1}}{w_{1,1}^{1+1}} \cdots \frac{d w_{1, \bar{\ell}_{1}}}{w_{1, \bar{\ell}_{1}}^{1+1}} \frac{d w_{2,1}}{w_{2,1}^{2+1}} \cdots \frac{d w_{2, \bar{\ell}_{2}}}{w_{2, \bar{\ell}_{2}}^{2+1}} \cdots \frac{d w_{d, 1}}{w_{d, 1}^{d+1}} \cdots \frac{d z_{w, \bar{\ell}_{d}}}{z_{w, \bar{\ell}_{d}}^{d+1}} .
\end{aligned}
$$

Main term mess... (II)

- multiplicativity \Rightarrow product of zeta functions and an arithmetic factor A
- but then you have to take the derivatives...
- the symmetries in A make many of the derivatives vanish, which is very helpful

Thank You!

