SYMBOLIC-NumERIC FACTORIZATION of Linear Differential Operators

Alexandre Goyer ${ }^{(1,2)}$

> co-supervised by

Frédéric Chyzak ${ }^{(1)}$ and Marc Mezzarobba ${ }^{(2)}$
(1) INRIA Saclay - Île-de-France
(2) Laboratoire d'Informatique de l'École polytechnique

De rerum natura meeting

$$
\text { June 3, } 2021
$$

I. INTRODUCTION
II. Differential Galois group
III. COMPUTING AN INVARIANT SUBSPACE
IV. Van der Hoeven's Algorithm
V. IMPLEMENTATION

I. INTRODUCTION

1I. DIFFERENTIAL GALOIS GROUP
III. COMPUTING AN INVARIANT SUBSPACE
IV. VaN der Hoeven's algorithm
V. IMPLEMENTATION

Object of study. Let $a_{i} \in \overline{\mathbb{Q}}(z)$.

$$
(E): a_{n}(z) f^{(n)}(z)+\cdots+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)=0
$$

Formalism. f solution of $(E) \Leftrightarrow L \cdot f=0$ where

$$
L=a_{n} \partial^{n}+\cdots+a_{1} \partial+a_{0} \in \overline{\mathbb{Q}}(z)\langle\partial\rangle
$$

is a so-called linear differential operator.

Object of study. Let $a_{i} \in \overline{\mathbb{Q}}(z)$.

$$
(E): a_{n}(z) f^{(n)}(z)+\cdots+a_{1}(z) f^{\prime}(z)+a_{0}(z) f(z)=0
$$

Formalism. f solution of $(E) \Leftrightarrow L \cdot f=0$ where

$$
L=a_{n} \partial^{n}+\cdots+a_{1} \partial+a_{0} \in \overline{\mathbb{Q}}(z)\langle\partial\rangle
$$

is a so-called linear differential operator.

Leibniz rule: $(z f)^{\prime}=z f^{\prime}+f \quad \rightarrow \quad \partial z=$
Example. $L=z \partial^{2}+\left(-4 z^{3}+5 z\right) \partial+4 z^{2}-5$ and an example of factorization:

$$
z \partial^{2}+\left(-4 z^{3}+5 z\right) \partial+4 z^{2}-5=\left(\partial-4 z^{2}+5\right)(z \partial-1)
$$

Factoring a linear differential operator

> 1894: Beke (right-hand factor of order 1)
> 1996: Singer (adaptation of Berlekamp's algorithm)
> 1997: van Hoeij (algorithm of the type "local \rightarrow global")
> 2004: Cluzeau, van Hoeij (modular algorithm)
> 2007: van der Hoeven (symbolic-numeric algorithm)

Complexity analysis (bounds on coefficients):

> 1990: Grigor'ev
> 2020: Bostan, Rivoal, Salvy

Let \mathcal{F} denote $\overline{\mathbb{Q}}(z)$ and consider a differential operator $L \in \mathcal{F}\langle\partial\rangle$. Write $L=q\left(a_{n} \partial^{n}+\cdots+a_{1} \partial+a_{0}\right)$ with $q \in \overline{\mathbb{Q}}(z)$ such that the $a_{i} \in \overline{\mathbb{Q}}[z]$ are coprime.

Definition. A point $z_{0} \in \mathbb{C}$ is an ordinary point of L if $a_{n}\left(z_{0}\right) \neq 0$. Otherwise, it is a singular point (or a singularity) of L.

Fix an ordinary point z_{0} of L.
Proposition. For each $1 \leq i \leq n$, there is a unique power series $h_{i}=\sum_{j=0}^{+\infty} h_{i, j}\left(z-z_{0}\right)^{j}$ such that:
$>h_{i}$ est solution of L in a neighborhood of z_{0},
$>h_{i}^{(j)}\left(z_{0}\right)=\delta_{i, j+1}$ for $0 \leq j<n$.
Remark. The basis $\left(h_{1}, \ldots, h_{n}\right)$ gives an canonical identification of the solution space $\operatorname{Sol}(L):=\operatorname{Span}_{\overline{\mathbb{Q}}}\left(h_{1}, \ldots, h_{n}\right)$ with $\overline{\mathbb{Q}}^{n}$.

SyMbOLIC-NUMERIC APPROACH

$$
\text { approximation } \rightarrow \text { guessing } \rightarrow \text { post-certification }
$$

Factorization of a reducible polynomial $P \in \mathbb{Q}[X]$

1: compute an approximation \tilde{x} of a solution $x \in \mathbb{C}$
2: guess the minimal polynomial $m_{x} \in \mathbb{Q}[X]$ from \tilde{x}
3: check that m_{x} divides P
(Newton's method)
(LLL algorithm)
(Euclidean division)

Factorization of a reducible operator $L \in \mathcal{F}\langle\partial\rangle$ where $\mathcal{F}=\overline{\mathbb{Q}}(z)$
1: compute an approximation \tilde{y} of a solution $y \in \overline{\mathbb{Q}}\left[\left[z-z_{0}\right]\right]$
(differential equation \leftrightarrow recurrence relation on coefficients)
2: guess the minimal operator $m_{y} \in \overline{\mathbb{Q}}[z]\langle\partial\rangle$ from \tilde{y}
(Hermite-Padé approximants)
3: check that m_{y} divides L in $\overline{\mathbb{Q}}(z)\langle\partial\rangle$ (right-Euclidean division)

SyMbOLIC-NUMERIC APPROACH

$$
\text { approximation } \rightarrow \text { guessing } \rightarrow \text { post-certification }
$$

Factorization of a reducible polynomial $P \in \mathbb{Q}[X]$
1: compute an approximation \tilde{x} of a solution $x \in \mathbb{C}$
2: guess the minimal polynomial $m_{x} \in \mathbb{Q}[X]$ from \tilde{x}
3: check that m_{x} divides P
Factorization of a reducible operator $L \in \mathcal{F}\langle\partial\rangle$ where $\mathcal{F}=\overline{\mathbb{Q}}(z)$
1: compute an approximation \tilde{y} of a solution $y \in \overline{\mathbb{Q}}\left[\left[z-z_{0}\right]\right]$
(differential equation \leftrightarrow recurrence relation on coefficients)

2: guess the minimal operator $m_{y} \in \overline{\mathbb{Q}}[z]\langle\partial\rangle$ from \tilde{y}
(Hermite-Padé approximants)
3: check that m_{y} divides L in $\overline{\mathbb{Q}}(z)\langle\partial\rangle \quad$ (right-Euclidean division)
(Newton's method)
(LLL algorithm)
(Euclidean division)
if y is not well-chosen then $m_{y}=L$

©

I. INTRODUCTION II. Differential Galois group III. COMPUTING AN INVARIANT SUBSPACE IV. VAN der Hoeven's algorithm V. IMPLEMENTATION

degree d
d roots $x_{1}, \ldots, x_{d} \in \overline{\mathbb{Q}}$ counted with multiplicity
splitting field $\mathbb{L}=\mathbb{Q}\left(x_{i}\right)$

$$
\operatorname{Gal}(P):=\operatorname{Aut}(\mathbb{L} / \mathbb{Q})
$$

order n
n linearly independent solutions $y_{1}, \ldots, y_{n} \in \overline{\mathbb{Q}}\left[\left[z-z_{0}\right]\right]$
Picard-Vessiot extension $\mathcal{E}=\mathcal{F}\left(y_{i}\right)$
linear left action of $\mathrm{Gal}_{\text {diff }}(L)$ on $\operatorname{Sol}(L)=\{f \in \mathcal{E} \mid L \cdot f=0\}$

Proposition. There is a one-to-one correspondance:

$$
L=L_{1} L_{2} \longleftrightarrow V=\operatorname{Ker}\left(L_{2}\right) \quad \begin{gathered}
\text { subspace } V \text { invariant } \\
\text { under the action of the } \\
\text { differential Galois group }
\end{gathered}
$$

Example: $L=z \partial^{2}+\partial$

$\underbrace{\left(\begin{array}{cc}1 & 0 \\ 2 i \pi & 1\end{array}\right)}\binom{1}{\log (z)}=\binom{1}{\log (z)+2 i \pi}$
monodromy of L around the singularity 0

Example: $L=z \partial^{2}+\partial$

$\underbrace{\left(\begin{array}{cc}1 & 0 \\ 2 i \pi & 1\end{array}\right)}\binom{1}{\log (z)}=\binom{1}{\log (z)+2 i \pi}$
monodromy of L around the singularity 0
$>$ How to check the Fuchsianity of L ?
\rightarrow Fuchs' Criterion [Fuchs, 1866]
Theorem. [Schlesinger, 1885] Let $L \in \mathcal{F}\langle\partial\rangle$ be an operator. If L is Fuchsian then $\mathrm{Gal}_{\text {diff }}(L)$ is the Zariski-closure of the group generated by the monodromy matrices of L (with a fixed base-point).
$>$ What if L is not Fuchsian?
\rightarrow add exponential matrices and Stokes's matrices
[Ramis, 1985]

FActorization and invariant subspace of $\operatorname{Sol}(L) \simeq \mathbb{C}^{n}$

If L is Fuchsian:
$L=L_{1} L_{2}$
subspace V invariant under the action of the the monodromy matrices
$L \in \overline{\mathbb{Q}}(z)\langle\partial\rangle$ with singularities s_{1}, \ldots, s_{r} monodromy matrices $M_{1}, \ldots, M_{r} \in \operatorname{Mat}_{n}(\mathbb{C})$
no non-trivial subspace of $\operatorname{Sol}(L)$ is invariant under the action of the M_{i} 's
L is irreducible

$$
L_{2} \in \overline{\mathbb{Q}}(z)\langle\partial\rangle \text { a minimal }
$$ annihilator of a non-zero $f \in V$

$$
L=L_{1} L_{2}
$$

I. INTRODUCTION

II. Differential Galois group
III. COMPUTING AN INVARIANT SUbSPACE IV. VaN der HOEvEN'S AlGORITHM
IMPLEMENTATION

Orbit

$$
\text { Let } \mathcal{M}=\left\{M_{1}, \ldots, M_{r}\right\} \subset \operatorname{Mat}_{n}(\mathbb{C}) \text { be a finite list of matrices. }
$$

- $\mathcal{A}:=\mathbb{C}[\mathcal{M}]$, the algebra of non-commutative polynomials in the M_{i} 's
- $\operatorname{Orb}_{\mathcal{M}}(v):=\{M v ; M \in \mathcal{A}\}$, the orbit of v under the action of \mathcal{M}

Algorithm $\operatorname{Orbit}(\mathcal{M}, v)$

Input: a list $\mathcal{M}=\left\{M_{1}, \ldots, M_{r}\right\} \subset \operatorname{Mat}_{n}(\mathbb{C})$ and $v \in \mathbb{C}^{n}$ Output: the orbit of v under the action of the M_{i} 's

Proposition. There is a non-trivial \mathcal{M}-invariant subspace $V \subset \mathbb{C}^{n}$ iff there is a non-zero vector $v \in \mathbb{C}^{n}$ such that $\operatorname{Orb}_{\mathcal{M}}(v) \subsetneq \mathbb{C}^{n}$.

Proposition [van der Hoeven, 2007]. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of \mathbb{C}^{n} such that the projection maps onto the $\mathbb{C} v_{i}$'s belong to \mathcal{A}. Then there is a non-trivial \mathcal{M}-invariant subspace $V \subset \mathbb{C}^{n}$ iff there is an index i such that $\operatorname{Orb}_{\mathcal{M}}\left(v_{i}\right) \subsetneq \mathbb{C}^{n}$.

Remark. Let $M \in \mathcal{A}$. Denote by $\lambda_{1}, \ldots, \lambda_{k}$ the eigenvalues, with multiplicities m_{1}, \ldots, m_{k}, of M. For each j, the projection map onto the generalized eigenspace $E_{j}:=\operatorname{Ker}\left(\left(M-\lambda_{j} I_{n}\right)^{m_{j}}\right)$ is polynomial in M (therefore it belongs to $\mathcal{A})$.

Lemma 1. Assume that there is no non-trivial \mathcal{M}-invariant subspace. Then there is an $M \in \mathcal{A}$ with exactly n eigenvalues.

Lemma 2. Consider $N_{1}, \ldots, N_{s} \in \operatorname{Mat}_{n}(\mathbb{C})$ and take a random linear combination $N \in \operatorname{Span}_{\mathbb{C}}\left(N_{1}, \ldots, N_{s}\right)$.
With probability 1 , the number of eigenvalues of N is maximal.

Algorithm Invariant_Subspace(\mathcal{M})

InPut: a list $\mathcal{M}=\left\{M_{1}, \ldots, M_{r}\right\} \subset \operatorname{Mat}_{n}(\mathbb{C})$
Output: a non-trivial \mathcal{M}-invariant subspace or None
1: take a random $M \in \mathcal{A}:=\mathbb{C}[\mathcal{M}]$
2: for each 1-dimensional generalized eigenspace E of M do
3: if $\operatorname{Orbit}(\mathcal{M}, E) \neq \mathbb{C}^{n}$ then
4: return $\operatorname{Orbit}(\mathcal{M}, E)$
5: if all the generalized eigenspaces of M are 1-dimensional then
6: return None
7: else
8: \quad take a generalized eigenspace E of M of dimension >1
9: \quad select $v \in E$ such that $\operatorname{Orbit}(\mathcal{M}, v) \neq \mathbb{C}^{n} \quad /^{*}$ (details hidden) */
10: return $\operatorname{Orbit}(\mathcal{M}, v)$

I. INTRODUCTION

II. Differentiai GaloIs group
III. COMPUTING AN INVARIANT SUBSPACE
IV. Van der Hoeven's Algorithm
V. IMPLEMENTATION

Implementation of operations $+,-, \times, \div \sqrt{ } \cdot, \ldots$ on intervals in such a way that the following invariant is respected.

Motto

The interval contains the exact value.

Example: Let $\pi:=[3.1415,3.1416]$ be an interval representing π. We require that $\sqrt{\pi} \supset\left\{x \in \mathbb{R}\right.$ such that $\left.3.1415 \leq x^{2} \leq 3.1416\right\}$.

Difficulties

- Overestimation
- Testing nullity

Extensions

- Complex numbers
- Vectors, matrices

INTERVAL VERSION OF THE ALGORITHM FOR COMPUTING AN INVARIANT SUBSPACE

rigorous output

Algorithm Invariant_Subspace(\mathcal{M})

Infut: a list $\boldsymbol{\mathcal { M }}=\left\{\boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{r}\right\} \subset \operatorname{Mat}_{n}(\boldsymbol{C})$
Output: a non-trivial \mathcal{M}-invariant subspace or None or Fail
1: take a random $\boldsymbol{M} \in \mathcal{A}:=\boldsymbol{C}[\mathcal{M}]$
2: for each 1-dimensional generalized eigenspace \boldsymbol{E} of \boldsymbol{M} do /* can Fail */
3: if $\operatorname{Orbit}(\boldsymbol{\mathcal { M }}, \boldsymbol{E}) \neq \boldsymbol{C}^{n}$ then
4: return $\operatorname{Orbit}(\boldsymbol{\mathcal { M }}, \boldsymbol{E})$
5: if all the generalized eigenspaces of \boldsymbol{M} are 1-dimensional then
6: return None
7: else
8: \quad take a generalized eigenspace \boldsymbol{E} of \boldsymbol{M} of dimension > 1
9: \quad select $\boldsymbol{v} \in \boldsymbol{E}$ such that $\operatorname{Orbit}(\boldsymbol{\mathcal { M }}, \boldsymbol{v}) \neq \boldsymbol{C}^{n} \quad /^{*}$ can Fail (details hidden) */ 10: return $\operatorname{Orbit}(\mathcal{M}, \boldsymbol{v})$

Algorithm Right_䍩ctor(L)

Input: a Fuchsian operator $L \in \overline{\mathbb{Q}}(z)\langle\partial\rangle$
Output: a non-trivial right factor $\in \overline{\mathbb{Q}}(z)\langle\partial\rangle$ of L or Irreducible
1: loop
2: compute $\boldsymbol{\mathcal { M }}=\left\{\boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{\boldsymbol{r}}\right\}$ the monodromy matrices by approximations with rigorous error bounds
3: $\quad \boldsymbol{V}=$ Invariant_Subspace $(\boldsymbol{\mathcal { M }})$
4: if \boldsymbol{V} is Fail then
5: \quad increase precision
6: else-if \boldsymbol{V} is None then
7: return Irreducible
8: else
9: guess a candidate operator L_{2} from \boldsymbol{V}
10: if L_{2} divides L then
11: return L_{2}
12: else
13: increase precision and order of truncation

I. INTRODUCTION

11. Differential Galois group
III. COMPUTING AN INVARIANT SUBSPACE
IV. VAN DER HOEVEN'S ALGORITHM
V. IMPLEMENTATION

THE CODE

In SageMath system, source available at https://github.com/a-goyer/diffop_factorization.

Main functions

> InvSub (interval version, with rigorous None)
> right_dfactor, dfactor
> and the structure ComplexOptimisticField

The code takes advantage of:

- ore_algebra package, in particular the subpackage analytic for arbitrary-precision monodromy computation
(https://github.com/mkauers/ore_algebra)
- Arb library (https://arblib.org/)
- some Sage functions (the method .minimal_approximant_basis of polynomial matrices for Hermite-Padé approximation, ...)

COMPARISON OF RUNNING TIMES

operator	order	DEtools (*)	diffop_factorization
$\mathrm{fcc} 3(* *)$	3	0.182 s	0.148 s
fcc4 (**)	4	0.630 s	1.32s
fcc5 (**)	6	61.9s	12.9 s
fcc6 (**)	8	$>10 \mathrm{~h}$	432s
$1 \mathrm{clm}(\mathrm{fcc} 3, \mathrm{fcc} 4)$	7	66.6 s	98.0s
fcc $4 \times$ fcc 3	7	1.88s	31.5 s
$\mathrm{fcc} 3 \times \mathrm{fcc} 4$	7	4.59s	24.8s
fcc 4^{2}	8	$122 . \mathrm{s}$	108.s
random $4 \times \mathrm{fcc} 3$	7	2.04s	169.s
random4 \times random3	7	2.40 s	404.5
$\left(z^{2} \partial+3\right)\left((z-3) \partial+4 z^{5}\right)$	2	$>10 \mathrm{~h}$	1.96 s

${ }^{(*)}$ command DFactor of the Maple package DEtools (author: van Hoeij) (**) http://koutschan.de/data/fcc1/ (probabilistic walks)

Thank you for listening!

Summary

> an implementation of van der Hoeven's algorithm for factorization of operators is now available! ;)
> confirmation that symbolic-numeric approach can compete with purely symbolic approach!
> detailed proofs of correction of the irreducible case

Remaining work and outlook

> study the theoretical complexity
$>$ non-Fuchsian case
> algebraic/exponential/liouvillian solutions

