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Divide-and-Conquer Recurrences

A064194, Number of ring multiplications in Karatsuba's algorithm

Un = 2U[n/2) + Unj2)y U1 =1
Algorithm / Complexity analysis. (Karatsuba, Ofman, 1962)

A020985, Golay-Rudin-Shapiro sequence in functional analysis

Upn = Up, Uzpy1 = (=1)"us, wo=1
Spectroscopy in infrared ray / Extremal function. (Golay, 1951)

A002487, Stern-Brocot sequence in number theory

Upt1 = (2k + 1)Un —Up-1, k= Lunfl/UnJ
Design of clocks / Explicit bijection N ~ Q. (Stern, 1858)
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Divide-and-Conquer Recurrences

A064194, Number of ring multiplications in Karatsuba's algorithm

Un = 2U[n/2) + Unj2)y U1 =1
Algorithm / Complexity analysis. (Karatsuba, Ofman, 1962)
Uop = 3uUp, Upy1 =2Upy1+Up, v =1

A020985, Golay-Rudin-Shapiro sequence in functional analysis

Upn = Up, Uzpy1 = (=1)"us, wo=1
Spectroscopy in infrared ray / Extremal function. (Golay, 1951)
Upp = Up, Ugptl = Uzp, Uapy3 = —U2py1, Up =1

A002487, Stern-Brocot sequence in number theory

Upt1 = (2k + Vup — up—1, k= |up—1/un]
Design of clocks / Explicit bijection N ~ Q. (Stern, 1858)
Upp = Up, Uppp1 = Up+Upy1, w=0, w=1
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Higher-Order Recurrences,

Upp =2Vp_1—n
Uopy1 = Up + Vpyo

Von = U2p+1
Vantl = 2Vp + Upy

4

Well-Foundedness

Uop = 2Vp_1—n
Uopy1 = Up + Vnrl

V2p = U2p+41
Vont1 = 2Vp + Upq1

4
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Higher-Order Recurrences, Well-Foundedness

Uop = 2Vp_1—n
Upt1 = Up + Vpt1

Upp = 2Vp_1— N Von = U2p+1
Vn+1 = 2vp + Un41

4

Un = V2p Vn+1

Uopy1 = Up + Vpyo
Von = U2p+1

Von+1 = 2vy + Upt+1

Vian+4 = V2n+4 Vn+3

U b 2vpe1 +2vh—n—1
1=0 Vaptl = V2p42 — Vpg2 + 2vp
Van42 = Vop42 + V2n

vwwv=vi=0 wn=C

vz = —1 vy = —2

Whole theory (in progress) based on a Grdbner-basis theory (here).
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Section Operators and Skew Polynomials

Action of section operators (fixed integer b > 2)

{—1
T > upx" = upeny x" where £ = |w| and r = w;b’
neN neN i=0

Nonnoetherian algebra of skew polynomials (TY = T,, |- Ty,)

k(x)(To,..., Tp—1) with noncommutative monomials 7"

Noncommutative product

TYT =T, TYc(x)=T"(c()T)= 3 duw()T"

|w!|=|w|

dy(x) = some suitable section of ¢(x)
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Section Operators and Skew Polynomials

Action of section operators (fixed integer b > 2)

{—1
T > upx" = upeny x" where £ = |w| and r = w;b’
neN neN i=0

Nonnoetherian algebra of skew polynomials (TY = T,, |- Ty,)

k(x)(To,..., Tp—1) with noncommutative monomials 7"

Noncommutative product

TVTY = T™, T ()T = 3 du()T""

|w!|=|w|

dy(x) = some suitable section of ¢(x)
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Earlier Works on Noncommutative Grobner-Basis Theories

Noncommutative monomials, commuting with coefficients

Free noncommutative algebras (Mora, 1986, 1988, 1989). Path algebras (Ufnarovski¥,
1991; Green, 1993).

Monomials with commutation rules, commuting with coefficients

Weyl algebras (Galligo, 1985). Enveloping algebras of Lie algebras (Apel, Lassner,
1993). Polynomial rings of solvable type (Kandri-Rody, Weispfenning, 1990;
Levandovskyy, Schénemann, 2003).

Monomials commuting with one another, but not with coefficients

Rings of difference-differential operators (Takayama, 1989). Ore algebras (Chyzak,
Salvy, 1998).

Our need: noncommutative monomials with commutation rules!
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Earlier Works on Noncommutative Grobner-Basis Theories

Noncommutative monomials, commuting with coefficients

Free noncommutative algebras (Mora, 1986, 1988, 1989). Path algebras (Ufnarovski¥,
1991; Green, 1993). Nonnoetherian.

Monomials with commutation rules, commuting with coefficients

Weyl algebras (Galligo, 1985). Enveloping algebras of Lie algebras (Apel, Lassner,
1993). Polynomial rings of solvable type (Kandri-Rody, Weispfenning, 1990;
Levandovskyy, Schénemann, 2003). Noetherian.

Monomials commuting with one another, but not with coefficients

Rings of difference-differential operators (Takayama, 1989). Ore algebras (Chyzak,
Salvy, 1998). Noetherian.

Our need: noncommutative monomials with commutation rules!

[ We restrict to finitely-presented ideals. j
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Monomial Ordering and Compatibility with Product

Breadth-first ordering

o Def.: w < w' if either |w| < |wW/|
or |w| = |w'| and rev(w) <jex rev(w’).
@ Prop.: BFO guarantees the termination of division and a
compatibility lemma crucial to the correctness of algorithms.

T ()T + () T2) = - -

N N N N
X 10 m 7 m
/\ /\ /\ /\
qolt o PR

Compatibility lemma
For any skew polynomials H, Ki and K> from k(x)(T), if H# 0
and Im(K1) < Im(K2), then Im(HK7) < Im(HK>).
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Division of Skew Polynomials

Division theorem

Given divisors By, ..., Bs, any dividend A can be written
A= @Q1B1 + -+ QsBs + R where:

@ the monomials of R are not divisible by any of the Im(B;);
e for each i, Im(Q;B;) < Im(A).

Proof: Obvious algorithm provided the B; are monic, because:
(cT" + lower terms) x (T" + lower terms) = c¢T"" + lower terms.

Then, use: A= QB+ R<+= A= (Q@xc)(c*xB)+R.
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Division of Skew Polynomials

Division theorem

Given divisors By, ..., Bs, any dividend A can be written
A= @Q1B1 + -+ QsBs + R where:

@ the monomials of R are not divisible by any of the Im(B;);
e for each i, Im(Q;B;) < Im(A).

Proof: Obvious algorithm provided the B; are monic, because:
(cT" + lower terms) x (T" + lower terms) = c¢T"" + lower terms.

Then, use: A= QB+ R<+= A= (Q@xc)(c*xB)+R.

[ We always present ideals by monic generators. j
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Grobner Bases and a Variant Buchberger Algorithm

Grobner basis of a left ideal Z

A finite G C Z of monic polynomials such that for any F € Z,
Im(F) is divisible by Im(G) for some G € G.

Algorithm (variant of (Buchberger, 1965))

Given a finite 7 C Z of monic polynomials, while any H; and H;
from F are such that Im(H>) = T" Im(H;) for some w, compute
the remainder of the S-polynomial H := H, — T" H; under division
by F and add its monic multiple to F.

Correctness proof: Usual approach + Specific compatibility lemma

m
Standard representation: H = Z QiFi with Im(Q;F;) < Im(H).
i=1
Criterion: all S-polynomials have a standard representation —
F is a Grobner basis.
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Linear Algebra Approach and a Variant F4 Algorithm

[ A Grobner basis doesn't exceed the max input monomial. }

Algorithm (variant of (Faugere, 1999))

Represent polynomials by row vectors w.r.t. basis of decreasing
monomials. Represent presentation of Z by matrices in row echelon
form: remove null rows, never exchange rows, always add more
rows at the bottom. Add at the bottom of the matrix all multiples
of F needed to reduce all S-polynomials, row-reduce, repeat.
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Linear Algebra Approach and a Variant F4 Algorithm

[ A Grobner basis doesn't exceed the max input monomial. }

Algorithm (variant of (Faugere, 1999))

Represent polynomials by row vectors w.r.t. basis of decreasing
monomials. Represent presentation of Z by matrices in row echelon
form: remove null rows, never exchange rows, always add more
rows at the bottom. Add at the bottom of the matrix all multiples
of F needed to reduce all S-polynomials, row-reduce, repeat.

problem | 01 35 38 14 39 42 18 15 43
radix 2 2 3 2 3 2 3 2 2
deg/dim |3/14 6/127 4/161 5/63 5/485 4/31 4/161 6/127 5/63
#in/#out| 7/2 5/5 5/5 5/5 5/524/1 4/4 6/6 48/1
Buchberger |0.20 1.80 2.0 046 0.10 490 1.64 1.98 69.95
F4 026 065 077 276 2.86 539 9.68 2550 77.41
speed-up |1.09 291 270 0.17 3.18 091 0.17 0.08 0.90
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Conclusion

@ First Grobner-basis theory in algebraic setting with both word
monomials and skew commutations.

@ Termination and correctness reduce the choice of orderings.

@ Need for monic generators, special S-polynomials, predictable
maximal monomial to be used.

@ Implementation available from
https://specfun.inria.fr/chyzak/gbdacr/.

@ Impact of F4 to efficiency still unclear.

In progress

@ Extension to modules motivates another specific ordering.

@ Algorithm to determine well-foundedness of a general
divide-and-conquer recurrence system.
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