A Gröbner-Basis Theory for Divide-and-Conquer Recurrences

Frédéric Chyzak

Ínría_

July 2020 — ISSAC '20

Joint work with Ph. Dumas

Divide-and-Conquer Recurrences

A064194, Number of ring multiplications in Karatsuba's algorithm

$$u_n = 2u_{\lceil n/2 \rceil} + u_{\lceil n/2 \rceil}, \quad u_1 = 1$$

Algorithm / Complexity analysis. (Karatsuba, Ofman, 1962)

A020985, Golay-Rudin-Shapiro sequence in functional analysis

$$u_{2n} = u_n, \quad u_{2n+1} = (-1)^n u_n, \quad u_0 = 1$$

Spectroscopy in infrared ray / Extremal function. (Golay, 1951)

A002487, Stern-Brocot sequence in number theory

$$u_{n+1} = (2k+1)u_n - u_{n-1}, \quad k = \lfloor u_{n-1}/u_n \rfloor$$

Design of clocks / Explicit bijection $\mathbb{N} \simeq \mathbb{Q}$. (Stern, 1858)

Divide-and-Conquer Recurrences

A064194, Number of ring multiplications in Karatsuba's algorithm

$$\begin{array}{c} u_n=2u_{\lceil n/2\rceil}+u_{\lfloor n/2\rfloor},\quad u_1=1\\ \text{Algorithm / Complexity analysis.} \qquad \text{(Karatsuba, Ofman, 1962)}\\ u_{2n}=3u_n,\quad u_{2n+1}=2u_{n+1}+u_n,\quad u_1=1 \end{array}$$

A020985, Golay-Rudin-Shapiro sequence in functional analysis

$$\begin{array}{ccc} u_{2n}=u_n, & u_{2n+1}=(-1)^nu_n, & u_0=1 \\ \text{Spectroscopy in infrared ray / Extremal function.} & \text{(Golay, 1951)} \\ u_{2n}=u_n, & u_{4n+1}=u_{2n}, & u_{4n+3}=-u_{2n+1}, & u_0=1 \end{array}$$

A002487, Stern-Brocot sequence in number theory

$$\begin{array}{c} u_{n+1}=(2k+1)u_n-u_{n-1},\quad k=\lfloor u_{n-1}/u_n\rfloor\\ \text{Design of clocks / Explicit bijection }\mathbb{N}\simeq\mathbb{Q}. \qquad \text{(Stern, 1858)}\\ u_{2n}=u_n,\quad u_{2n+1}=u_n+u_{n+1},\quad u_0=0,\quad u_1=1 \end{array}$$

Higher-Order Recurrences, Well-Foundedness

$$\begin{cases} u_{2n} = 2v_{n-1} - n \\ u_{2n+1} = u_n + v_{n+2} \\ v_{2n} = u_{2n+1} \\ v_{2n+1} = 2v_n + u_{n+1} \end{cases}$$

$$\begin{cases} u_{2n} = 2v_{n-1} - n \\ u_{2n+1} = u_n + v_{n+1} \\ v_{2n} = u_{2n+1} \\ v_{2n+1} = 2v_n + u_{n+1} \end{cases}$$

Higher-Order Recurrences, Well-Foundedness

$$\begin{cases} u_{2n} = 2v_{n-1} - n \\ u_{2n+1} = u_n + v_{n+2} \\ v_{2n} = u_{2n+1} \\ v_{2n+1} = 2v_n + u_{n+1} \\ \downarrow \\ 1 = 0 \end{cases}$$

$$\begin{cases} u_{2n} = 2v_{n-1} - n \\ u_{2n+1} = u_n + v_{n+1} \\ v_{2n} = u_{2n+1} \\ v_{2n+1} = 2v_n + u_{n+1} \\ & \downarrow \\ \begin{cases} u_n = v_{2n} - v_{n+1} \\ v_{4n+4} = v_{2n+4} - v_{n+3} \\ + 2v_{n+1} + 2v_n - n - 1 \\ v_{2n+1} = v_{2n+2} - v_{n+2} + 2v_n \\ v_{4n+2} = v_{2n+2} + v_{2n} \\ v_0 = v_1 = 0 \quad v_2 = C \\ v_3 = -1 \quad v_4 = -2 \end{cases}$$

Whole theory (in progress) based on a Gröbner-basis theory (here).

Section Operators and Skew Polynomials

Action of section operators (fixed integer $b \ge 2$)

$$T^w \cdot \sum_{n \in \mathbb{N}} u_n x^n = \sum_{n \in \mathbb{N}} u_{b^\ell n + r} x^n$$
 where $\ell = |w|$ and $r = \sum_{i=0}^{\ell-1} w_i b^i$

Nonnoetherian algebra of skew polynomials ($T^w = T_{w_{\ell-1}} \cdots T_{w_0}$)

 $k(x)\langle T_0,\ldots,T_{b-1}\rangle$ with noncommutative monomials T^w

Noncommutative product

$$T^w T^v = T^{wv}, \quad T^w c(x) = \overline{T^w} \left(c(x) \overline{T^\varepsilon} \right) = \sum_{|w'| = |w|} d_{w'}(x) T^{w'}$$

 $d_{w'}(x)$ = some suitable section of c(x)

Section Operators and Skew Polynomials

Action of section operators (fixed integer $b \ge 2$)

$$T^w \cdot \sum_{n \in \mathbb{N}} u_n x^n = \sum_{n \in \mathbb{N}} u_{b^\ell n + r} x^n$$
 where $\ell = |w|$ and $r = \sum_{i=0}^{\ell-1} w_i b^i$

Nonnoetherian algebra of skew polynomials ($T^w = T_{w_{\ell-1}} \cdots T_{w_0}$)

 $k(x)\langle T_0,\ldots,T_{b-1}\rangle$ with noncommutative monomials T^w

Noncommutative product

$$T^{w}T^{v} = T^{wv}, \qquad T^{w}(c(x)T^{v}) = \sum_{|w'| = |w|} d_{w'}(x)T^{w'v}$$

 $d_{w'}(x) =$ some suitable section of c(x)

Earlier Works on Noncommutative Gröbner-Basis Theories

Noncommutative monomials, commuting with coefficients

Free noncommutative algebras (Mora, 1986, 1988, 1989). Path algebras (Ufnarovskiĭ, 1991; Green, 1993).

Monomials with commutation rules, commuting with coefficients

Weyl algebras (Galligo, 1985). Enveloping algebras of Lie algebras (Apel, Lassner, 1993). Polynomial rings of solvable type (Kandri-Rody, Weispfenning, 1990; Levandovskyy, Schönemann, 2003).

Monomials commuting with one another, but not with coefficients

Rings of difference-differential operators (Takayama, 1989). Ore algebras (Chyzak, Salvy, 1998).

Our need: noncommutative monomials with commutation rules!

Earlier Works on Noncommutative Gröbner-Basis Theories

Noncommutative monomials, commuting with coefficients

Free noncommutative algebras (Mora, 1986, 1988, 1989). Path algebras (Ufnarovskiĭ, 1991; Green, 1993).

Nonnoetherian.

Monomials with commutation rules, commuting with coefficients

Weyl algebras (Galligo, 1985). Enveloping algebras of Lie algebras (Apel, Lassner, 1993). Polynomial rings of solvable type (Kandri-Rody, Weispfenning, 1990; Levandovskyy, Schönemann, 2003).

Noetherian.

Monomials commuting with one another, but not with coefficients

Rings of difference-differential operators (Takayama, 1989). Ore algebras (Chyzak, Salvy, 1998).

Noetherian.

Our need: noncommutative monomials with commutation rules!

We restrict to finitely-presented ideals.

Monomial Ordering and Compatibility with Product

Breadth-first ordering

- Def.: w < w' if either |w| < |w'|or |w| = |w'| and $rev(w) <_{lex} rev(w')$.
- Prop.: BFO guarantees the termination of division and a compatibility lemma crucial to the correctness of algorithms.

$$T^{w}\left(c_{1}(x)T^{v_{1}}+c_{2}(x)T^{v_{2}}\right)=\cdots$$

$$T^{v}\left(c_{1}(x)T^{v_{1}}+c_{2}(x)T^{v_{2}}\right)=\cdots$$

$$T^{v}\left(c_{1}(x)T^{v_{1}}+c_{2}(x)T^$$

Compatibility lemma

For any skew polynomials H, K_1 and K_2 from $k(x)\langle T \rangle$, if $H \neq 0$ and $Im(K_1) < Im(K_2)$, then $Im(HK_1) < Im(HK_2)$.

Division of Skew Polynomials

Division theorem

Given divisors B_1, \ldots, B_s , any dividend A can be written

$$A = Q_1B_1 + \cdots + Q_sB_s + R$$
 where:

- the monomials of R are not divisible by any of the $Im(B_i)$;
- for each i, $Im(Q_iB_i) \leq Im(A)$.

Proof: Obvious algorithm provided the B_i are monic, because:

$$(cT^w + lower terms) \times (T^v + lower terms) = cT^{wv} + lower terms.$$

Then, use:
$$A = QB + R \iff A = (Q \times c)(c^{-1} \times B) + R$$
.

Division of Skew Polynomials

Division theorem

Given divisors B_1, \ldots, B_s , any dividend A can be written

$$A = Q_1B_1 + \cdots + Q_sB_s + R$$
 where:

- the monomials of R are not divisible by any of the $Im(B_i)$;
- for each i, $Im(Q_iB_i) \leq Im(A)$.

Proof: Obvious algorithm provided the B_i are monic, because:

$$(cT^w + lower terms) \times (T^v + lower terms) = cT^{wv} + lower terms.$$

Then, use:
$$A = QB + R \iff A = (Q \times c)(c^{-1} \times B) + R$$
.

We always present ideals by monic generators.

Gröbner Bases and a Variant Buchberger Algorithm

Gröbner basis of a left ideal ${\mathcal I}$

A finite $\mathcal{G} \subset \mathcal{I}$ of monic polynomials such that for any $F \in \mathcal{I}$, Im(F) is divisible by Im(G) for some $G \in \mathcal{G}$.

Algorithm (variant of (Buchberger, 1965))

Given a finite $\mathcal{F} \subset \mathcal{I}$ of monic polynomials, while any H_1 and H_2 from \mathcal{F} are such that $\operatorname{Im}(H_2) = T^w \operatorname{Im}(H_1)$ for some w, compute the remainder of the S-polynomial $H := H_2 - T^w H_1$ under division by \mathcal{F} and add its monic multiple to \mathcal{F} .

Correctness proof: Usual approach + Specific compatibility lemma

Standard representation: $H = \sum_{i=1}^{m} Q_i F_i$ with $Im(Q_i F_i) \leq Im(H)$.

Criterion: all S-polynomials have a standard representation \implies \mathcal{F} is a Gröbner basis.

Linear Algebra Approach and a Variant F4 Algorithm

A Gröbner basis doesn't exceed the max input monomial.

Algorithm (variant of (Faugère, 1999))

Represent polynomials by row vectors w.r.t. basis of decreasing monomials. Represent presentation of $\mathcal I$ by matrices in row echelon form: remove null rows, never exchange rows, always add more rows at the bottom. Add at the bottom of the matrix all multiples of $\mathcal F$ needed to reduce all S-polynomials, row-reduce, repeat.

Linear Algebra Approach and a Variant F4 Algorithm

A Gröbner basis doesn't exceed the max input monomial.

Algorithm (variant of (Faugère, 1999))

Represent polynomials by row vectors w.r.t. basis of decreasing monomials. Represent presentation of $\mathcal I$ by matrices in row echelon form: remove null rows, never exchange rows, always add more rows at the bottom. Add at the bottom of the matrix all multiples of $\mathcal F$ needed to reduce all S-polynomials, row-reduce, repeat.

problem	01	35	38	14	39	42	18	15	43
radix	2	2	3	2	3	2	3	2	2
deg/dim	3/14	6/127	4/161	5/63	5/485	4/31	4/161	6/127	5/63
#in/#out	7/2	5/5	5/5	5/5	5/5	24/1	4/4	6/6	48/1
Buchberger	0.29	1.89	2.09	0.46	9.10	4.90	1.64	1.98	69.95
F4	0.26	0.65	0.77	2.76	2.86	5.39	9.68	25.50	77.41
speed-up	1.09	2.91	2.70	0.17	3.18	0.91	0.17	0.08	0.90

Conclusion

This work

- First Gröbner-basis theory in algebraic setting with both word monomials and skew commutations.
- Termination and correctness reduce the choice of orderings.
- Need for monic generators, special S-polynomials, predictable maximal monomial to be used.
- Implementation available from https://specfun.inria.fr/chyzak/gbdacr/.
- Impact of F4 to efficiency still unclear.

In progress

- Extension to modules motivates another specific ordering.
- Algorithm to determine well-foundedness of a general divide-and-conquer recurrence system.