SYMBOLIC-NUMERIC FACTORIZATION OF LINEAR DIFFERENTIAL OPERATORS

```
Alexandre Goyer <sup>(1,2)</sup>
co-supervised by
Frédéric Chyzak<sup>(1)</sup> and Marc Mezzarobba<sup>(2)</sup>
```

(1) INRIA Saclay – Île-de-France(2) Laboratoire d'Informatique de l'École polytechnique

De rerum natura meeting

June 3, 2021

- I. INTRODUCTION
- II. DIFFERENTIAL GALOIS GROUP
- III. COMPUTING AN INVARIANT SUBSPACE
- IV. VAN DER HOEVEN'S ALGORITHM
- V. IMPLEMENTATION

I. INTRODUCTION

II. DIFFERENTIAL GALOIS GROUPIII. COMPUTING AN INVARIANT SUBSPACEIV. VAN DER HOEVEN'S ALGORITHMV. IMPLEMENTATION

2 / 22

LINEAR DIFFERENTIAL OPERATORS

Object of study. Let
$$a_i \in \overline{\mathbb{Q}}(z)$$
.
 $(E): a_n(z)f^{(n)}(z) + \cdots + a_1(z)f'(z) + a_0(z)f(z) = 0$

Formalism. f solution of $(E) \Leftrightarrow L \cdot f = 0$ where

$$L = a_n \partial^n + \dots + a_1 \partial + a_0 \in \overline{\mathbb{Q}}(z) \langle \partial \rangle$$

is a so-called *linear differential operator*.

3 / 22

LINEAR DIFFERENTIAL OPERATORS

Object of study. Let
$$a_i \in \overline{\mathbb{Q}}(z)$$
.
 $(E): a_n(z)f^{(n)}(z) + \cdots + a_1(z)f'(z) + a_0(z)f(z) = 0$

Formalism. f solution of $(E) \Leftrightarrow L \cdot f = 0$ where

$$L = a_n \partial^n + \cdots + a_1 \partial + a_0 \in \overline{\mathbb{Q}}(z) \langle \partial \rangle$$

is a so-called *linear differential operator*.

Leibniz rule:
$$(zf)' = zf' + f \rightarrow \partial z = z\partial + 1$$

Example. $L = z\partial^2 + (-4z^3 + 5z)\partial + 4z^2 - 5$ and an example of factorization:

$$z\partial^2 + (-4z^3 + 5z)\partial + 4z^2 - 5 = (\partial - 4z^2 + 5)(z\partial - 1)$$

HISTORY

Factoring a linear differential operator

- ▶ 1894: Beke (right-hand factor of order 1)
- 1996: Singer (adaptation of Berlekamp's algorithm)
- ▶ 1997: van Hoeij (algorithm of the type "local → global")

Improvements of Beke's algorithm

- 1989: Schwarz
- 1990: Grigor'ev
- 1994: Bronstein
- 1996: Tsarev
- > 2004: Cluzeau, van Hoeij (modular algorithm)
- > 2007: van der Hoeven (symbolic-numeric algorithm)

Complexity analysis (bounds on coefficients):

- > 1990: Grigor'ev
- > 2020: Bostan, Rivoal, Salvy

Let \mathcal{F} denote $\overline{\mathbb{Q}}(z)$ and consider a differential operator $L \in \mathcal{F}\langle \partial \rangle$. Write $L = q(a_n \partial^n + \cdots + a_1 \partial + a_0)$ with $q \in \overline{\mathbb{Q}}(z)$ such that the $a_i \in \overline{\mathbb{Q}}[z]$ are coprime.

Definition. A point $z_0 \in \mathbb{C}$ is an ordinary point of L if $a_n(z_0) \neq 0$. Otherwise, it is a singular point (or a singularity) of L.

Fix an ordinary point z_0 of L.

Proposition. For each $1 \le i \le n$, there is a unique power series $h_i = \sum_{i=0}^{+\infty} h_{i,j}(z - z_0)^j$ such that:

> h_i est solution of L in a neighborhood of z_0 ,

►
$$h_i^{(j)}(z_0) = \delta_{i,j+1}$$
 for $0 \le j < n$.

Remark. The basis (h_1, \ldots, h_n) gives an canonical identification of the solution space Sol $(L) := \text{Span}_{\overline{\mathbb{Q}}}(h_1, \ldots, h_n)$ with $\overline{\mathbb{Q}}^n$.

SYMBOLIC-NUMERIC APPROACH

 $approximation \rightarrow guessing \rightarrow post-certification$

Factorization of a reducible polynomial $P \in \mathbb{Q}[X]$	[Lenstra, 1984]
1: compute an approximation $ ilde{x}$ of a solution $x\in\mathbb{C}$	(Newton's method)
2: guess the minimal polynomial $m_{x} \in \mathbb{Q}[X]$ from $ ilde{x}$	(LLL algorithm)
3: check that m_x divides P	(Euclidean division)

Factorization of a reducible operator $L \in \mathcal{F}\langle \partial \rangle$ where $\mathcal{F} = \overline{\mathbb{Q}}(z)$

1: compute an approximation \tilde{y} of a solution $y \in \overline{\mathbb{Q}}[[z - z_0]]$ (differential equation \leftrightarrow recurrence relation on coefficients)

2: guess the minimal operator $m_y \in \overline{\mathbb{Q}}[z]\langle \partial \rangle$ from \tilde{y} (Hermite–Padé approximants)

3: check that m_v divides L in $\overline{\mathbb{Q}}(z)\langle \partial \rangle$ (right-Euclidean division)

Alexandre Goyer

Symbolic-numeric factorization of linear differential operators

SYMBOLIC-NUMERIC APPROACH

approximation \rightarrow guessing \rightarrow post-certification

Factorization of a reducible polynomial $P \in \mathbb{Q}[X]$	[Lenstra, 1984]
1: compute an approximation $ ilde{x}$ of a solution $x\in\mathbb{C}$	(Newton's method)
2: guess the minimal polynomial $m_{x} \in \mathbb{Q}[X]$ from $ ilde{x}$	(LLL algorithm)
3: check that m_x divides P	(Euclidean division)

Factorization of a reducible operator $L \in \mathcal{F}\langle \partial \rangle$ where $\mathcal{F} = \overline{\mathbb{Q}}(z)$ if y is not well-chosen then $m_y = L$ \odot Factorization of a reducible operator $L \in \mathcal{F}\langle \partial \rangle$ where $\mathcal{F} = \overline{\mathbb{Q}}(z)$ 1: compute an approximation \tilde{y} of a solution $y \in \overline{\mathbb{Q}}[[z - z_0]]$ (differential equation \leftrightarrow recurrence relation on coefficients) 2: guess the minimal operator $m_y \in \overline{\mathbb{Q}}[z]\langle \partial \rangle$ from \tilde{y} (Hermite-Padé approximants) 3: check that m_y divides L in $\overline{\mathbb{Q}}(z)\langle \partial \rangle$ (right-Euclidean division)

Alexandre Goyer

Symbolic-numeric factorization of linear differential operators

I. INTRODUCTION

II. DIFFERENTIAL GALOIS GROUP III. Computing an invariant subspace IV. Van der Hoeven's algorithm V. Implementation

DIFFERENTIAL GALOIS GROUP

[Singer, van der Put, 2003]

Proposition. There is a one-to-one correspondance:

$$L = L_1 L_2 \quad \xleftarrow{} \quad V = \operatorname{Ker}(L_2)$$

subspace V invariant under the action of the differential Galois group

Example:
$$L = z\partial^2 + \partial$$

Example:
$$L = z\partial^2 + \partial$$

$$\underbrace{\begin{pmatrix}1 & 0\\2i\pi & 1\end{pmatrix}}\begin{pmatrix}1\\\log(z)\end{pmatrix} = \begin{pmatrix}1\\\log(z)+2i\pi\end{pmatrix}$$

monodromy of \boldsymbol{L} around the singularity $\boldsymbol{0}$

Theorem. [Schlesinger, 1885] Let $L \in \mathcal{F}\langle \partial \rangle$ be an operator. If *L* is *Fuchsian* then $\operatorname{Gal}_{\operatorname{diff}}(L)$ is the Zariski-closure of the group generated by the monodromy matrices of *L* (with a fixed base-point).

► How to check the Fuchsianity of L? → Fuchs' Criterion [Fuchs, 1866]

> ➤ What if L is not Fuchsian? → add exponential matrices and Stokes's matrices [Ramis, 1985]

Factorization and invariant subspace of ${ m Sol}(L)\simeq {\mathbb C}^n$

Alexandre Goyer

Symbolic-numeric factorization of linear differential operators

I. INTRODUCTION II. DIFFERENTIAL GALOIS GROUP III. COMPUTING AN INVARIANT SUBSPACE IV. VAN DER HOEVEN'S ALGORITHM V. IMPLEMENTATION

ORBIT

Let $\mathcal{M} = \{M_1, \dots, M_r\} \subset \mathsf{Mat}_n(\mathbb{C})$ be a finite list of matrices.

A := C[M], the algebra of non-commutative polynomials in the M_i's
Orb_M(v) := {Mv; M ∈ A}, the orbit of v under the action of M

Algorithm $\text{Orbit}(\mathcal{M}, v)$ INPUT: a list $\mathcal{M} = \{M_1, \dots, M_r\} \subset \text{Mat}_n(\mathbb{C}) \text{ and } v \in \mathbb{C}^n$ OUTPUT: the orbit of v under the action of the M_i 's

Proposition. There is a non-trivial \mathcal{M} -invariant subspace $V \subset \mathbb{C}^n$ iff there is a non-zero vector $v \in \mathbb{C}^n$ such that $\operatorname{Orb}_{\mathcal{M}}(v) \subsetneq \mathbb{C}^n$.

Proposition [van der Hoeven, 2007]. Let $(v_1, ..., v_n)$ be a basis of \mathbb{C}^n such that the projection maps onto the $\mathbb{C}v_i$'s belong to \mathcal{A} . Then there is a non-trivial \mathcal{M} -invariant subspace $V \subset \mathbb{C}^n$ iff there is an index *i* such that $\operatorname{Orb}_{\mathcal{M}}(v_i) \subsetneq \mathbb{C}^n$.

Remark. Let $M \in \mathcal{A}$. Denote by $\lambda_1, \ldots, \lambda_k$ the eigenvalues, with multiplicities m_1, \ldots, m_k , of M. For each j, the projection map onto the generalized eigenspace $E_j := \text{Ker}((M - \lambda_j I_n)^{m_j})$ is polynomial in M (therefore it belongs to \mathcal{A}).

Lemma 1. Assume that there is no non-trivial \mathcal{M} -invariant subspace. Then there is an $M \in \mathcal{A}$ with exactly *n* eigenvalues.

Lemma 2. Consider $N_1, \ldots, N_s \in Mat_n(\mathbb{C})$ and take a random linear combination $N \in \text{Span}_{\mathbb{C}}(N_1, \ldots, N_s)$. With probability 1, the number of eigenvalues of N is maximal.

Algorithm Invariant_Subspace(\mathcal{M})

INPUT: a list $\mathcal{M} = \{M_1, \ldots, M_r\} \subset \operatorname{Mat}_n(\mathbb{C})$

OUTPUT: a non-trivial \mathcal{M} -invariant subspace or None

1: take a random $M \in \mathcal{A} := \mathbb{C}[\mathcal{M}]$

2: for each 1-dimensional generalized eigenspace E of M do

3: if
$$\operatorname{Orbit}(\mathcal{M}, E) \neq \mathbb{C}^n$$
 then

4: return
$$\mathsf{Orbit}(\mathcal{M}, E)$$

5: if all the generalized eigenspaces of M are 1-dimensional then

return None 6:

7: else

- 8: take a generalized eigenspace E of M of dimension > 1
- select $v \in E$ such that $\operatorname{Orbit}(\mathcal{M}, v) \neq \mathbb{C}^n$ /* (details hidden) */ 9:

return $\operatorname{Orbit}(\mathcal{M}, v)$ 10:

I. INTRODUCTION II. DIFFERENTIAL GALOIS GROUP III. COMPUTING AN INVARIANT SUBSP IV. VAN DER HOEVEN'S ALGORITHM V. IMPLEMENTATION

Implementation of operations +, -, ×, \div , $\sqrt{\cdot}$,... on intervals in such a way that the following invariant is respected.

Motto The interval contains the exact value.

Example: Let $\pi := [3.1415, 3.1416]$ be an interval representing π . We require that $\sqrt{\pi} \supset \{x \in \mathbb{R} \text{ such that } 3.1415 \le x^2 \le 3.1416\}.$

INTERVAL VERSION OF THE ALGORITHM FOR COMPUTING

AN INVARIANT SUBSPACE

Algorithm Right_ ∂ Factor(L)

INPUT: a Fuchsian operator $L \in \overline{\mathbb{Q}}(z)\langle \partial \rangle$ OUTPUT: a non-trivial right factor $\in \overline{\mathbb{Q}}(z)\langle \partial \rangle$ of L or Irreducible

- 1: loop
- 2: compute $\mathcal{M} = \{M_1, \dots, M_r\}$ the monodromy matrices by approximations with rigorous error bounds

3:
$$oldsymbol{V} = extsf{Invariant_Subspace}(oldsymbol{\mathcal{M}})$$

- 4: *if* **V** is **Fail** then
- 5: increase precision

```
return Irreducible
```

8: else

7:

- 9: guess a candidate operator L_2 from V
- 10: *if* L_2 divides *L* then
- 11: return L_2

12: else

13: increase precision and order of truncation

I. INTRODUCTION

- II. DIFFERENTIAL GALOIS GROUP
- III. Computing an invariant subspace
- IV. VAN DER HOEVEN'S ALGORITHM
- V. IMPLEMENTATION

THE CODE

In SageMath system, source available at

https://github.com/a-goyer/diffop_factorization.

Main functions

- InvSub (interval version, with rigorous None)
- > right_dfactor, dfactor

> and the structure ComplexOptimisticField

The code takes advantage of:

- ore_algebra package, in particular the subpackage analytic for arbitrary-precision monodromy computation (https://github.com/mkauers/ore_algebra)
- Arb library (https://arblib.org/)
- some Sage functions (the method .minimal_approximant_basis of polynomial matrices for Hermite-Padé approximation, ...)

COMPARISON OF RUNNING TIMES

operator	order	DEtools (*)	diffop_factorization
fcc3 (**)	3	0.182s	0.148s
fcc4 (**)	4	0.630s	1.32s
fcc5 (**)	6	61.9s	12.9s
fcc6 (**)	8	>10h	432s
<pre>lclm(fcc3, fcc4)</pre>	7	66.6s	98.0s
fcc4 imes fcc3	7	1.88s	31.5s
fcc3 imes fcc4	7	4.59 s	24.8s
fcc4 ²	8	122.s	108.s
$\texttt{random4} \times \texttt{fcc3}$	7	2.04s	169.s
$\texttt{random4} \times \texttt{random3}$	7	2.40 s	404.s
$(z^2\partial + 3)((z-3)\partial + 4z^5)$	2	>10h	1.96s

(*) command DFactor of the Maple package DEtools (author: van Hoeij)
(**) http://koutschan.de/data/fcc1/ (probabilistic walks)

Alexandre Goyer

Symbolic-numeric factorization of linear differential operators

Thank you for listening!

Summary

- an implementation of van der Hoeven's algorithm for factorization of operators is now available!
- confirmation that symbolic-numeric approach can compete with purely symbolic approach!
- detailed proofs of correction of the irreducible case

Remaining work and outlook

- study the theoretical complexity
- non-Fuchsian case
- algebraic/exponential/liouvillian solutions